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A APPENDIX

A.1 THE LOW-QUALITY/HIGH-QUALITY QUERY PAIRS CONSTRUCTION

As illustrated in Fig 2] (a.1), our corpus D comprises approximately 150k queries and their corre-
sponding 30k images extracted from the Flickr30k and COCO training sets, totaling around 300k
queries and 100k images. During the data construction process, we chose CLIP with ViT-B/32 as
the base retrieval. Initially, we assessed the quality of the queries based on their performance in
CLIP retrieval: queries whose corresponding Ground Truth (GT) is not within the top 10 recall
results are considered low-quality, indicating they exceed the retriever’s comprehension capability;
queries with GT in the top three results are deemed high-quality. Ultimately, we identified about
150k low-quality queries and 20k high-quality queries.

For low-quality queries, we employ an iterative optimization method as shown in Fig[2] (a.2). The
retriever inputs the top 3 retrieved images into the multimodal large model for analysis and opti-
mization. When the optimized query’s similarity exceeds that of the original low-quality query, it
is added to the corresponding high-quality query collection. For each low-quality query, we aim to
obtain at least 5 high-quality queries. Finally, for each low-quality query, we store the corresponding
high-quality queries and their similarity scores for subsequent Preference Rank Optimization (PRO).

For high-quality queries, we generate low-quality queries by utilizing MLLMs to perform concept
obfuscation. When a generated query’s similarity score falls below that of the original high-quality
query, it is designated as the corresponding low-quality query. For each high-quality query, we
generate one low-quality query. In the subsequent filtering stage, we not only filter out mismatched
low/high-quality query pairs but also exclude samples that cannot generate corresponding query
pairs after 10 rounds of iteration, as well as those filtered out by rule-based anomaly detection.

Ultimately, we obtain 150,000 low/high-quality query pairs, with 130,000 as original low-quality
queries, each associated with multiple high-quality queries and corresponding scores, and 20,000 as
original high-quality queries. The prompt templates used in the MLLMs are shown in Fig ] with
specific interaction examples available for reference.

Step1: Distinguish between recalled images

Briefly describe these images and compare their differences.
<recalled_imgl1>. <recalled_img2>. <recalled_img3>
<Ground Truth_image>(Optinal)

Step2 : Analyze CLIP’s weakness

In a text to image retrieval system, the input text is "{low-
quality query}”, and these images are retrieved from this text. f,’;f‘,‘;?‘,“f!!;h‘;:ywug looks eag
Then please analyze the mismatch between these images and '

the text "{low-quality query}".

Step3: Query Optimization epts of mismatch nthe tex. To reconstruct
w dog anticipatesa bl without changing s orginal

ntent

Finally, based on the aforementioned mismatch issues, please
emphasize or optimize certain key concepts of mismatch in
the text. To reconstruct and enhance the text "{low-quality
query}”, without changing its original meaning and omitting
content = \%

(a) Query Optimization Prompt Template (b) An example of query optimization

Figure 4: Instruction template and interactive example for the multimodal large language model
GPT-4v used to optimise low-quality queries.

A.2 DUAL-ENCODER FRAMEWORK CLIP

As shown in Figure [2] (e), images and texts are encoded by an image encoder and a text encoder
respectively, then projected into the same semantic space for effective retrieval. Formally, assuming

we have N samples in a batch, B = {(vi,ti)}f\;l denotes the training dataset, where (v;,t;) is
the i-th image-text pair. The matched image-text pairs are considered positive samples, while other
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pairwise combinations serve as negative samples. We define the image-to-text contrastive loss as:

1
Liv=—v >, v logp(vi,ts)

(vi,ti)EB
1 Fv. |t
LY g
(vi,t:)EB Zj:(] exp (Fz 'Fj/T)

where FV and F} are the normalized embedding of v; and ¢;. 7 is the temperature hyper-parameter.
Similarly, we can define the text-to-image contrastive loss as:

(6)
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1 Fv. |t

Z Io €Xp ( 7 7 /T) ) (7)
The final contrastive loss can be denoted as:
L = Lo + Lyo; ®)

The dual-encoder framework aligns images and text using global features, but it lacks fine-grained
cues for precise vision-language alignment.

A.3 ABLATION STUDIED ON VISION ENCODER

We fine-tune various vision encoders on Flickr30K, and the experimental results are shown in Table
@ MGQRe boosts the performance on both ResNet (He et al., 2016) (RN50, RN101) and ViT (Han
et al.,|[2022) (ViT-B/16, ViT-L/14) vision backbones. Despite the powerful ViT-L/14 encoder having
mastered rich multi-modal semantic information, MGQRe can still improve its performance. This
suggests that our approach is an encoder-independent boosting method.

Table 6: Fine-tuning results on various CLIP vision encoders. The Fine-tuning dataset is Flickr30k.

12T Retrieval | T2I Retrieval
V-Encoder | # PT Data Methods R@1 R@5 | R@l R®@5
CLIP 734 913 | 550 81.7
MGQRe | 75.6 92.8 | 56.5 82.0
CLIP 76.1 932 | 568 85.0
MGQRe | 78.8 94.0 | 59.5 86.2
CLIP 89.8 978 | 758 932
MGQRe | 911 98.5 | 76.2 93.7
CLIP 923 993 | 799 953
MGQRe | 927 995 | 80.5 952

RN50 CCi12M

RN101 YFCCI15M

ViT-B/16 | Laion400M

ViT-L/14 Laion400M
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