Appendix

Here we prove all the claims for which there was insufficient room for the proof in the main body of
the paper. Please refer to the main paper for definitions which were previously described or to the
references for any topics which are standard.

A Uniform Closure of Extensions Lemma

We will make use of the following simple lemma about continuous extensions in the proof of the
Point-Cloud-UAT (Theorem 3.4).

Lemma A.1. Let N' C B(D) be a family of bounded functions and D a dense subset of a compact
Hausdorff space X. Suppose N has a continuous extension to X denoted by N' C C(X) which is
dense. Then the uniform closure of N in B(D) is 7(C(X)) where 1 : C(X) — Cy(D) is the domain
restriction map. If X can be metrized by a metric d, then r(C(X)) = U(D).

Proof. First we show that the r is a linear isometry. Since X is compact for f € C(X) there is a
p € X sothat |f(p)| = || f||x- By density of D there is a sequence p,, € D that limits to p. So

Ifllx = 1f()| = lim [f(pa)| < sup [f(z)] = llr(f)llp < sup [f(@)] = [Ifllx
n—00 €D z€X

Next, since C(X) is complete, so is its isometric image 7(C(X)) and because Cp,(X) is complete that
means 7(C(X)) is closed. Thus,

r(C(X)) =r(N") Cr(N7) Cr(C(X)) = r(C(X)),

where the first subset results from continuity. Thus N = 7(N”) = r(C(X)).

Finally, (D) C r(C(X)) because every uniformly continuous function on a dense set extends to
uniformly continuous function on the whole space. The reverse inclusion follows because restriction
preserves uniform continuity. O

Letting D = F(£), this lemma suggest the following plan of attack for proving the Point-Cloud-UAT:
find a compact metric space (X, d) in which we can realize F () as a dense subset and hope that our
class of neural networks A/ continuously extends to a dense subset of C(X). If we can do that, then
we know the uniform closure of our class of neural networks are precisely the uniformly continuous
functions on F(2) with respect to the metric inherited from X. We accomplish this for PointNet and
normalized-DeepSets on F () by utilizing (K (), dy) and (P(Q), dw).

B Continuous Extension Lemma

Lemma 2.1. Let (2, d) be compact, € C(2). Then Max; € C(K(£2)) and Avey € C(P(S2)) and
Maxy o ix = maxy and Avey o ip = avey. As a consequence, PointNet and normalized-DeepSets
are uniformly continuous on Fg () and Fy (Q) respectively.

Proof. First we show that Maxy is di-continuous. Let € > 0. Since {2 is compact, f is uniformly
continuous and so there is a & > 0 so that |f(x) — f(y)| < €/2 whenever d(x,y) < 26. Now let
A, B € K(2) and suppose dy (A, B) < §. By definition this means A C Bs and B C A;. By the
triangle inequality we have

IMax (A) — Max;(B)] < [Max;(A) — Max;(As)| + [Max;(As) — Max;(B)] .

Since As is compact there is a p € As so that Max ;(As) = f(p). Observe that if ¢ € K C A; with
d(p,q) < 26, then | f(p) — f(g)| < €/2 and f(p) = Max;(As) > Max;(K) > f(g). This implies
[Max(As) — Max;(K)| < €¢/2 whenever we can find such a ¢ € K. For K = A, note that since
p € Asthereisana € A C Aj such that d(p, a) < 6 < 24, so [Maxy(As) — Maxy(A)| < €/2. For
K = B, note that B is compact so there is ab € B C Ay closest to p, and so
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which means |Max(A;) — Max;(B)| < €/2. Thus, |[Max;(A) — Max;(B)| < € as desired.

To see why Avey is dy-continuous recall that the topology of dyy is the same as the weak-* topology
for measures and so the map p — [ fdpu is by definition continuous whenever f € C(€2). By
definitions and linearity we have,

Avey(ip(A)) = /fd (@ 25) - ﬁ;/fd% - |—jl| ;m — aves(A).

Next, note that Maxy o ix = maxy is trivially true.

Lastly, by composition of continuous functions it follows that PointNet and normalized-DeepSets
continuously extend to /C(€2) and P (). Since (€2, d) compact implies both [C(Q2) and P() are
compact, we can deduce that PointNet and normalized-DeepSets are uniformly continuous on Fg (2)
and Fyy ().

C Explanation of Neural Network Notation

The neural network notation of Sec. 2.4 deliberately trades-off detailed information about network
architectures (e.g. number of weights/neurons and their organization) in exchange for making the
mathematical properties of the function class they represent more transparent to help with proofs.
Architecture details can be distracting and cumbersome for our purposes as different neural networks
with different architectures but equal number of layers can represent exactly the same function as in
Fig. 3.

To clarify the notation, let us revisit A’° which is defined in Sec. 2.4. If we let Aff denote the set
of all affine functionals (i.e. R-valued functions of the form f(x) = w - x + b) then it is easily
verifiable that N = span(o o Aff). In the definition of the LHS in we gave an explicit formula that
elements of N must satisfy (Sec. 2.4). On the other hand, the approach taken by the RHS captures
the same functions with less notation and emphasizes that this family of functions is closed under
linear combinations.

To go deeper with this notation, we can simply compose already constructed shallower networks
with an activation function 7 and then take all possible linear combination of such things. Using
the notation in Sec. 2.4 this is expressed by No™ = span (7 o N9). To get another layer, we write
NTP = span (p o N 7). To determine the number of hidden layers involved we can simply count
the number of activation functions. However, it is not possible to determine the number of weights as
members of these families have arbitrarily wide layers.

In Theorem 3.4 we show that Nymnx and NV7I7ave are universal for U (Fpr () and U (Fyy () respec-
tively. To unpack this notation, let maxy- = {maxy | f € N7} and avenr» = {maxy | f € N7}
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Note that both max s~ and avexs» both have one hidden-layer and a max-pooling output-layer.’> With
this we can see that,

Nt = span (70 N7 o) s NI = span (1 0 N)
= span (7 o span (maxys-)), = span (7 o span (avepr-)) ,
= span (7 o (avep-)) .
Note that the expression for normalized-DeepSets (average-pooling) simplifies but the expression
for PointNet does not. This is because avears is closed under linear combinations (as mentioned
in Sec. 2.4). By examining these expressions, we can see that: (1) max/- accounts for an input-
layer, a hidden-layer, and a max-pooling layer, (2) the ensuing span(-) creates another layer, (3) the

application of 7 applies an activation to this new layer but keeps layer count the same, and (4) the last
span(-) creates the R-valued output layer. This yields a total of three hidden-layers. A similar story

unfolds for valef except that the internal simplification allows us to skip the linear combination in
step (2) and thus we are able to get away with just two hidden-layers.

D Topological UAT

Theorem 3.1 (Topological-UAT). Let X be a compact Hausdorff space and o € $(R). If S C C(X)
separates points and contains a nonzero constant, then span(o o spanS) is dense in C(X). Addi-
tionally, if S also happens to be a linear subspace, then span(o o S) is dense in C(X).

Proof. Let S and o satisfy the above and let V' = span S. Let Alg(V') denote the algebra generated
by V, i.c. all possible finite products, sums and scalar multiples of the elements of V. Then Alg(V)
is unital subalgebra of C(X) that seperates points. By the Stone-Weierstrass theorem Alg(V) is
dense in C(X). Now let I’ € C(X) and € > 0 be arbitrary. By density there is a G € Alg(V') such
that |F(a) — G(a)| < ¢/2forall a € X. Since G € Alg(V) there is an N-variable polynomial p
and s = (s1,...,sy) where s; € S, so that G = po s. Since all s; € C(X) and X is compact,
the image s(X) C RY is compact. By the classical UAT [14], there exists an n € N such that
Ip(x) — n(x)| < €/2 for all x € RY. Thus,

[F(a) = (nos)(a)| <[F(a) —p(s(a))| + [p(s(a)) —n(s(a))| <€/2+¢€/2 =€
for every a € X. Finally note that (s(a)) = Y ;- a;o(w; - s(a) + b;) for some a;,b; € R
and w; € RY. Since S constains a nonzero constant, span S contains every constant and so
w; - 8+ b; € span S. Thus n o s € span(c o span S) as desired.

Lastly, if S is also linear subspace, then S = span S and so span(o 0 .5) is dense in C(X). |

E Separating Points with Max; and Ave;

Lemma 3.2 (Separation Lemma). Let Q@ C RY be compact and o € $A(R). Then the set of functions
Smax = {Maxy | f € N7} and Save = {Avey | f € N7} separate points and contain constants.

Proof. Let d denote the Euclidean distance. First note that by choosing weights correctly, we can
find a constant function h = o(c) € N7 for some ¢ € R. Since ¢ is not a polynomial, there is a
choice of ¢ for which o(c) # 0. This means Max;, € Syax and Avey, € Saye are both constant.
Now we just need to show that Syr.x and Save separate points.

(SMax separates points): Let A, B € K(Q) with A # B. Without loss of generality, A\ B # @
so choose a € A\ B. Let f(x) = min {1, d(x, B)/d(a, B)} and note that f(a) = 1, f(B) = {0}
and f(§2) = [0,1]. By the classical UAT [14] N is dense in C(2), so there is a g € N7 so
that |f(z) — g(x)] < 1/2 for all z € Q. Note Max, € Smax and that Max,(A) > 1/2 and
Max,(B) < 1/2. Since A and B were arbitrary, this shows Sy separates point in K(X).

(Save separates points): Given pq, ue € P(Q) with p; # po, by the Hahn-Banach separation
theorem there exists a weak-* continuous linear functional L : M () — R that separates them. Let

SDepending on convention, one can count this as “input layer + two hidden layers + max-pooling” or “input
layer + one hidden-layer + max-pooling output layer.” We opt for the latter, but the interpretation is ultimately
up to the reader.
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d = |L(p1) — L(pz2)|. The topological dual of M (Q) with the weak-* topology is equivalent to
C(£2) and so there is an f € C(Q) so that L(n) = [ fdn forall n € M(S2). Since N is dense in
C(Q) there is a g € N7 so the that | f(z) — g(x)| < 6/2 forall z € Q. Define J(n) = [ gdn. Then
for all n € P(Q) we have |L(n) — J(n)| < [|f —g| dnp < § [ dn = 6/2. Applying the triangle
inequality we obtain
6 < |L(pn) = J(pa)| + [T (p1) — I (p2)| 4 | (p2) — L(p2)] -
N— N—
<é/2 <8/2

Thus 0 < |J(p1) — J(p2)| and so J = Ave; € Save separates 7 and po. Since 14 and 110 were
arbitrary, it follows that Sav. seperates points in P(€2). a

F Lipschitz Continuity of PointNet and Normalized-DeepSets

Lemma 3.6. Suppose (S0, d) is compact and f : Q — R is Lipschitz continuous with Lipschitz
constant L. Then Maxy € KC(Q2) and Avey € P () have Lipschitz constant 2L and L.

Proof. Suppose |f(z) — f(y)| < L d(x,y) and let A, B € K(Q) and p,v € P(Q2) be arbitrary.
First we will prove the Lipschitz bound for Max; and then for Avey.

Let C = AU B. Since C is compact, there exists a ¢ € C such that Max;(C') = f(c). Since A C C,
then by definition of Max; we have f(c) = Max;(C) > Maxy(A) > f(a) for any a € A. Thus,
Max(C) — Maxs(A) < f(c) — f(a) and so

[Max(C) = Max(A)| < |f(c) = f(a)| < Ld(c,a).
Now let a* € A be the point in A closest to ¢. Then since A C C,

[Max(C) — Maxf(A)| < Ld(c,a*) < Ldu(C,A).

Since B C C, the same argument yields [Max;(C) — Max;(B)| < Ldg(C, B). Thus, by the
triangle in equality and dy (A, AU B),dy(B,AU B) < dy(A, B) (follows from [2] Theorem
1.12.15) we have
[Max(A) — Max;(B)| < [Max;(A) — Max;(C)| + [Max(C) — Maxy(B)|
<2Ldy(A,B).

Thus Max has Lipschitz constant 2L as desired.
Next we consider Avey. Note that f = % f is 1-Lipschitz so by the Kantorovich-Rubenstein duality

we have the desired result.
<L| sup /gd,u—/gdy
llgllLip <1

|Aver(p) — Avey(v)| =L ‘/fd,u - /fdu = Ldw(u,v).

a

The Kantorovich-Rubenstein duality plays a big role in making the Lipschitz behaviour of normalized-
DeepSets apparent. It is here that we can see the importance of using the 1-Wasserstein distance
instead of other p-Wasserstein distance.

Theorem 3.7. Suppose Q2 C RY is compact. Then every PointNet and normalized-DeepSets network
with Lipschitz activation functions is Lipschitz on Fg () and Fy () respectively.

Proof. Recall that a PointNet network is of the form 1) = p o max; for neural networks f : Q — R*
and p : R¥ — RY. Since both f and p are an alternating composition of affine transforms and
nonlinear transforms, and all of these are Lipschitz, it follows that both f and p are Lipschitz. By
Lemma 3.6, f being Lipschitz implies max  is Lipschitz. Thus 1) is Lipschitz since it is a composition
of Lipschitz functions. The analogous argument applies for the case of normalized-DeepSets. [
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Figure 4: A Venn diagram summarizing Theorem 3.4 and Theorem 4.1 by showing how PointNet and
normalized-DeepSets relate to he different function classes they can and can’t uniformly approximate.

G Unbounded Cardinality Limitation Theorem

Theorem 4.1. Suppose (2, d) has no isolated points. Then f : F(2) — R is continuous with respect
to both d gy and dyy iff it is constant. Thus, for Q = [0, 1]", there is no non-constant function on F ()
which can be uniformly approximated by both PointNets and normalized-DeepSets. In particular,
PointNets can uniformly approximate Diam but not Cent and normalized-DeepSets can uniformly
approximate Cent but not Diam.

Proof. Assume [ : F(2) — R is both dg-continuous and dyy-continuous. Let A € F(€2) and let
p € A. Foreachn = 1,2,. .., choose A}, € F() to be an n-point set contained within the 1/n-ball
around p. We can do this because 2 has no isolated points. Now let 4,, = A" U (A \ {p}).

Observe that A,, A and A, dw {p}. Thus by continuity,
dH dW
f(A)=f <nh_>rr;o An) =f (nlglgo An> = f({p}).

Note that A was arbitrary so f must always assign a set and any of its singleton subsets the same
value. Now let B,C € F () and let ¢ € B and r € C then

fB) = f(a}) = f{g,r}) = F{r}) = f(O),
thus f must be constant. Conversely, constant maps are always continuous.

Now let Q = [0, 1]™ and suppose f : F(2) — R can be uniformly approximated by both PointNets
and normalized-DeepSets. By Theorem 3.4 we know that PointNets and normalized-DeepSets can
only uniformly approximate the uniformly continuous functions on F(2) with respect to dy and
dw respectively. Applying the result established above leads us to conclude that that f is uniformly
approximable by both iff it is constant.

Finally, it is known that the Diam satisfies |Diam(A) — Diam(B)| < 2dg (A, B) and hence is
dpr-continuous on () and Cent is dy -continuous on P(2) because Ave,, is dy -continuous
(here m; is the projection onto the ¢-th component map). This means they are uniformly continuous
on Fp () and Fy (§2) respectively and so the result follows from the above and Theorem 3.4.

O

H PointNet Error Lower Bound

Theorem 4.2. Suppose (2, d) is has no isolated points, f € C(,RN), and F € C(}Ek (Q),RM).
Then for every p,q € Q and T € (0, 1] there exists a k-point set A such that p,q € A C Q and

I1P() - aves(4)] = (=) (552 ) 1) - fl.
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In terms of supremum norm, this simplifies to

In particular, this error bound inequality applies to PointNets. Thus for k > 3 and f : [0,1]" — RN
continuous, avey is uniformly approximable by PointNets on F ([0, 1]™) iff f is constant.®

IF — aveyll ru gy >

Proof. First note that if & € {1,2}, 7 = 1, or f(p) = f(g) that the inequality is trivially satisfied.
Thus, we can henceforth assume that £ > 3, 7 € (0,1), and f(p) # f(q).

Let C) = w + (%)f(p) and C;, := M + (%)f(q) and observe that

1C — Coll = 2 150) - £l 0.

Let ¢ == 7 ||Cp, — Cyl| > 0. Since F is dH-contlnuous there exists a 0y, 43 € (0, ¢] such that
whenever dp (A, {p,q}) < 0fpq We have that [|['(A) — F({p,q})|| < e. Similarly, since f
is continuous, there exists d,,d, € (0,¢€| so that d(a,p) < J, implies | f(a) — f(p)|| < € and
d(a, q) < 64 implies || f(a) — f(q)| < €. Define 6 := min {3y, 43,6y, 0q }

Because 2 has no isolated points, its open balls must have infinitely many points, in particular,
Bs(p) and Bj(q). This ensures the existence of sets A) C Bj(p) \ {p} and A} C B;(q) \ {¢} with
cardinality k& — 2. We can then define k-point supersets of {p, ¢} given by

_ §._ 78
= A, U{p,q} and A} = A7 U {p,q} .

It is easy to see that both Ag and Ag are d-close to {p, ¢} with respect to dg. Thus, by definition of §
we have 5 5

Next observe that,

ave A‘S Z f(a —f(q) —|—% Z f(a), and
GGA" aeg;‘,

ave( A5 Z fla —f((]) —|—% Z fla)
GEA(S aeﬁg

Since f(A%) C B.(f(p)) and f(A2) C Be(f(q)), the triangle inequality implies

Havef A -C ||— Z (f(a)_f(P)) < - Z IIf(a )| < (k—;Q>e<e,and
an;‘, aeA*'

Javes(43) = ol = | 3 (1@~ )| < § T 1@ = sl < (2 ) e<ce
ang aeﬁg

Now we can consider the triangle in RY formed by C,,, C, and F'({p, q}). By basic geometry, we
know that one of the two side lengths ||F'({p, ¢}) — C,|| or ||[F({p,q}) — Cy|| must be greater than
or equal to half the third side length, i.e. greater than ||C},, — C,|| /2. Without loss of generality, let
l1F'({p,q}) — Cyll > |Cp — C4l| /2 and then apply the triangle inequality in conjunction with our e
bounds to yield

1Cp — G4l < | F({pra}) — F(AS)|| + || F(A%) — avep (A%)]| + [|aves (4%) — G|

< ||F(Ag) —avey( Ag || + 2e.

®Note that we can obtain a version of this result for sum 7 by dividing both sides by k.

19



By rearranging and substituting € = 7 ||C}, — Cy|| /4, we get

c,—-C
[Ea7) — aves(a]| > 1 Gl o
_ ”Cp — Cq” _ THCP _Cq”
2 2
1—71
-y, —qyl

== (52) 110 - 160,

Thus Ag is the promised set which achieves the desired error and proves the first inequality. Taking
the limit as p, ¢ spread apart and 7 — 0 we can also get the supremum norm inequality,

2k
Note that this inequality applies when F' is a PointNet since PointNets are dz-continuous by

Lemma 2.1. Now assume k& > 3,2 = [0,1]",and f : Q — RY is continuous. If f is not constant,

then % Diam(f(£2)) > 0 meaning that no PointNet F’ can get closer to ave than that. This means
avey is not uniformly approximable by PointNets. Conversely, if it were possible to get arbitrarily
close to ave; via PointNets in the supremum-norm, then the LHS could be made arbitrarily small,

implying that Diam(f(£2)) = 0. Thus, f : @ — R would have to be constant, as desired. |

IF — avesll ) > o Diam(f(2)).
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