
SUPPLEMENTARY MATERIAL - FAST GRAPH ATTENTION NETWORKS USING EFFECTIVE
RESISTANCE BASED GRAPH SPARSIFICATION

A PROOFS

A.1 REINTERPRETATION OF ATTENTION BASED GNNS AS GRAPH CONVOLUTION MODELS

For our analysis, we assume the attention vector a defined in (Veličković et al., 2018) is symmetric:
a[1 : N] = a[N + 1 : 2N]. This results in a symmetric attention coefficient matrix and the
analysis is simpler. Also note that the symmetric attention functions are used in practice as well
(Thekumparampil et al., 2018). Our first result is on the equivalence of GAT and graph convolutions.
As stated in equation 1, graph convolution with kernel g can be defined using the eigenvectors and
eigenvalues of the symmetric normalized graph Laplacian matrix Lnorm. Similarly we can define a
convolution operation using an alternative of the normalized Laplacian, known as the random walk
normalized Laplacian matrix, which is defined as:

Lrw = D
�1

L = I �D
�1

A = D
�1/2

LnormD
1/2.

The convolution operation with Lrw can then be defined as in equation 11

gb?x = D
�1/2

Ug(⇤)UT
D

�1/2
x. (11)

Proposition 1 Each layer in the GAT model defines a new, layer-dependent graph adjacency matrix
�(l)

and a corresponding degree matrix �D
(l)

. Each layer then computes a first order approximation

of the convolution operator b? defined in equation 11 using �(l)
and �D

(l)
:

H
(l+1) = �(�D

(l)�1

�(l)
H

(l)
W

(l)) ⇡ �(g(l)

�l,�D
(l)b?(H(l)))

where � is the non-linearity and g
(l)

�(l),�D
(l) is the convolutional kernel characterized by �(l),�D

(l)
.

Proposition 1 establishes a direct equivalence between the graph convolution and the GAT model.
This interpretation also shows that the GAT model applies Laplacian smoothing to node based features
(Taubin, 1995; Li et al., 2018). Such a connection between spectral operations and attention based
graph neural networks provides directions for theoretical analysis of attention GNNs.

A.2 GAT MODEL IS EQUIVALENT TO LAYER-WISE CONVOLUTION

Consider a single layer of the GAT model. Let H 2 RN⇥D be the input feature matrix to a single
GAT layer, let W 2 RD⇥F denote the weight matrix, let C 2 RD⇥2 be such that C = [a(1 :
N) a(N +1 : 2N)], where a 2 R2N denotes the attention coefficient vector as defines in (Veličković
et al., 2018). Let A 2 RN⇥N be the graph adjacency matrix and let eA = A+IN . For a given graph,
if D represents the degree matrix, then D

�1
A is simply the state transition matrix of a random

walker on the graph.

We can further define a matrix Q 2 RN⇥2 as

Q = HWC. (12)

Further, let us define eij (as in (Veličković et al., 2018)) as

eij = a>[Whi||Whj] (13)

where hi is the ith row of H . Then, we can see that the vector ei where ei(j) = eij is given as

ei =
⇥ eA(:, i) diag(eA(:, i))

⇤ Q(i, :) 01⇥2

0N⇥2 Q

�
2

64

1
0
0
1

3

75 . (14)

Hence, we can express the matrix of attention coefficients, before the softmax operation, � as

12

� = f(bQ> bA) (15)
where

bQ =

2

6666666664

Q(1, :)
Q(2, :)

. . .
Q(N, :)

Q

. . .
Q

3

7777777775

2

666666666664

1 0 · · ·
0 0 · · ·
0 1 · · ·

0N�1 0N�1 · · ·
0 0 · · ·
1 0 · · ·
0 0 · · ·
0 1 · · ·
...

... · · ·

3

777777777775

, bA =

2

6664

eA
diag(eA(:, 1))

...
diag(eA(:, N))

3

7775
(16)

and f = exp(LeakyReLU(·)). Further, let �D = diag(�1N).

The GAT layer update can be expressed as,

cH = �

✓
diag

⇣
f(bQ> bA)1N

⌘�1
f(bQ> bA)HW

◆
(17)

cH = �
�
��1
D

�HW
�

(18)

Given a new graph G�(E ,V) with � being the adjacency matrix. Let �D be the corresponding
degree matrix. Then, the random walk normalized Laplacian is defined as

Lrw = I � ��1
D

� (19)

Note that although Lrw is asymmetric, it is similar to the symmetric normalized Laplacian matrix:

Lnorm = I � ��1/2
D

���1/2
D

= �1/2
Lrw��1/2. (20)

Hence, Lrw has real eigenvalues and match with those of Lnorm. The corresponding eigenvectors
of the two matrices are also related: If v is an eigenvector of Lnorm, then ��1/2

D
v is an eigenvector

of Lrw. Using this, we can define a new convolution operator as

g✓b?h = ��1/2
D

Usymg✓(⇤sym)UT

sym�1/2
D

h (21)

Then, using the Chebychev polynomial approximation similar to (Kipf & Welling, 2016), we can
show that for a given feature vector h, we can get a first order approximation to the operation g✓b?h
as

g✓b?h ⇡ ��1
D

�h w. (22)
For multiple output features, the new graph convolution operation has a first order approximation as

g✓b?H ⇡ ��1
D

�H W (23)

which matches exactly with equation 18. This shows that the model defined in (Veličković et al.,
2018) is similar to a GCN model, but defined layer-wise.

A.3 SPECTRAL SPARSIFICATION PRESERVES GRAPHS CONVOLUTIONAL FEATURES

In this section, we show that the features learnt by graph convolution based neural networks are
preserved when spectral sparsification techniques are applied to the original data graph. We use
the following notation: Lnorm is as defined in equation 20 and denotes the symmetric normalized
Laplacian matrix of a graph, Lnorm,s denotes the symmetric normalized Laplacian matrix of the
corresponding spectrally sparsified graph with a parameter of ✏. Similalry, we use Lrw to denote the
random walk normalized Laplacian matrix of a graph and Lrw,s to denote the corresponding random
walk normalized Laplacian matrix of the spectrally sparsified graph.

Spectral sparsification and the GCN model Consider the graph convolution network architecture
proposed in Kipf & Welling (2016). We assume that the non-linearity �(·) used in Lipshitz continuous

13

with a Lipschitz constant `� . For a single neural network layer, let the input features be H 2 RN⇥D,
let the weight matrix be W 2 RD⇥F , where F is the number of output features. Then, the new set
of features computed by the GCN model is

cH = � ((Lnorm � I)HW) (24)

and the corresponding set of features computed by the GCN model using a spectrally sparsified graph
are given as

cH 0 = � ((Lnorm,s � I)HW) (25)

Proof of Theorem 1
Proof We first characterize the spectral norm error between the corresponding graph Laplacians
Lnorm and Lnorm,s and then use the bound to prove Theorem 1. We use D and Ds to denote the
degree matrices of the full and the spectrally sparsified graphs.

Since both Lnorm and Lnorm,s are symmetric and positive semidefinite, we have,

kLnorm �Lnorm,sk = max(|�max(Lnorm �Lnorm,s)|, |�min(Lnorm �Lnorm,s)|)
= sup

x2RN : kxk=1

|x>(Lnorm �Lnorm,s)x|

We then have

|x>(Lnorm �Lnorm,s)x| = |x>
Lnormx� x

>
D

�1/2
D

1/2
s

Lnorm,sD
1/2
s

D
�1/2

x (26)

+ x
>
D

�1/2
D

1/2
s

Lnorm,sD
1/2
s

D
�1/2

x� x
>
Lnorm,sx|

 |x>
Lnormx� x

>
D

�1/2
D

1/2
s

Lnorm,sD
1/2
s

D
�1/2

x|
+ |x>

D
�1/2

D
�1/2
s

Lnorm,sD
�1/2

D
�1/2
s

x� x
>
Lnorm,sx|

(27)

Taking supremum on both sides, we get

sup
x2RN : kxk=1

|x>(Lnorm �Lnorm,s)x|  ✏ sup
x2RN : kxk=1

|x>
Lnormx|+

���D�1/2
D

�1/2
s

Lnorm,sD
�1/2

D
�1/2
s

�Lnorm,s

���

 ✏ kLnormk+ (28)
���D�1/2

D
�1/2
s

Lnorm,sD
�1/2

D
�1/2
s

�Lnorm,s

���

 ✏ kLnormk+ 3✏ kLnormk
 4✏ kLnormk (29)
 8✏ (30)

where we assume that 3✏2 + ✏3 < ✏, which holds true for small ✏ and we also have kLnormk  2.

We then have the final result as below. Let `� be the Lipschitz constant of the non-linearity �.

���cH � cH 0
���
F

 `�4✏ k(Lnorm �Lnorm,s)HW k
F

(31)

4✏ kLnorm �Lnorm,sk kHW k
F

(32)

where, we use `� = 1 for ReLU or ELU non-linearity, and use inequality

kABk
F
 kAk kBk

F

for any two matrices A and B.

Theorem 1 shows that if two GCN models that use the full and spectrally sparsified graphs have the
same initialization W , then the correponding feature updates are close in a Frobenius norm sense.

14

Although we have not explored the dynamics or training, we strongly believe that similar bounds can
be obtained on the gradients of the network parameters and in turn on the gradient descent updates.

Spectral sparsification and the GAT model We can now consider the graph attention network
model proposed in (Veličković et al., 2018). With H and W as defined in the previous section, the
feature update equations for the GAT model using the full and the spectrally sparsified graphs are
given as

cH = �((Lrw � I)HW)

cH 0 = �((Lrw,s � I)HW) (33)

Due to Equations equation 20, we can rewrite the above equations as
cH = �(D�1/2(Lnorm � I)D1/2HW) (34)

cH 0 = �(D�1/2
s

(Lnorm,s � I)D�1/2
s

HW) (35)

As before, we first bound the error kLrw �Lrw,sk and then use it to bound the error cH � cH 0.

Proof of Theorem 2
Theorem 2 shows that if a layer-wise spectral sparsification of the graph is used to reduce the number
of edges, then the feature updates computed by the sparse model are also preserved. Note that this
requires sparsifying the graph in each layer separately with the weights in the adjacency matrix given
by �. In the next section, we show that this expensive procedure of layer-wise sparsification can be
repalced by a one-time spectal sparsification procedure for the binary node classification problem.

We use the following Lemma to establish Theorem 2:

Lemma 1 Let A 2 RN⇥N
be any matrix and D 2 RN⇥N

be a diagonal matrix with positive

diagonal entries. Then, we have
��A�D

�1
AD

��  kAk (
��I �D

�1
��+

��D�1
�� kI �Dk) (36)

Proof We have
��A�D

�1
AD

�� =
��A�D

�1
A+D

�1
A�D

�1
AD

��

=
��A(I �D

�1) +D
�1

A(I �D)
��

 kAk
��I �D

�1
��+ kI �D)k

��D�1
�� kAk

 kAk
���I �D

�1
��+

��D�1
�� kI �Dk

�
(37)

Proof of Theorem 2:

kLrw �Lrw,sk =
���D�1/2

LnormD
1/2 �D

�1/2
s

Lnorm,sD
1/2
s

���

= kD�1/2
LnormD

1/2 �D
�1/2

Lnorm,sD
1/2 +

D
�1/2

Lnorm,sD
1/2 �D

�1/2
s

Lnorm,sD
1/2
s

k

 kLnorm �Lnorm,sk+
���Lnorm,s �D

1/2
D

�1/2
s

Lnorm,sD
1/2
s

D
�1/2

���

Then, using Lemma 1, we get

kLrw �Lrw,sk  kLnorm �Lnorm,sk+ ✏(1 + ✏) kLnorm,sk
 (5✏+ ✏2) kLnormk
 6✏ kLnormk
 12✏

Further, from the feature update equations equation 33 and since � is Lipschitz continuous with
Lipschitz constant `� , we have the final result as in the proof of Theorem 1.

15

A.4 APPROXIMATION OF WEIGHT MATRICES

Theorems 1 and 2 provide an upper bound on the feature updates obtained using the full and sparsified
graphs under both GCN and GAT. A stronger notion of information preservation after sparsification is
obtained by studying the weight matrices to see if the graph structure is retained after the sparsification.
To this end, we would like to study the error kW �Wsk, where W and Ws are weight matrices of
the neural network, learned using the full and the sparsified graph respectively in any given layer.
Such a result shows whether the graph structure retained is sufficient for the GAT model to learn
strong features.

Figure 2: Relative Error between the learned weights without and with sparsification on Coautho-Phy,
Github Social and Couathor-CS (top) and Amazon-Computer and Amazon-Photos (bottom) datasets.
We can see that the error is proportional to the ✏ parameter. Such a comparison was not possible on
the Reddit dataset, since the model cannot be run on the full graph.

To lend support to this claim, we studied the difference between the weight matrices learned with and
without spectral sparsification. We used three different datasets (Coautho-Phy, Github Social and
Couathor-CS). In each case, we used three different values of ✏ (0.25, 0.5, 0.75). At each parameter
setting, we performed 5 independent trials and averaged the relative Frobenius errors between the
weight matrices and the attention function a of all attention heads. We report the results in Fig. 2. It
is clear that the error between the learned matrices is proportional to the value of ✏ itself. This shows
that the training process is highly stable with respect to spectral sparsification of the input graph.

B DETAILS OF EXPERIMENTS

B.1 DESCRIPTION OF DATASETS

Transductive learning tasks: Amazon Computers and Amazon Photo are segments of the Amazon
co-purchase graph (McAuley et al., 2015), where nodes represent goods, edges indicate that two
goods are frequently bought together, node features are bag-of-words encoded product reviews, and
class labels are given by the product category. Coauthor CS and Coauthor Physics are co-authorship
graphs based on the Microsoft Academic Graph from the KDD Cup 2016 challenge 3. Here, nodes
are authors, that are connected by an edge if they co-authored a paper; node features represent paper
keywords for each author’s papers, and class labels indicate most active fields of study for each author.
For the Reddit dataset, we predict which community different Reddit posts belong to based on the
interactions between the posts. The Github social dataset consists of Github users as nodes and the
task is that of classifying the users as web or machine learning developers (binary classification). For
all the above datasets, the task is that of node classification. Additionally, we have experiments on
citation graphs: Cora, Citeseer and Pubmed. In these datasets, the nodes represent authors, edges
represent mutual citations and the task is to categorize the authors into their fields of study.

16

Table 6: Comparison of FastGAT with GAT (Veličković et al., 2018).
Metric Method Cora Citeseer PubMed

F1-micro
GAT 0.72 ±0.007 0.685 ±0.004 0.735 ±0.003
FastGAT-0.5 0.713±0.003 0.685 ±0.007 0.73 ±0.004
FastGAT-0.9 0.63±0.02 0.65±0.002 0.722 ±0.019

GPU Time (s)
GAT 0.294 0.281 0.686
FastGAT-0.5 0.22 0.236 0.54
FastGAT-0.9 0.175 0.196 0.456

CPU Time (s)
GAT 0.51 0.52 2.71
FastGAT-0.5 0.49 0.51 2.01
FastGAT-0.9 0.39 0.41 1.42

% Edges redu. FastGAT-0.5 15.4% 10.7% 20%
FastGAT-0.9 48.7% 38% 50%

Inductive learning tasks: We use the Protein=Protein interaction dataset Zitnik & Leskovec (2017)
where the graphs correspond to different human tissues. The dataset contains 20 graphs for training,
2 for validation and 2 for testing. Critically, testing graphs remain completely unobserved during
training. To construct the graphs, we used the preprocessed data provided by Hamilton et al. (2017a).
The average number of nodes per graph is 2372. Each node has 50 features that are composed of
positional gene sets, motif gene sets and immunological signatures. There are 121 labels for each
node set from gene ontology, collected from the Molecular Signatures Database (Subramanian et al.,
2005), and a node can possess several labels simultaneously.

Evaluation setup. For the Reddit dataset, we use training, validation and test data split of 65%, 10%
and 25%, as specified in the DGLGraph library. For the other datasets, the split is 10%, 20% and
70%. The same split is for evaluating the original GAT model. For training and evaluation, we closely
follow the setup used in (Veličković et al., 2018). We first use the spectral sparsification algorithm
to obtain a sparse graph and then use a two-layer GAT model for training and inference. The first
layer consists of K = 8 attention heads, computing 8 output features each, after which we apply the
exponential linear unit (ELU). The second layer consists of a single attention head that computes
C features (where C is the number of classes), followed by a softmax activation. We use the same
architecture while comparing with the GAT and the sparseGAT models. We train all the models using
a transductive approach wherein we use the features of all the nodes to learn the node embeddings.
For the inductive learning task, we follow the evaluation method used in Veličković et al. (2018). We
apply a three-layer GAT model. The first two layers consist of K = 4 attention heads computing 256
features (for a total of 1024 features), followed by an ELU nonlinearity. The final layer is used for
(multi-label) classification: K = 6 attention heads computing 121 features each, that are averaged and
followed by a logistic sigmoid activation.

Implementation details. For each dataset, we compute the effective resistances of the edges using
the Laplacians library written in Julia by Spielman (Lap). The rest of the algorithm is implemented in
PyTorch. We use the code for the GAT provided in (Veličković et al., 2018). We train our models on
an Ubuntu 16.04 with 128GB memory and a Tesla P100 GPU (with 16GB memory).We use Adam
optimizer with a learning rate of 0.001. We use the hyperparameters recommended in (Veličković
et al., 2018) for all of our experiments that use the GAT model. For FastGCN, we use the baseline
parameters recommended in (Chen et al., 2018).

Computing effective resistances. For all datasets, computing the effective resistances is a one-time
pre-processing task. We use the algorithm proposed in (Spielman & Srivastava, 2011), which takes
about O(M logN) time to compute the effective resistances of all the edges in the graph. We
compute the resistance values and store them as metadata. While performing training and inference,
we load the resistance values and then sample from the distribution described in Section 3.2.

B.2 EXPERIMENTAL RESULTS ON SMALLER DATASETS

We report the experimental results on the smaller datasets Cora, Citeseer and Pubmed in Table 6.
Since the number of edges are small compared the larger datasets, the adjacency matrices for these
graphs are already considerably sparse. Hence, sparsification does not result in a large reduction in

17

the number of edges. However, the trend is still similar to that was observed on large datasets, since
the accuracy performance does not drop, while training and inference time is lower than that for the
model using the full graph.

Q2. FASTGAT HAS THE SAME RATE OF LEARNING AS GAT MODELS

Our next goal is to study if FastGAT needs more epochs to achieve the same level of accuracy as that
of using full graphs. Figures 3, 4 show consistent per epoch learning rate for multiple datasets. The
accuracy achieved while training with sparsified graphs matches well with that obtained using the
full graph on all the datasets, showing that spectral sparsification does not affect learning in attention
GNNs.

Figure 3: Accuracy Vs number of training epochs for both full and sparsified graphs. The accuracy
attained matched almost exactly for every epoch even when a sparsified graph is used. For each
dataset, the plots were computed by averaging over 5 independent trials.

Figure 4: Accuracy Vs number of epochs for full and sparsified graphs, for the Coauthor-CS,
Amazon-Photos and Github Social datasets

B.3 FAST ALGORITHM TO COMPUTE EFFECTIVE RESISTANCES

In this section, we briefly describe the algorithm to quickly compute the effective resistances of a
graph G(E ,V). We use the algorithm presented in (Spielman & Srivastava, 2011) (Section 4) and
describe it here for the sake of completion.

For any graph G(E ,V), let Y 2 RM⇥M be such that Y (e, e) = we and B 2 RM⇥N be such that

B(e, v) =

8
<

:

1, if v is e’s head
�1, if v is e’s tail.
0, otherwise

(38)

Then, it can be shown that

Ruv =
���Y 1/2

BL
†(�u � �v)

���
2

(39)

Note that the R(uv)’s are just pair-wise distances between the columns of the M ⇥ N matrix
Y

1/2
BL

†. The Johnson-Lindenstrauss Lemma can then be applied to approximately compute these
distances. If R is a t⇥M random matrix chosen from a suitable distribution such as the Bernoulli
distribution or the Gaussian random distribution, then if t = O(N/⌧2), then we have

(1�⌧)
���Y 1/2

BL
†(�u � �v)

���
2


���RY
1/2

BL
†(�u � �v)

���
2
 (1+⌧)

���Y 1/2
BL

†(�u � �v)
���
2
.

(40)

18

Finally, the effective resistances are computed by using a fast Laplacian linear system solver (Spielman
& Teng, 2011) applied to the rows of the matrix RY

1/2
B. Each application of the fast solver takes

O(M log(1/�)) time where � denotes the failure probability and can be set to a constant. The fast
solver needs to be applied to O(logN) rows of the matrix RY

1/2
B. Hence, the overall complexity

of the algorithm is O(M logN).

Figure 5: Number of edges selected by the adaptive algorithm for the Coauthor-Phy dataset. The
number of edges at a constant epsilon of 0.5 was 163334.

B.4 ADAPTIVE SPARSIFICATION ALGORITHM

In the previous sections, we showed that for a suitable value of the tolerance parameter ✏ (such as 0.5,
0.9), the accuracy is equivalent to that of using the full graph. However, the level of sparsification
needed to maintain the classification performance might be different for different datasets. This raises
a very natural question of how to design the ✏ parameter for different datasets. In this subsection, we
seek to address this question.

We provide here an algorithm that sweeps through various values of ✏ and achieves state of the are
results on any given dataset. In our experience, we find that using ✏ = 0.5 produces test accuracies
that are as good as that of using the full graph. Hence, we set 0.5 as the minimum value of ✏ that our
algorithm chooses. It iteratively chooses a denser or a sparser graph based on the current validation
error of the algorithm. We provide a block diagram of the algorithm in Figure 6. In Figure. 7, we
show the training accuracy Vs the epochs for our algorithm and compare it with that of a model
using a constant ✏ of 0.5. From the figure, it is evident that our adaptive algorithm is successful in
achieving the same learning rate as that of a model with constant ✏. Hence this algorithm is suitable
to be deployed as is on other real world datasets.

In Figure. 5, we show the the number of edges resulting edges in the graph after each instance of the
algorithm choosing to sparsify or make the graph more dense. Since denser graphs do offer more

Figure 6: Adaptive algorithm to tune epsilon parameter (or the number of edges). We start with a
sparse graph and iteratively build denser graphs as we progress through the epochs. In the “Add
edges" step, we add a fixed number (0.003M) of edges to the graph. In the “Rate of learning better?"
step, we compare the slopes of the training accuracy curve with the previous slope over 20 epochs.

19

Figure 7: Simulation results for the adaptive algorithm on the coauthor-Physics, coauthor-CS and
Reddit datasets.

information, it is natural that the algorithm chooses denser graphs over time in general. But it is also
interesting to see that there are instances where the algorithm chooses a sparser graph. We show the
accompanying time per epoch as well in Figure. where we can see that it is much smaller than that of
using a constant, low ✏ parameter.

20

