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A APPENDIX

A.1 THE LOW-QUALITY/HIGH-QUALITY QUERY PAIRS CONSTRUCTION

As illustrated in Fig 2 (a.1), our corpus D comprises approximately 150k queries and their corre-
sponding 30k images extracted from the Flickr30k and COCO training sets, totaling around 300k
queries and 100k images. During the data construction process, we chose CLIP with ViT-B/32 as
the base retrieval. Initially, we assessed the quality of the queries based on their performance in
CLIP retrieval: queries whose corresponding Ground Truth (GT) is not within the top 10 recall
results are considered low-quality, indicating they exceed the retriever’s comprehension capability;
queries with GT in the top three results are deemed high-quality. Ultimately, we identified about
150k low-quality queries and 20k high-quality queries.

For low-quality queries, we employ an iterative optimization method as shown in Fig 2 (a.2). The
retriever inputs the top 3 retrieved images into the multimodal large model for analysis and opti-
mization. When the optimized query’s similarity exceeds that of the original low-quality query, it
is added to the corresponding high-quality query collection. For each low-quality query, we aim to
obtain at least 5 high-quality queries. Finally, for each low-quality query, we store the corresponding
high-quality queries and their similarity scores for subsequent Preference Rank Optimization (PRO).

For high-quality queries, we generate low-quality queries by utilizing MLLMs to perform concept
obfuscation. When a generated query’s similarity score falls below that of the original high-quality
query, it is designated as the corresponding low-quality query. For each high-quality query, we
generate one low-quality query. In the subsequent filtering stage, we not only filter out mismatched
low/high-quality query pairs but also exclude samples that cannot generate corresponding query
pairs after 10 rounds of iteration, as well as those filtered out by rule-based anomaly detection.

Ultimately, we obtain 150,000 low/high-quality query pairs, with 130,000 as original low-quality
queries, each associated with multiple high-quality queries and corresponding scores, and 20,000 as
original high-quality queries. The prompt templates used in the MLLMs are shown in Fig 4, with
specific interaction examples available for reference.

(b) An example of query optimization

Step1: Distinguish between recalled images
Briefly describe these images and compare their differences. 
<recalled_img1>.   <recalled_img2>.  <recalled_img3>
<Ground Truth_image>(Optinal)

Step2 : Analyze CLIP’s weakness

In a text to image retrieval system, the input text is  ”{low-
quality query}”,  and these images are retrieved from this text. 
Then please analyze the mismatch between these images and 
the text ”{low-quality query}".

Step3：Query Optimization

Finally, based on the aforementioned mismatch issues, please 
emphasize or optimize certain key concepts of mismatch in 
the text. To reconstruct and enhance the text ”{low-quality 
query}”,  without changing its original meaning and omitting 
content

Briefly describe these images and compare their differences. 

The images feature:
1.A yellow Labrador running with a yellow ball in its mouth.
2.A golden retriever preparing to catch a flying disc.
3.Two dogs, one a black and white spaniel and the other a light-colored retriever, with the 
retriever already holding a ball in its mouth.
The main differences between the images are:
•The type of object the dogs are interacting with: ball or disc.
•The action of the dogs: running with a ball, anticipating a disc, and two dogs in a more 
passive stance with one holding a ball.
•The number of dogs in the frame: one in the first two images and two in the third image.

In a text to image retrieval system, the input text is "A yellow dog anticipates a 
ball",  and these images are retrieved from this text. Then please analyze the 
mismatch between these images and the text "A yellow dog anticipates a ball". 

Mismatch analysis:
•The concept of anticipation is not matched in the first and third images. The text specifies 
a yellow dog in anticipation of a ball, which does not align with dogs that have already 
retrieved the ball or are anticipating a different object.
•The specific object, a ball, is not present in the anticipation scene of the second image.
•The color of the dogs in the images is not a precise match to the typical "yellow" color 
mentioned in the text.

Finally, based on the aforementioned mismatch issues, please emphasize or 
optimize certain key concepts of mismatch in the text. To reconstruct and 
enhance the text "A yellow dog anticipates a ball" without changing its original 
meaning and omitting content

To refine the text while preserving its original meaning and without omitting any content, 
we could say:
"A yellow dog looks eagerly towards an ball, ready to chase."
This text remains true to the original by keeping the color (yellow), the single dog subject, 
the anticipation (eager for the next throw), and the object (ball). It should better match 
images where a yellow dog appears ready for a ball to fetch, without the action having 
already taken place.

Original Query : "A yellow dog anticipates a ball”

Retrieval Results :

Opted Query : " A yellow dog looks eagerly towards an 
ball, ready to chase”

Retrieval Results :

(a) Query Optimization Prompt Template

Figure 4: Instruction template and interactive example for the multimodal large language model
GPT-4v used to optimise low-quality queries.

A.2 DUAL-ENCODER FRAMEWORK CLIP

As shown in Figure 2 (e), images and texts are encoded by an image encoder and a text encoder
respectively, then projected into the same semantic space for effective retrieval. Formally, assuming
we have N samples in a batch, B = {(vi, ti)}Ni=1 denotes the training dataset, where (vi, ti) is
the i-th image-text pair. The matched image-text pairs are considered positive samples, while other
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pairwise combinations serve as negative samples. We define the image-to-text contrastive loss as:

Li2t = − 1

N

∑
(vi,ti)∈B

y · logp (vi, ti)

= − 1

N

∑
(vi,ti)∈B

log
exp (F v

i · F t
i /τ)∑N

j=0 exp
(
F v
i · F t

j /τ
) . (6)

where F v
i and F t

i are the normalized embedding of vi and ti. τ is the temperature hyper-parameter.
Similarly, we can define the text-to-image contrastive loss as:

Lt2i = − 1

N

∑
(vi,ti)∈B

log
exp (F v

i · F t
i /τ)∑N

j=0 exp
(
F v
j · F t

i /τ
) . (7)

The final contrastive loss can be denoted as:

L = Li2t + Lt2i (8)

The dual-encoder framework aligns images and text using global features, but it lacks fine-grained
cues for precise vision-language alignment.

A.3 ABLATION STUDIED ON VISION ENCODER

We fine-tune various vision encoders on Flickr30K, and the experimental results are shown in Table
6. MGQRe boosts the performance on both ResNet (He et al., 2016) (RN50, RN101) and ViT (Han
et al., 2022) (ViT-B/16, ViT-L/14) vision backbones. Despite the powerful ViT-L/14 encoder having
mastered rich multi-modal semantic information, MGQRe can still improve its performance. This
suggests that our approach is an encoder-independent boosting method.

Table 6: Fine-tuning results on various CLIP vision encoders. The Fine-tuning dataset is Flickr30k.

V-Encoder # PT Data Methods I2T Retrieval T2I Retrieval
R@1 R@5 R@1 R@5

RN50 CC12M CLIP 73.4 91.3 55.0 81.7
MGQRe 75.6 92.8 56.5 82.0

RN101 YFCC15M CLIP 76.1 93.2 56.8 85.0
MGQRe 78.8 94.0 59.5 86.2

ViT-B/16 Laion400M CLIP 89.8 97.8 75.8 93.2
MGQRe 91.1 98.5 76.2 93.7

ViT-L/14 Laion400M CLIP 92.3 99.3 79.9 95.3
MGQRe 92.7 99.5 80.5 95.2
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