
A Proof of Theorem 1

A.1 Proof Sketch

We first introduce the following lemma:
Lemma 1. For matrices A1,A2,B1,B2 2 Mn, if A1 � B1 and A2 � B2, then we have
A1 +A2 � B1 +B2.

By Lemma 1, we have

H =
1

N

NX

i=1

Hi ⌫ (⇢1 � ↵(⇢1 + ⇢2)) ·
1

N

NX

i=1

Ii

(a)
=

(⇢1 � ↵(⇢1 + ⇢2))

N

2

64

n1 0 · · · 0
0 n2 · · · 0
· · · · · · · · · · · ·
0 0 · · · nM

3

75
4
= M1,

(3)

where (a) follows from the align operation when doing summation over local Hessians.

Similarly, we have

H =
1

N

NX

i=1

Hi �
1

N

NX

i=1

⇢2Ii =
⇢2

N

2

64

n1 0 · · · 0
0 n2 · · · 0
· · · · · · · · · · · ·
0 0 · · · nM

3

75
4
= M2. (4)

Thus, H �M2. We next introduce Lemma 2 about eigenvalue.
Lemma 2. For matrices A,B 2Mn, if A � B, then we have �min(A)  �min(B) and �max(A) 
�max(B), where �max(·) (resp., �min(·)) denotes taking the maximum (resp., minimum) eigenvalue..

By Lemma 2, we have �max(H) � �max(M1) = nmax(⇢1 � ↵(⇢1 + ⇢2))/N , and �min(H) 
�min(M2) = nmin⇢2/N . Further, for the positive-definite Hessian H, we have �max(H) = �max(H)
and �min(H) = �min(H). Therefore, we have the lower bound of the condition number of H:

 (H) � nmax(⇢1 � ↵(⇢1 + ⇢2))/N

nmin⇢2/N
=

nmax(⇢1 � ↵(⇢1 + ⇢2))

nmin⇢2
= ⇥

✓
nmax

nmin

◆
. (5)

A.2 Proof of Lemmas

Proof of Lemma 1. If A1 � B1 and A2 � B2, for any x 2 Rn, we have

x
>
A1x  x

>
B1x, x

>
A2x  x

>
B2x. (6)

Thus, 8x 2 Rn, we have

x
> (A1 +A2)x  x

> (B1 +B2)x, (7)

and we further have (A1 +A2) � (B1 +B2).

Proof of Lemma 2. For any matrix P 2Mn with P
> = P, we have

�max(P) = max
x2Rn,x 6=0

{x
>
Px

x>x
}, �min(P) = min

x2Rn,x 6=0
{x

>
Px

x>x
}. (8)

For two matrices A,B with A � B, we have

x
>
Ax

x>x
 x

>
Bx

x>x
, (9)

for any vector x 2 Rn(x 6= 0). Therefore, we have

max
x2Rn,x 6=0

{x
>
Ax

x>x
}  max

x2Rn,x 6=0
{x

>
Bx

x>x
}, min

x2Rn,x 6=0
{x

>
Ax

x>x
}  min

x2Rn,x 6=0
{x

>
Bx

x>x
}. (10)

So we have �max(A)  �max(B) and �min(A)  �min(B).
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B Proof of Theorem 2

The Hessian of f̂ is Ĥ 4
= D

1
2HD

1
2 .

We first consider the condition number of Ĥ when X is in a locally convex area. By equations 3
and 4, we have M1 � H � M2. Rearranging the terms yields H �M1 ⌫ 0 and M2 �H ⌫ 0.
Therefore, for any vector x 2 RM , we have

x
>
⇣
Ĥ�D

1
2M1D

1
2

⌘
x = x

>
D

1
2 (H�M1)D

1
2x =

⇣
D

1
2x

⌘>
(H�M1)

⇣
D

1
2x

⌘
� 0,

x
>
⇣
D

1
2M2D

1
2 � Ĥ

⌘
x = x

>
D

1
2 (M2 �H)D

1
2x =

⇣
D

1
2x

⌘>
(M2 �H)

⇣
D

1
2x

⌘
� 0.

(11)

So we have

D
1
2M1D

1
2 � Ĥ � D

1
2M2D

1
2 . (12)

By Lemma 2, we have

�min

⇣
Ĥ

⌘
� �min

⇣
D

1
2M1D

1
2

⌘
= (⇢1 � ↵(⇢1 + ⇢2)),

�max

⇣
Ĥ

⌘
 �max

⇣
D

1
2M2D

1
2

⌘
= ⇢2.

(13)

Thus, the condition number of Ĥ satisfies (Ĥ)  ⇢2/(⇢1 � ↵(⇢1 + ⇢2)) = ⇥(1).

We next consider the minimum singular value of H and Ĥ with �min(H) =
p

�min(H2) and

�min(Ĥ) =
q
�min(Ĥ2) in any case. Let x0 2 RM (x0 6= 0) such that �min(Ĥ2) = x

>
0 Ĥ

2
x0. Let

x1 = D
1
2x0. Then, we have

�min

�
H

2
�
 x

>
1 H

2
x1

x>
1 x1

=
x
>
0 D

1
2H

2
D

1
2x0

x>
0 Dx0

(a)
 (nmax/N)�min(Ĥ2)

(N/nmax)x>
0 x0

=
⇣
nmax

N

⌘2
�min

⇣
Ĥ

2
⌘
,

(14)

where (a) follows from �min(Ĥ2) = x
>
0 Ĥ

2
x0 = x

>
0 D

1
2HDHD

1
2x0 � N

nmax
x
>
0 D

1
2H

2
D

1
2x0.

Therefore, we have �min(H)  nmax
N �min(Ĥ).

Under Assumption 1 and equation 4, we have H �M2. Similarly, we can obtain H ⌫ �M2. By
Lemma 2, we further have

�max(H)  �max(M2) =
nmax⇢2

N
, �min(H) � �min(�M2) = �

nmax⇢2

N
. (15)

Therefore, we have �max(H)  nmax⇢2

N . Similar to equation 11, we have

�max

⇣
Ĥ

⌘
= �max

⇣
D

1
2HD

1
2

⌘
 �max

⇣
D

1
2M2D

1
2

⌘
= ⇢2,

�min

⇣
Ĥ

⌘
= �min

⇣
D

1
2HD

1
2

⌘
� �min

⇣
�D 1

2M2D
1
2

⌘
= �⇢2.

(16)

Thus, we have �max(Ĥ)  ⇢2, and the upper bound of the eigenvalues of H and Ĥ are:

 (H)  ⇢2nmax

N�min(H)
4
= k, 

⇣
Ĥ

⌘
 ⇢2

�min(Ĥ)

4
= k̂. (17)

With �min(H)  nmax
N �min(Ĥ), we have k̂  k.
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C Proof of Theorem 3

C.1 k rf̂(X̂) k2 vs. k rf(X) k2

In this section, we explain why we use k rf̂(X̂) k2 rather than k rf(X) k2 to characterize the
convergence rate. In general, it is hard to develop a convergence rate for objective values. However,
when the global model is in a locally convex area of f , we can obtain the relationship between the
gradient and the local optimum. We first show the relationship between k rf(X) k2 and the local
optimum in the scenarios without parameter heat dispersion (i.e., each client’s local data involve
the full global model and nm = N, 8m 2 S).
Theorem 4. When there is no parameter heat dispersion, and X is in a µ-strongly convex area of fi
for each i, if k rf(X) k2 ✏, we have f(X)  f(X⇤

local) +
✏
2µ , where X

⇤
local is the local optimum.

Proof. For any model Y and X the area, by the µ local convexity of fi, we have

fi (Y) � fi (X) + hY �X,rfi (X)i+ µ

2
k Y �X k2 . (18)

Summing the right-hand of the inequality over i = {1, 2, · · · , N} and dividing it by N yields

T (Y)
4
= f (X) + hY �X,rf (X)i+ µ

2
k Y �X k2, (19)

where T (Y) is a quadratic function of Y, we have

T (Y)
(a)
� f(X)� 1

2µ
k rf(X) k2, (20)

where (a) equals when Y = X� 1
µrf(X), so we have f(X)  f(Y)+ 1

2µ k rf(X) k2 for any Y.
Therefore, if k rf(X) k2 ✏, we have f(X)  f(X⇤

local)+
1
2µ k rf(X) k2 f(X⇤

local)+
✏
2µ .

We next show the relationship of k rf(X) k2, k rf̂(X̂) k2, and the local optimum when consider-
ing parameter heat dispersion.
Theorem 5. Under Assumption 1, when X is in a locally convex area of f , if k rf̂(X̂) k2 ✏, we
have f(X)  f(X⇤

local) +
✏

2µ0
, where µ0 = ⇢1 � ↵(⇢1 + ⇢2) > 0. However, if k rf(X) k2 ✏, we

can only guarantee that f(X)  f(X⇤
local) +

N✏
2nminµ0

.

Proof. We use Xi to denote XS(i) for short. For any static model Y and X, by the µi local convexity
of fi, we have

fi (Yi) � fi (Xi) + hYi �Xi,rfi (Xi)i+
µi

2
k Yi �Xi k2, (21)

where µi denotes the minimum eigenvalue of Hi. By Assumption 1, we have
P

m2S(i) µi �
nm(⇢1 � ↵(⇢1 + ⇢2)) = nmµ0 for any parameter m. Summing the right-hand of the inequality over
i = {1, 2, · · · , N} yields

T (Y)
4
=

NX

i=1

h
fi (Xi) + hYi �Xi,rfi (Xi)i+

µi

2
k Yi �Xi k2

i
, (22)

where T (Y) is a quadratic function of Y:

T (Y) =
NX

i=1

fi (Xi) +
MX

m=1

X

m2S(i)


µi

2
(ym � xm)2 +

@fi

@xm
(ym � xm)

�

�
NX

i=1

fi (Xi) +
MX

m=1

2

4µ0nm

2
(ym � xm)2 +

X

m2S(i)

@fi

@xm
(ym � xm)

3

5

(a)
�

NX

i=1

fi (Xi)�
1

2µ0

MX

m=1

1

nm

0

@
X

m2S(i)

@fi

@xm

1

A
2

=Nf (X)� N

2µ0
rf(X)>Drf(X),

(23)
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where xm and ym denote the parameter m of model X and Y, respectively, and (a) equals when
ym = xm � 1

µ0nm

P
m2S(i) @fi/@xm. Since f (X) = 1

N

PN
i=1 fi (Xi), we have

f (Y) � f (X)� 1

2µ0
k rf̂(X̂) k2 . (24)

If k rf̂(X̂) k2< ✏, by letting Y = X
⇤
local, we have f (X)  f (X⇤) + ✏

2µ0
.

On the contrary, if k rf(X) k2< ✏, since

f(X⇤
local) � f(X)� 1

2µ0
k rf̂(X̂) k2� f(X)� N

2nminµ0
k rf(X) k2,

we can only guarantee that f(X)  f(X⇤
local) +

N✏
2nminµ0

.

We note that there is a difference between equation 18 and 21: for each client i, equation 18 involves
all the parameters of the full model while equation 21 involves only partial parameters of the submodel,
which causes a change in the lower bound of T (Y) and further leads to a change of conclusion.

By Theorem 5, we can also show the superiority of FedSubAvg over FedAvg. The existing
work proved an O(

p
1/KT ) convergence of k rf(XT ) k2 in FedAvg. When k rf(XT ) k2

O(
p
1/KT ) and X

T is in a locally convex area of f , we have f(XT )  f(X⇤
local) +O( N

nmin

p
KT

).

In contrast, we proved an O(
q

N
nminKT ) convergence of k rf̂(X̂) k2 in FedSubAvg. When

k rf̂(X̂T ) k2 O(
p
1/KT ) and X

T is in a locally convex area of f , we have f(XT ) 
f(X⇤

local) + O(
q

N
nminKT ), which indicates that compared to FedAvg, FedSubAvg converges

⇥(
p
N/nmin) times faster for the objective value.

C.2 Additional Notations

Let Xi denote XS(i) and U denote 1
N ·D = diag{1/n1, 1/n2, · · · , 1/nM}. We have

X
t = U ·

NX

i=1

x
t
i (25)

We then assume that FedSubAvg always activates all the clients at the beginning of each commu-
nication round and then uses the parameters maintained by a few selected clients to generate the
next-round parameter. It is clear that this update scheme is equivalent to the original. Then, the
update of FedSubAvg can be summarized as: for all i 2 [N ],

y
t+1
i = x

t
i � �g

t
i , (26)

x
t+1
i =

8
><

>:

y
t+1
i if t is not a multiple of I,

X
t+1�I
i +Ui ·

N

K

X

j2Ct+1

�
y
t+1
j � x

t+1�I
j

�
if t is a multiple of I, (27)

where gt
i
4
= rF (xt

i, ⇠
t
i) is the local gradient of client i at iteration t, and Ui denotes the local part of

U for client i. Clearly, in this update scheme, when t is a communication iteration, we have

ECt+1

⇥
X

t+1
⇤
= ECt+1

2

4Xt+1�I +U · N
K

X

i2Ct+1

�
y
t+1
i � x

t+1�I
i

�
3

5 = U ·
NX

i=1

y
t+1
i

4
= Y

t+1
.

(28)

Additionally, Xt+1 = Y
t+1 also holds when t is not a communication iteration. Therefore, Yt+1 =

E[Xt+1].
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C.3 Key Lemmas

Lemma 3.

E
"
1

N

NX

i=1

k xt
i �X

t
i k2
#
 4�2

I
2
G

2
.

Proof. FedSubAvg requires communication every I iterations. Therefore, for any t � 0, there exists
a t0  t, such that t� t0  I � 1 and x

t0
i = X

t0
i for all i 2 N . Then, we have

E
"
1

N

NX

i=1

k xt
i �X

t
i k2
#

=E
"
1

N

NX

i=1

k
�
x
t
i �X

t0
i

�
�
�
X

t
i �X

t0
i

�
k2
#

E
"
1

N

NX

i=1

k
t�1X

⌧=t0

�g
⌧
i �

t�1X

⌧=t0

�Ui

NX

i=1

g
⌧
i k2

#

2E
"
1

N

NX

i=1

k
t�1X

⌧=t0

�g
⌧
i k2

#

| {z }
A1

+2E
"
1

N

NX

i=1

k
t�1X

⌧=t0

�Ui

NX

i=1

g
⌧
i k2

#

| {z }
A2

.

(29)

We first focus on bounding A1:

A1 
1

N

NX

i=1

k
t�1X

⌧=t0

�
2
g
⌧
i k2

�
2 (I � 1)2

N

NX

i=1

k g⌧
i k2 �

2
G

2(I � 1)2. (30)

We next bound A2:

A2 
�
2(I � 1)

N

t�1X

⌧=t0

NX

i=1

k Ui

NX

i=1

g
⌧
i k2

| {z }
A3

,
(31)

where A3 can be bounded as follows:

A3 
MX

m=1

X

m2S(i)

 P
m2S(i) g

t
i,{m}

nm

!2

=
MX

m=1

1

nm

0

@
X

m2S(i)

g
t
i,{m}

1

A
2


MX

m=1

X

m2S(i)

⇣
g
t
i,{m}

⌘2
 NG

2
.

(32)

Substituting equations 30, 31, and 32 into 29 yields

E
"
1

N

NX

i=1

k xt
i �X

t k2
#
 4�2

G
2(I � 1)2. (33)

C.4 Completing the Proof of Theorem 3

Proof. For each client i, by the L-smoothness of fi(·), we have

E
⇥
fi

�
X

t+1
i

�⇤
 E

⇥
fi

�
X

t
i

�⇤
+ E

⇥⌦
X

t+1
i �X

t
i,rfi

�
X

t
i

�↵⇤
| {z }

Ci
1

+
L

2
E
⇥
k Xt+1

i �X
t
i k2
⇤

| {z }
Ci

2

. (34)
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We first focus on bounding C
i
1.

C
i
1 =E

⇥⌦
Y

t+1
i �X

t
i,rfi

�
X

t
i

�↵⇤
+ E

⇥⌦
X

t+1
i �Y

t+1
i ,rfi

�
X

t
i

�↵⇤

=E
"*
��Ui

NX

i=1

g
t
i ,rfi

�
X

t
i

�
+#

= E
"*
��U

NX

i=1

g
t
i ,rfi

�
X

t
i

�
+#

(35)

Substituting C
i
1 over i 2 [N ] yields

E
"
1

N

NX

i=1

C
i
1

#
=� �E

"*
U

NX

i=1

g
t
i ,

1

N

NX

i=1

rfi
�
X

t
i

�
+#

=� �

N
E
"*

U

NX

i=1

rfi
�
x
t
i

�
,

NX

i=1

rfi
�
X

t
i

�
+#

(a)
= � �

N
E
"*

V

NX

i=1

rfi
�
x
t
i

�
,V

NX

i=1

rfi
�
X

t
i

�
+#

=� �

2N
E

2

4
 

NX

i=1

rfi
�
X

t
i

�
!>

U

 
NX

i=1

rfi
�
X

t
i

�
!3

5

� �

2N
E

2

4
 

NX

i=1

rfi
�
x
t
i

�
!>

U

 
NX

i=1

rfi
�
x
t
i

�
!3

5

+
�

2N
E

2

4
 

NX

i=1

�
rfi

�
x
t
i

�
�rfi

�
X

t
i

��
!>

U

 
NX

i=1

�
rfi

�
x
t
i

�
�rfi

�
X

t
i

��
!3

5

| {z }
D

,

(36)
where V = diag(1/

p
n1, 1/

p
n2, · · · , 1/

p
nM ) and U = V

2 in (a), while D can be bounded as
follows:

D  1

nmin
k

NX

i=1

�
rfi

�
x
t
i

�
�rfi

�
X

t
i

��
k2 NL

2

nmin

NX

i=1

k xt
i �X

t
i k2

4N2
�
2
G

2
L
2(I � 1)2

nmin
,

(37)
We next consider bounding C

2
i :

C
2
i  2E

⇥
k Yt+1

i �X
t
i k2
⇤

| {z }
Ei

1

+2E
⇥
k Xt+1

i �Y
t+1
i k2

⇤
| {z }

Ei
2

. (38)
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Since Y
t+1
i = X

t
i � �Ui

PN
i=1 g

t
i , we have

E
"
1

N

NX

i=1

E
i
1

#
=E

"
1

N

NX

i=1

�
2 k Ui

NX

i=1

g
t
i k2

#

=
�
2

N
E

2

4
 

NX

i=1

g
t
i

!>

U

 
NX

i=1

g
t
i

!3

5

=
�
2

N
E

2

4
 

NX

i=1

�
g
t
i �rfi

�
x
t
i

��
!>

U

 
NX

i=1

�
g
t
i �rfi

�
x
t
i

��
!3

5

+
�
2

N
E

2

4
 

NX

i=1

rfi
�
x
t
i

�
!>

U

 
NX

i=1

rfi
�
x
t
i

�
!3

5

+
2�

N
E

2

4
 

NX

i=1

�
g
t
i �rfi

�
x
t
i

��
!>

U

 
NX

i=1

�
g
t
i �rfi

�
x
t
i

��
!3

5

=
�
2

N
E

2

4
 

NX

i=1

�
g
t
i �rfi

�
x
t
i

��
!>

U

 
NX

i=1

�
g
t
i �rfi

�
x
t
i

��
!3

5

 �
2

nminN
E
"
k

NX

i=1

�
g
t
i �rfi

�
x
t
i

��
k2
#

+
�
2

N
E

2

4
 

NX

i=1

rfi
�
x
t
i

�
!>

U

 
NX

i=1

rfi
�
x
t
i

�
!3

5

�
2
�
2

nmin
+

�
2

N
E

2

4
 

NX

i=1

rfi
�
x
t
i

�
!>

U

 
NX

i=1

rfi
�
x
t
i

�
!3

5 .

(39)

If t is not a communication iteration, we have E
i
2 = 0; otherwise, we have
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where ui denotes the local part of (1/n2
1, 1/n

2
2, · · · , 1/n2

M ) for client i, � denotes the element-wise
multiplication, and (a) follows from that E[k z�E[z] k2]  E[k z k2] holds for any random vector z.
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Summing over i = [N ], we have
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Taking an average of equation 34 over i 2 [N ], substituting equations 35, 37, 38, 39, 41 into 34, and
rearranging the terms yields
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Summing over t 2 {1, 2, · · · , T} and dividing both sides by T yields
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Therefore, we have

E
"
1

T

TX

i=1

rf(Xt)>Drf(Xt)

#

=E

2

4 1

T

TX

i=1

1

N

 
NX

i=1

rfi(Xt)

!>

U

 
NX

i=1

rfi(Xt)

!3

5


2
�
f
�
X

1
�
� f (X⇤)

�

�T
+

2�L�2

nmin
+

4N�
2
I
2
G

2
L
2

nmin
+

2�NI
2
G

2
L

nminK
.

(44)

21



D Experimental Details

D.1 Feature Heat Distributions on Datasets

Figure 5 shows the feature heat distributions of the head features on four datasets in NLP or RS. We
can observe that the feature heat (i.e., the number of feature-involved clients) varies widely among
different features.

(a) Feature heat on MovieLens (b) Feature heat on Sent140

(c) Feature heat on Amazon (d) Feature heat on Alibaba

Figure 5: Feature heat distributions on four datasets (only the head features are shown). The x-axis
represents feature heat, i.e., the number of clients involving a movie/word/item, and the y-axis
represents the number of movies/words/items under a certain heat.

D.2 The Approximation of Scaffold in CTR Prediction

In CTR prediction, we make an approximation to Scaffold since a resource-constrained client cannot
keep the control variate. Therefore, we perform the controlled update on the cloud server in each
round. Let c denote the globally controlled variate, and let ci denote client i’s local control variate.
At the end of each round in Scaffold, we have:

c
old ⇡ 1
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c
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X

i2Sc

(cnewi � c
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where Sc is the selected clients at the round. Taking expectation with respect to the selected clients,
we have
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In addition, the global update �X ⇡ �⌘Ic and client i’s local update �xi ⇡ �⌘Ici. By equation
46, we can approximate the global update by

�X
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N
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N

 
1
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X

i2Sc

�xi

!
. (47)

Therefore, we run Scaffold approximately by weighted averaging the original global update and the
aggregated local updates to get the new global update every communication round.

D.3 Hyperparameters

For the tasks of rating classification and sentiment analysis, we set the local batch size to 5 and set
the local iteration number to 10 in all FL algorithms. We set the batch size to 250 and set the iteration
number in each round to 10 in CentralSGD. For the CTR prediction on Amazon, we set the batch size
to 4 and set the local iteration number to 10 in all FL algorithms. We set the batch size to 400 and
set the iteration number in each round to 10 in CentralSGD. For the CTR prediction on the Alibaba
dataset, we set the batch size to 32 and set the local iteration number to 10 in all FL algorithms. We
set the batch size to 3,200 and set the iteration number in each round to 10 in CentralSGD. We search
the learning rate for each algorithm independently, and the learning rates are recorded in Table 4. In
addition, we tune the hyperparameters for FedAdam and list the hyperparameters in Table 5.

Table 4: Learning rate for each experiment.

CentralSGD FedAvg FedProx Scaffold FedSubAvg

MovieLens 0.1 0.1 0.1 0.1 0.1
Sent140 0.1 0.1 0.1 0.1 0.1
Amazon 0.05 0.1 0.1 0.1 0.05
Alibaba 1 1 1 1 0.3

Table 5: Hyperparameters for FedAdam.

⌘l ⌘ �1 �2

MovieLens 0.1 1 0.9 99
Sent140 1 1 0.9 0.99
Amazon 0.1 0.001 0.9 0.999
Alibaba 1 0.001 0.9 0.99

D.4 Supplementary Notes for the Experiments

In our experiments, all FL algorithms are extended to the weighted case. In particular, the correction
coefficient N/nm for parameter m in FedSubAvg is extended to

PN
i=1 wi/

P
{j|m2S(j)} wj , where

wi is the size of client i’s local training data. For the rating classification, the MovieLens dataset
is available from https://grouplens.org/datasets/movielens/1m/. We randomly select 20% of the
samples as the test dataset and leave the remaining 80% as the training set, and further randomly
choose 10,000 samples from the training set to evaluate train losses. For the sentiment analysis, the
Sentiment140 dataset is available from http://help.sentiment140.com/for-students, and we randomly
select 20% of the samples as the test dataset and leave the remaining 80% as the training set. For the
CTR prediction, the Amazon dataset is available from http://jmcauley.ucsd.edu/data/amazon/, and we
partition the dataset based on the timestamp. In addition, experiments are conducted on machines
with operating system Ubuntu 18.04.3 and one NVIDIA GeForce RTX 2080Ti GPU.

D.5 Additional Results

We show the test accuracies (ACCs) or AUCs for each experiment. Figure 6 compares the test ACCs
or AUCs of FedSubAvg and baselines under default settings. Figure 7 compares the test ACCs or
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AUCs of FedSubAvg with different numbers of participating client per round K. All the results from
test ACC or AUC are consistent with the results from the train loss.

(a) Test ACCs on MovieLens (b) Test ACCs on Sent140

(c) Test AUCs on Amazon (d) Test AUCs on the Alibaba dataset

Figure 6: Test ACCs or test AUCs of FedSubAvg and the baselines on different datasets.

(a) Test ACCs on MovieLens (b) Test ACCs on Sent140

(c) Test AUCs on Amazon (d) Test AUCs on the Alibaba dataset

Figure 7: Test ACCs or test AUCs of FedSubAvg on different datasets with the varying number of
selected clients per round K.
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E Comparison with Adaptive Federated Optimization

In this section, we compare FedSubAvg with FedAdam [26] and show that in the federated settings
with feature heat dispersion, FedSubAvg generally has stronger theoretical guarantees and lower
computation overhead.

We first clarify the relationship of FedSubAvg and the adaptive federated algorithms from the
perspective of algorithm design. FedSubAvg is a prior preconditioning method to handle the issue
of feature heat dispersion, which is newly identified and proven to cause ill-condition problem.
The diagonal preconditioner in FedSubAvg is to do re-weighting based only on the statistics over
the clients’ local data and keeps unchanged during federated learning. In contrast and in parallel,
FedAdam uses posterior information (i.e., the estimates of the first and second moments of the global
updates), which is dynamic in the federated optimization process, to apply Adam in FL settings, and
may alleviate the issue of feature heat dispersion.

We next compare FedSubAvg with FedAdam from the perspective of theoretical analysis. In this paper,
we theoretically prove that FedSubAvg works as a suitable preconditioner for the ill-conditioned
global objective caused by feature heat dispersion. In contrast, FedAdam has no strict theoretical
guarantees in terms of reducing the condition number. In addition, FedAdam has a O(1/

p
NT )

convergence rate with respect to k rf(X) k2 when assuming full participation (i.e., K = N ). By
Theorem 5, FedAdam only has a convergence guarantee of O(

q
N

n2
minT

) with respect to f(X⇤
local),

which indicates that compared to FedAdam, FedSubAvg converges ⇥(
p

N/nmin) times faster.

We further compare FedSubAvg with FedAdam from the perspective of computation overhead. Since
the prior precondition in FedSubAvg keeps unchanged during training, the additional computation
complexity is O(M), where M is the number of model parameters. In contrast, FedAdam calculates
the adaptive learning rates for each model parameter every communication round, which leads
to additional O(RM) computation complexity, where R is the number of rounds. Therefore, the
additional computational overhead of FedSubAvg is significantly smaller than that of FedAdam,
especially when M and R are large.

F Privacy Preserving Methods

Regarding the privacy issues in federated submodel learning, Niu et al. [20] designed a protocol
based on private set union, randomized response [27], and secure aggregation [28], which can protect
each individual client’s local features (i.e., the position of its submodel in the full model) with strict
local differential privacy guarantee in both download and upload phases, against the cloud server and
any other client. Compared with [20], the additional information needed in FedSubAvg is how many
clients have each individual feature, thereby computing the feature heat dispersion and the diagonal
pre-conditioner. To obtain such information without revealing any client’s local features, one feasible
way is to apply secure aggregation, where each client uses a vector to truly indicate whether it has
feature i in the i-th position of the vector, and the cloud server can accurately obtain the sum of all
the clients’ vectors without any individual client’s vector and further can obtain the size of clients
having each individual feature. Another more efficient and an unbiased way is to apply randomized
response, where each client still uses a vector to indicate whether it has feature i in the i-th position
of the vector, but the difference is that, conditional only whether the client truly has feature i, it will
indicate “1" with a certain probability and “0" with another probability. Based on the randomized
vectors from all the clients, the cloud server can obtain an unbiased estimation of how many clients
having each individual feature after certain corrections. Meanwhile, each client can hold plausible
deniability (in terms of local differential privacy) against whether it has a certain feature.
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