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A MODEL ARCHITECTURE OF BASELINE U-NET MODEL

Our U-net architecture can be divided into three phases. The Encoding Phase consists of two 7x7x7
convolutional layers. The first has 25 output channels while the second has 30 output channels,
and both are followed by the standard batch normalization and a ReLU activation. Then, a max
pooling operation with kernel size 2x2x2 and stride 2 is used to reduce the height, width, and depth
dimensions by a factor of 2.

The Learning Features Phase consists of a sequence of 7 residual blocks. Each of these blocks
consists of a 7x7x7 convolutional layer with 30 output channels followed by batch normalization and
ReLU activation, and then another 30-channel 7x7x7 convolutional layer with batch normalization
but no activation. A squeeze and excitation block Hu et al. (2018) occurs at this point, applied with
the channel dimension reduced by a factor of 2. Afterward, the residual skip connection is applied,
followed by another ReLU activation. At the end of this phase, a naive upsampling operation is
used to increase the height, width, and depth dimensions by a factor of 2, thus restoring the original
dimensions.

The Decoding Phase consists of two 5x5x5 convolutional layers. The first has 25 output channels
and is followed by batch normalization and a ReLU activation, while the second produces the model
predictions and thus has only a single output channel. Since all elements of the target outputs were
constrained to be in the range [-1, 1], we apply a final tanh activation function after this layer.

In all convolutional layers, the input is "same" padded to preserve height, width, and depth dimen-
sionality. Also, the convolutional layers in the encoding and learning features phases are padded
using torch’s circular padding scheme to account for the periodic nature of the input Patterson maps.
Furthermore, all convolutional layers were initialized using the kaiming_normal function of the
default torch.nn module He et al. (2015). As with the CrysFormer, our U-net model is robust to
training batches of examples with differing height, width, and depth shapes.

B ADDITIONAL DETAILS ON DATASET GENERATION

To start preparing our dataset, we selected nearly 24000 representative Protein Data Bank (PDB)
entries using the following criteria: proteins solved by X-ray crystallography after 1995, sequence
length ≥ 40, refinement resolution ≤ 2.75, refinement R-Free ≤ 0.28, with clustering at 30% sequence
identity. The standardized modifications we applied to each viable coordinate file were as follows: all
temperature factors were set to 20, any selenomethionine residues were rebuilt as methionine, and all
hydrogen atoms were removed leaving only carbon, nitrogen, oxygen, and potentially sulfur.

In our dataset generation process, an effort was taken to ensure diversity by sampling from PDB
entities with low sequence similarity to each other. However, both test and training sets are taking
random samples from the conformations allowed in rotamer and Ramachandran space. Any similar
conformations would be expected to be in a different rotational orientation in the cell by the nature of
the selection process. We did not compute all-versus-all clustering or force the test and training sets
to sample distinct conformational regions. For our 15-residue dataset, in order to obtain a greater
amount of starting coordinate files, we allowed at most 3 residues to be shared between distinct
examples. To prevent potential overfitting that could arise from this sharing of subsegments, we
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enforced that all examples derived from the same initial .pdb file would be placed together in either
the training or test set.

Another issue regarding ambiguity in Patterson map interpretation is the fact that an electron density
will always have the exact same Patterson map as its corresponding centrosymmetry-related electron
density. Hurwitz (2020) provided a workaround that involved combining a set of atoms with the
set of its centrosymmetry-related atoms into a single example output. However, this also requires a
separate post-processing algorithm to separate the original and centrosymmetric densities for each
of his model’s predictions. Since we are working with real-world structures –rather than randomly
placed data– we can exploit their known properties. In particular, we know that all proteinogenic
amino acids are naturally found in only one possible enantiomeric configuration (Helmenstine, 2021).
Although the mirror-image symmetry of enantiomers is not exactly the same as centrosymmetry, we
show that this is enough to allow us to work with true electron densities of protein fragments.

C DESCRIPTION OF DATASET SUBSET

Due to limitations of online storage space, we provide a subset of our generated dataset. This
subset represents a total of 200000 dipeptide examples. As expected, patterson.tar.gz contains the
generated Patterson maps, while electron_density.tar.gz contains the corresponding electron densities.
Meanwhile, partial_structure.tar.gz contains both of the partial structures for each dipeptide example
in the subset.

The dataset can be downloaded through this link:

https://drive.google.com/drive/folders/1X7YkxDd7yTC1RTG1z3NbdRIfKLfFtkrx?usp=share_link

We will also provide a dataset of prepared .pdb coordinate files of 15-residue examples, to which
our dataset generation process can be applied in order to produce Patterson map and electron density
tensors.

D ADDITIONAL VISUALIZATIONS OF MODEL PREDICTIONS

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer

Figure 1: Aspartic Acid + Valine

(a) U-Net+R (b) U-Net+PS+R (c) CrysFormer

Figure 2: Aspartic Acid + Lysine

Figure 3: Visualizations for dipeptide dataset. Ground truth density maps are shown in blue, while predictions
are shown in red. The model used to generate the ground truth electron density is shown in stick representation
for reference.
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Figure 1 represents an example in which the additional partial structure input channels provided to the
U-Net provided a substantial increase in prediction quality, allowing it to produce a prediction similar
to that of the CrysFormer. Figure 2 represents an example in which both providing additional
input channels to the U-Net and switching to CrysFormer provided noticeable improvements in
prediction quality.

It is clear that as prediction quality increases as indicated by reported Pearson correlation, finer details
of the true underlying structure are more likely to be accurately reproduced. The predictions in Figure
4 (e), (f), (g), and (h), as well as Figure ?? (a) [rank 55%] and (b) [rank 82%], were all successfully
refined using all of the mentioned autotracing and refinement procedures. But even for relatively
poor predictions such as (a) and (b), the rough overall shape can be reproduced even though several
portions have clear inaccuracies.

Figure 5 shows the scatterplot of shelxe poly-alanine autotracing results on the full 15-residue test
set. As mentioned, examples for which the amplitudes calculated from the initial poly-alanine chain
built into the model electron density prediction have a Pearson correlation coefficient with the true
underlying structure factor amplitudes of over 0.25 (shown above the red line) are extremely likely to
be successfully refined.
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(a) 4KNK_1.pd_73 CC 0.60 (Rank 11%) (b) 7F1T_1.pd_13 CC 0.66 (Rank 18%)

(c) 4XWH_1.pd_380 CC 0.75 (Rank 31%) (d) 5MSX_1.pd_193 CC 0.76 (Rank 36%)

(e) 4FBC_1.pd_121 CC 0.78 (Rank 38%) (f) 7K34_1.pd_145 CC 0.84 (Rank 57%)

(g) 7F1T_1.pd_13 CC 0.87 (Rank 63%) (h) 4TXJ_1.pd_37 CC 0.92 (Rank 90%)

Figure 4: Visualizations for 15-residue dataset. Ground truth density maps are shown in blue, while predictions
are shown in green. The model used to generate the ground truth electron density is shown in stick representation.
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Figure 5: Scatterplot of the Pearson correlations of amplitudes of the poly-alanine chains autotraced by shelxe
to the ground truth amplitudes vs the Pearson correlation of the predicted and ground truth maps for all 16,203
test cases
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