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Abstract

Reward design is one of the most critical and
challenging aspects when formulating a task as a
reinforcement learning (RL) problem. In practice,
it often takes several attempts of reward specifica-
tion and learning with it in order to find one that
leads to sample-efficient learning of the desired
behavior. Instead, in this work, we study whether
directly incorporating multiple alternate reward
formulations of the same task in a single agent can
lead to faster learning. We analyze multi-reward
extensions of action-elimination algorithms and
prove more favorable instance-dependent regret
bounds compared to their single-reward counter-
parts, both in multi-armed bandits and in tabular
Markov decision processes. Our bounds scale
for each state-action pair with the inverse of the
largest gap among all reward functions. This sug-
gests that learning with multiple rewards can in-
deed be more sample-efficient, as long as the re-
wards agree on an optimal policy. We further
prove that when rewards do not agree, multi-
reward action elimination in multi-armed bandits
still learns a policy that is good across all reward
functions.

1. Introduction

Crafting an appropriate reward function often poses one
of the most challenging obstacles when implementing re-
inforcement learning in real-world scenarios. The process
typically entails numerous iterations of reward engineering
to come up with a definition that both captures the task ac-
curately and enables fast learning. This frequently involves
exploring different formulations by training an agent with
alternative definitions and testing which yields the fastest
learning (Sutton & Barto, 2018, Chapter 17.6).

!Google Research 2Tel Aviv University *Courant Institute of
Mathematical Sciences. Correspondence to: Christoph Dann
<cdann@cdann.net>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Here, we aim to lessen the requirement from the reward
designers to supply a single adequate reward definition and
instead allow for multiple rewards, which together can help
better represent the task and induce fast learning.

To illustrate our motivation, consider the street navigation
task, where the objective is to drive from one city center
to another in the shortest possible time. A natural way to
define the reward in this scenario is to assign a negative
value to each road section proportionate to the travel time
required to traverse it. While this reward definition specifies
the desired behavior, it may pose challenges in terms of
learning, as there could be numerous alternative routes with
similar travel times. The agent would need to repeatedly
test these routes to determine which one is consistently the
fastest. Local experts, such as experienced taxi drivers, often
possess an in-depth understanding of their neighborhoods.
They confidently know which road sections are not the most
efficient options. Incorporating their recommendations can
be valuable by introducing an additional reward function.
This function assigns a significant negative reward to the
discouraged road sections and zero everywhere else. Al-
though this reward function does not provide information
about other road segments, it can complement the original
reward function and expedite the agent’s learning process
in avoiding those specific segments with higher penalties.
Consequently, the agent can optimize its navigation strategy
more efficiently.

Another example where multiple reward functions natu-
rally occur is in the context of goal reaching in robotics.
In this scenario, the objective is to train an agent to effi-
ciently move the end-effector of a robot to a desired posi-
tion. There are many natural ways to formulate the reward
function for this task. We could give a reward of -1 unless
the end-effector is within a certain bounding box around the
goal, or alternatively, a negative reward proportional to the
Euclidean distance of end-effector to goal. Other choices
are negative rewards proportional to the squared Euclidean
distance or the Manhattan distance. All of these reward
function formulations are reasonable and can lead to opti-
mal or approximately-optimal policies. However, it is not
immediately evident which reward function is the easiest to
learn, and certain policies may be more or less suboptimal
under different reward functions. In fact, existing research
(Luo et al., 2020, Table II) has observed significant differ-
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ences in training times when using different natural reward
formulations for this task, thereby demonstrating the impact
of the reward function choice on the learning process.

These scenarios raise the question of how to best learn
in the presence of multiple rewards. One simple option
is to take the average of the different rewards and use it
in a single-reward RL algorithm. We find however, that
stronger results can be achieved when we directly work
with multiple reward in the algorithm. We study natural
extensions of action-elimination algorithms (Even-Dar et al.,
2006; Xu et al., 2021) that directly leverage multiple rewards
and learn a policy that is optimal for all provided rewards.
We investigate them in the multi-armed bandit (MAB) and
tabular Markov decision process (MDP) setting and prove
regret bounds that are more favorable than those achieved
by using just a single reward. More specifically, our main
contributions are:

e We analyze action elimination in MABs with
multiple rewards 7',...7™ and induced gaps
Al(a),...,A™(a). Our main regret bound scales for
each action as max{Al(a), (AT compared to Aq(a)
in the single reward case. This scaling with the max-
imum gap (max-gap) shows that there is benefit to
learning with multiple rewards as long as there is an

action that is optimal under all rewards.

e We prove that, when no action is optimal under all
rewards, action elimination still converges to an action
with the smallest max-gap up to a constant factor. This
shows that the algorithm is robust to inconsistent re-
wards while still enjoying faster convergence dictated
by the max-gap. To relax the consistency assumption
further, we allow our algorithm to work with other
operators besides the maximum, for a better trade-off
between asymptotic quality and convergence speed.

e We extend our result to tabular MDPs and show that
action elimination with multiple rewards also achieves
regret that scales inversely with the max-gap for each
state-action pair. Again, this improves the best known
results for single-reward learning in this setting.

e We provide an MDP instance where regret bounds
based on max-gap for multi-reward RL are, by a factor
of number of rewards, smaller than those based on indi-
vidual reward gaps for single-reward RL. Importantly,
this holds for any individual reward function, suggest-
ing that multi-reward RL may be strictly easier than
single-reward RL, depending on the MDP dynamics.

2. Related Work

It has been recognized early on that rewards not only specify
the desired behavior but also determine how the behavior is

learned by RL approaches. This has led to considerations
like reward shaping (Ng et al., 1999) which stipulates condi-
tions under which reward functions have identical optimal
policies but may be easier to learn for certain algorithms.
There also have been efforts on automatic reward design
(Mataric, 1994; Sorg et al., 2010; Zheng et al., 2020) which
alter the reward during learning, e.g. by meta gradient as-
cent. The idea of changing reward during learning is also
prevalent in intrinsic rewards (e.g. Chentanez et al., 2004;
Bellemare et al., 2016; Pathak et al., 2017) where a bonus
is added to the reward to encourage exploration of lesser
known parts of the MDP. Our work is orthogonal to these
efforts and multiple reward RL could be combined with
intrinsic rewards in optimistic algorithms.

To provide meaningful guarantees and demonstrate the ben-
efits of RL with multiple rewards, we prove gap-dependent
regret bounds. In the single-reward multi-armed bandit set-
ting, such bounds go back to Lai et al. (1985), but in the
MDP setting, they are a recent development (Simchowitz
& Jamieson, 2019; Dann et al., 2021; Xu et al., 2021; Jin
et al., 2021). Even more recently, similar quantities have
been used to characterize instance-dependent PAC bounds
(Wagenmaker et al., 2022; Tirinzoni et al., 2022a;b) for pol-
icy identification in MDPs. Fine-grained gap-dependent
guarantees are largely restricted to tabular algorithms that
employ strategic exploration. A notable exception is Dann
et al. (2022) who show instance-dependent guarantees for -
greedy exploration through the notion of policy-based gaps.
All of these works consider the single-reward case.

Reinforcement learning with auxiliary tasks has been stud-
ied extensively empirically (Jaderberg et al., 2016; Veeriah
et al., 2019). Here, the agent aims to learn several addi-
tional tasks that are qualitatively different from the main
task, to learn better representations that in turn improve per-
formance on the main task. These observations are specific
to the function-approximation setting and we are not aware
of a theoretical analysis of such approaches.

Several early studies have explored reinforcement learn-
ing with multiple rewards. For instance, Shelton (2000)
put forward a game-theoretic method to determine a pol-
icy in the presence of multiple rewards that may not align
on an optimal policy. Lizotte et al. (2010), on the other
hand, propose a computationally efficient value iteration
algorithm for computing all actions that may be optimal
under any convex combination of reward functions. Thus,
although these studies delve into the realm of multiple re-
wards, their primary focus differs from our work. Unlike
our research, they do not demonstrate a speed-up of learning
with multiple rewards compared to single-reward learning.
Furthermore, they do not provide any sample-complexity
guarantees, which sets our study apart.

A related setting to ours is that of multi-task (Teh et al.,
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2017), transfer and concurrent reinforcement learning. Here,
either a single or multiple, possibly concurrently acting
agents aim to learn a set of different tasks. In comparison to
our setting, the agent aims to learn one policy per task and
only receives one reward signal for each interaction. Instead,
we receive multiple reward signals per interaction and aim
to learn a single policy. RL in multi-task, transfer and con-
current settings has been studied theoretically Brunskill &
Li (2013); Guo & Brunskill (2015); Lazaric (2012); Lazaric
& Restelli (2011); Hu et al. (2021); Pazis & Parr (2016);
Zhang & Wang (2021). Perhaps the closest to our work
is Zhang & Wang (2021) who analyze multi-task RL and
provide gap-dependent bounds for an optimistic algorithm.
Their bounds show that there is a benefit to sharing infor-
mation between tasks compared to learning them separately
but they do not have the resolution to show that learning a
single task is faster with multiple rewards.

3. Setup and Notation

We study reinforcement learning with multiple rewards in
two settings: that of multi-armed bandit (MAB) and that of
tabular Markov decision process (MDP). While we could
use the same notation for both, since the MAB setting is a
special case of the MDP one, we will use a separate (though
largely consistent) notation to aid readability.

3.1. Multi-Armed Bandits with Multiple Rewards

The agent interacts with the environment in rounds. In each
round ¢ € N, the agent chooses an action a; from the set
of available action .4 with size A = |.A|. The agent then
receives a vector 7; of m rewards 77, . .., ™. This vector is
drawn from a joint distribution that depends on the chosen
action, with means E[ri|a; = a] = 7(a) for all i € [m)].
Here 7': A — [0, 1] is the i-th (average) reward function.
We also assume that the marginal distribution P(r¢|a; = a)
is 1-sub-Gaussian as is common. Importantly, we do not
require that the different components of the observed reward
are independent (conditioned on a). Thus, an independent
“noise” for the different reward functions is not necessary;
that would trivially speed up learning, even when all the
reward functions coincide, since the effective noise level is
then reduced by a factor of \/m.

For each action a € A and reward index i € [m], we
define the gap against the action set A as A'(a; A) =
max, e 47 (a’) — 7 (a) and entire gap vector as

Al(a; A)

Ala; A) =
A™(a; A)

We will use the shorthand A(a) = A(a;.A) when A is the
set are all actions and will shorten the notation when the

comparator set is a single action and write A(a;b) instead
of A(a;{b}). Similarly, the regret after T rounds of an
algorithm choosing actions ay, .. ., ar is defined for each
reward i € [m] as

T
Reg'(T) = Tmax 7' (a) — » 7
eg'(T) = T'max*(a) ;r(at%

and the regret-vector as

Reg(T)
Reg(T) = :
Reg™(T)

Throughout the paper, whenever we omit superscript ¢ for
the reward function on a quantity v’, we mean the vector
v = (vl,...,v™). The goal of the algorithm is to achieve
small regret with respect to all reward functions. This can
mean that the maximum regret under any reward function
should be small but, as we will see in the next section, it can
also be beneficial to aim for a weaker goal. We will make
this precise later when we introduce the operator choice op.

3.2. Markov Decision Processes with Multiple Rewards

We consider episodic tabular Markov decision processes
(X, A, P, (7");e[m], H) with state space X, action space A
and horizon H. The number of states and actions are de-
noted by S = |X| and A = |A|. The transition kernel
P: X x A — P(X) maps state-action pairs to distributions
P(X) over next states. Deviating from the typical setup, we
assume that the process is equipped with m reward func-
tions 7 : X x A — [0, 1] that each maps state-action pairs
to an immediate reward. For ease of notation, we follow
the common layered state space assumption, where X’ is
partitioned into sets &7, Xs, ..., Xy41 and the transition
kernel is such that only X}, can be visited at level h. We fur-
ther assume that X1 = {z g1} where x5 is a special
state that every policy visits in a virtual level H + 1, with
7 (xg41,a) = 0.

The agent interacts with the environments in 7" episodes
indexed by k. The initial state z, ; is chosen arbitrarily (and
possibly adversarially) in each episode. For H timesteps
indexed by h, the agent plays an action ay, ;, and transitions
to the next state xx p4+1 ~ P(:|2k.p,arn). For ease of
notation, we follow the common assumption that the imme-
diate rewards are directly generated by the reward functions
known to the agent.

The agent’s action choices in episode k are governed by
policy 7 : X — A which maps states to actions. For our
purposes, considering deterministic policies is sufficient.
The value (and Q-value) of a policy 7 at a state x € X,
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Algorithm 1: Action Elimination in Bandits

Input: operator op: R™ — R, failure prob. ¢ € (0,1)
Initialize active set Ag = A
Initialize 79(a) = 0, ng(a) =0 foralla € A
fort=1,2,... do
Select least played action
a; = argmin, ¢ 4, n¢—1(a)
Play action a; and receive reward vector r;
Update counters, reward estimates and gaps:

ni—1(a)+1 ifa=a
ne(a) = .
ne—1(a) otherwise
1 ng_1(a)~ . -
= Tt T - ifa =
Fu(a) = 4 m@"t T Tty T 1(a) ifa a
ri—1(a) otherwise

maxpea, , 7y (b) — 71 (a)
At(a§ -At) = :
maxpea, , 7y (0) — 77" (a)

Eliminate suboptimal actions from active set

Ay =
~ ;[ mAnG @)
a€ Ay op (At(a;At)> <c o

(and action a) with respect to reward 7 is defined as

Vei(z) = E7 lz ™ (zn,an) |z = x]

h=h'

H
Qﬂ',i(l'7a) =FE™ [Z Fi(mh,ah) | Tp = T,Qp = a]7

h=h'

where [E™ denotes the expectation over trajectories
Z1,01,...,TH41 that are generated by following m. We
denote by 7 an optimal policy for reward 7 and by
Q*" = Q™" and V** = V™ the optimal Q- and state-
value function respectively. The suboptimality associated
with a state-action pair can be formalized by the value-
function gap

Al(w,a) = V*'(z) = Q"' (x, a).

There are other, more accurate characterizations of subop-
timality that govern regret and sample-complexity (Dann
et al., 2021; Tirinzoni et al., 2022b) but we adopt this most
common notion of gap for ease of comparison.

4. Multi-Reward Action Elimination in
Multi-Armed Bandits

Multiple reward functions can be naturally incorporated in
various algorithms. We find, however, that action elimi-
nation algorithms are particularly suited to multi-reward

learning. We therefore present and study a natural extension
of action elimination (Even-Dar et al., 2006) in Algorithm 1.

This algorithm takes as input an operator op that maps m
values to a scalar. First consider the case where op is the
maximum operator, thus, op(v) = max{vy,va,...,vn}.
Algorithm 1 maintains an active set of actions and selects
always the least often played action to ensure all active
actions are roughly played equally often. It then receives
the reward vector, updates an empirical average reward per
reward function and arm as well as an estimate of the gap. It
then eliminates an action as soon as it is sure that an action
has a positive gap under any reward function by comparing
the maximum gap of an action to a confidence term.

Since an elimination happens as soon as a gap is detected
under any reward function, it is clear that the algorithm may
eliminate actions faster than had it just used one single re-
ward function. Further, different actions may be eliminated
due to being highly suboptimal for different rewards. This
suggests that learning with multiple rewards can be more
sample-efficient than just learning with the best among the
m rewards. Our analysis will indeed confirm this.

However, aggressively eliminating arms based on evidence
from any reward function can also be harmful if not all
rewards agree with each other on an optimal policy. In this
case, an optimal arm according to one reward can could
be eliminated because it is suboptimal under another. To
allow for a more moderate elimination, we allow the user to
specify an operator op as input to the algorithm. As we will
see in our regret bound, using a different operator than max
may be beneficial. This operator has to satisfy the following
assumption.

Assumption 1. The operator op: R™ — R is a coherent
risk measure,' that is, it is monotone, positively homoge-
neous, sub-additive and translationally invariant:

for any z,y € R™ with x < y, op(z) < op(y);
o forany z € R™, a € Ry, op(ax) = aop(x);

forany z,y € R™, op(x + y) < op(z) + op(y);
e forany o € R,z € R™, op(x + al) = op(x) + a.

The most prominent examples for operators that satisfy this
assumption is the class of CVaR risk measures, with max
and mean as important special cases.

Example 1 (CVaR with average and maximum as special
cases). A popular coherent risk measure is conditional value
at risk (CVaR).

, 11
CVaR,(z) = rcnelﬂrg{c—b- T—an Z-,l[xi — c]+}.

IStrictly speaking, op is the negative of the common definition
of a coherent risk measure.
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For o = 0, this matches mean and for o = 1, it matches
max.

Importantly, quantiles are generally not sub-additive and
therefore do not satisfy Assumption 1. This is well known
for value-at-risk and easy to see for the special case of min
(which is supra-additive) since for example min{1 + 2,2 +
1} £ min{1,2} + min{2, 1}.
Under this assumption on the operator, we prove the follow-
ing main result for Algorithm 1.
Theorem 1. Let € be a threshold that can chosen as small
as the suboptimality of the best action under op that satisfies
Assumption 1,
> mi A

e 2 min op(A(a)),

and let A° = {a € A: op(A(a)) > €} be the set of

actions that are worse than . Then, with probability at
least 1 — 0, the regret of Algorithm 1 satisfies

op(Reg(T)) = O < 3 - (i Ok m?T + T5> .

a€As

This guarantee bounds the op-operator of the regret vector,
that is, for example, the maximum or average regret under
the different reward functions. Our bound consists of a
In(T')-term which captures how quickly suboptimal arms
can be eliminated and a linear T'-term for the asymptotic
suboptimality. When all reward functions agree, we can
choose ¢ = 0 and the linear T" term vanishes. Otherwise,
we can choose ¢ as the smallest operator-gap which we have
to accept as a factor in the linear regret component. This
is unimprovable since there is no single arm that achieves
better instantaneous regret (aggregated according to op).
Importantly, our result shows that action elimination is ro-
bust towards disagreement among the reward functions.

We can now also see why it may be beneficial to choose a
different operator than max. Take the example where the
best action is optimal under all but one reward function and
it has a gap of « there. Then with op = max, we have to
choose € > « and tolerate 1" operator-regret. On the other
hand, for op = mean, we can choose ¢ = % and only
accept % regret contribution. Of course, this comes at the
price that the inverse effective gaps may be smaller and the

notion of operator regret op(Reg(T)) itself is weaker.

Comparing our bound against the standard guarantee for
action elimination with a single reward 7* of

1 mAT
——In——+1T
0] <GEZAE Al(a> n 5 + 5) )

where € > 0, we see that our bounds scale inversely with the
operator-gap which can be much more favorable compared

to the gap of the single reward. This is most apparent for
op = max, where the denominator is the largest gap of the
action among all reward functions. While our guarantee is
often preferable, the bound in Theorem 1 can sometimes be
worse than the bound for learning with a single reward 7,
due to the linear regret from disagreement of the rewards on
the optimal reward and cases where op(A(a)) > A%(a) =
0. Fortunately, for op = max and when there is an arm that
is optimal under all rewards, we can show a stronger version
of Theorem 1:

Theorem 2. Assume that op = max and there is an ac-
tion a* that is optimal under all reward functions, that is,
op(A(a*)) = 0. Then with probability at least 1 — 6, the
regret vector of Algorithm 1 satisfies

)0 2T ).

acAs

foralle > 0.

This regret guarantee for any individual reward 7* is never
worse than the guarantee one obtains from learning with
only one reward and much smaller in many cases. It is
also instructive to compare this result against single-reward
learning with the average of all rewards mean(7). This
would yield

1 mAT
mean(Reg(T))= O ( In + Tz ) .
& ; mean(A(a)) 6 ©

This bound is generally worse than that in Theorem 2 and if
we want a bound for a specific reward 7 from the mixture,
we have to pay another factor of m since Reg'(T') < m -
mean(Reg(T)). All in all, this shows that learning with
multiple rewards is often beneficial, as long as there is some
consensus among the rewards on the optimal policy.

4.1. llustrative Examples

To illustrate the gains from learning with multiple rewards,
we provide two simple examples from a Bayesian perspec-
tive where the different reward functions are drawn from
distributions that always agree on the optimal action but
have random preferences for different arms. Such a per-
spective is appropriate when different rewards come from
independent sources.

Example 2. Each of the m reward functions comes from
an independent reward designer who always associates
a reward of 1 with the action 1. For each other action,
with probability 1/2 she gives a slightly suboptimal reward
1 — 1/v/T and with probability 1/2 a reward of 0. Then
the expected regret bound (over the designer’s randomness)
with a single reward function is of order

VT AIn(AT).
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MAB with 30 arms, 2 randomly drawn reward functions
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Figure 1. Expected regret of single- and multi-reward RL in Ex-
ample 3. We used 20 independent runs of Algorithm 1, each on
randomly drawn reward functions. Shaded areas are 95% con-
fidence bands. For single-reward RL, we only expose the first
reward function to the algorithm, for multi-reward both. Our sim-
ulations corroborate our theoretical findings: multi-reward RL
incurs significantly less expected regret in this construction.

In contrast, with m independently designed rewards, we
have an expected bound on the regret of order

T
YT

o Aln(mAT).

Thus, with m = Q(In(T)) reward functions, the expected
bound for RL with multiple rewards becomes Aln(AT)
which improves the rate in the single reward case by \/T.

The example above is designed to illustrate the largest possi-
ble improvement, from the worst-case regret rate /7" to the
most favorable In(7") where all effective gaps are constant.
However, even if we just take a uniform random distribution
over rewards from each designer and only two reward func-
tions, we already observe (a more modest) improvement, as
the following example illustrates:

Example 3. Assume there are two reward functions m = 2.
Action 1 has reward 1 in both reward functions. For each
action i, the expected reward in reward function is selected
independently uniformly at random in [0, 1]. The expected
regret due to action i is fol (log(T)/2)(2zdz) = ©(In(T)).
(Note that Pr[l < z] = z%.) On the other hand, for a sin-
gle reward function we have fol min{(log(T")/z), 2T }dz =
O(n*(T)). Thus, the second reward function decreases
the regret bound by a \n(T)) factor. We also simulate this
example in Figure 1.

4.2. Model-Selection for Operator?

Our results show that the regret of Algorithm 1 degrades
gracefully as the disagreement among reward functions
Pop = Minge 4 op(A(a)) increases. Fortunately, the al-
gorithm does not need to know the disagreement p.,, for

the guarantee to hold and naturally adapts to it. However,
the algorithm does take a hyperparameter, the operator op.
As discussed above, the operator controls how aggressively
the algorithm eliminates arms and determines the effective
gap or operator gap op(A(a)) and thus also p.,. Thus, we
want to choose an operator that yields the tightest regret
bound in Theorem 1, optimally trading off p.5, which de-
termines how small we can choose ¢, and op(A(a))~! for
suboptimal arms.

One may wonder whether we can automatically select the
best operator from a class using online model selection tech-
niques (e.g. Agarwal et al., 2017; Pacchiano et al., 2020;
Arora et al., 2021; Cutkosky et al., 2021). A natural class is
for example the family of CVaR,, operators for varying «
from Example 1. Another family that is natural in many sce-
narios are max operators with different support. Consider
the case where we have an ordered list of rewards 7 1, LT,
where 7! is the reward we are primarily interested in and
72,...7™ are alternative rewards that, with decreasing con-
fidence, agree with 7! on the optimal policy. Then a natural
choice is to select an operator from maxy, . . . , max,, where
max;(v) = max{v!,v?,...,v'} only considers the first i
dimensions of the input.

Unfortunately, we will provide an example that illustrates
that model selection for the operator is in general not possi-
ble without sacrificing our sharp guarantees from Theorem 1.
The reason for this is related to the barrier of model selection
in regimes below /T observed in prior work (Pacchiano
et al., 2020; 2022). Consider two bandit instances indexed
by I € {—1,+1} with arms A = {1, 2} and rewards

(1) = M 7(2) = F —Sigél(f) -'y} 7

where v = T—1/3, Thus, in instance I = +1, the first arm
is optimal under both reward functions and the second arm
has gaps A11(2) = [y,1/2]. In instance I = —1, the two
reward functions disagree on the optimal arm and induce
gaps A_1(1) = [,0] and A_;(2) = [0,1/2]. Assume that
we are interested in choosing from two operators max; and
maxso. According to Theorem 1, using each operator in each
instance yields an expected regret rate of

maxi maxs
I=+1[TY3I(T) In(T)
I=—1|TY3mm(T) T%3

Thus, using model selection, we would like to achieve loga-
rithmic regret in instance +1 under both reward functions
and still get regret o(7'%/3) for reward 7' in instance = —1.
To achieve expected regret at most O(In(7")) under reward
72 in I = +1, the expected number of times an algorithm
can choose action 2 is at most O(In(7")). This, however, is
not sufficient to distinguish between I = +1 and I = —1
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with high probability. As a result, the algorithm also has to
play action 2 at most O(In(T")) times with constant probabil-
ity in I = —1. Therefore, the expected number of plays of
action 1 in instance I = —1is Q(T"), which yields a regret of
Q(yT) = Q(T?/3) according to 7!. This argument shows
that no algorithm can achieve EReg! (T) = o(T?/3)
while maintaining E Reg? ; (T') = O(In(T’)). We can there-
fore not hope to achieve the guarantee of Theorem 1 for
several operators simultaneously.

5. Multi-Reward Action Elimination in MDPs

We now extend our results from the multi-armed bandit
setting to episodic Markov decision processes. Here too, we
find that action-elimination is the most suitable technique.
We consider a multi-reward extension of the AMB (Adaptive
Multistep Boostrap) algorithm by Xu et al. (2021) shown in
Algorithm 2.

This algorithm maintains upper and lower confidence
bounds @y, Q . on the optimal Q-function under each re-

ward, as well as Vi, V. for the optimal value function
V*. To collect data in episode k, the algorithm chooses, in
each state x, the action a from the active set Ay () that has
the largest uncertainty on Q*, that is, where Q,_; (v, a) —
Q, ,(x,a)is largest. Since the confidence bounds and their
difference can vary across reward functions, the algorithm
uses the given operator op to combine the uncertainty mea-
sures and select argmax, ¢ 4, (z) oP(Qx (7, a) — Q, (2, a)).

After collecting the data, the algorithm updates the confi-
dence bounds on the optimal Q- and value function for each
reward function in a model-free manner, following the single
reward algorithm (Xu et al., 2021). Finally, to determine the
active sets A1 () for the next episode, the algorithm only
retains actions that satisfy op (V. (z) — Q. (z,a) —¢) < 0.
To gain intuition for this criterion, first consider the case
where ¢ = 0 and op = max. An action then gets elimi-

nated as soon as V' (2)—Q,, (z,a) > 0holds for any reward

functions i. Since V' () — Qy (2, a) is a lower confidence
bound on Af(x,a) = V*(z) — Q*(z,a), this condition
tests, just as in the bandit case, whether the gap associated
with an action is strictly positive.

The hyperparameter € quantifies how much the individual
rewards agree on an optimal policy. When there is a policy
that is optimal in all (reachable) states for all reward func-
tions, then we can set ¢ = 0. Otherwise, ¢; specifies how
much expected reward can be lost according to reward 7,
when taking an action that is optimal under another reward
function. The following assumption formalizes this:

Assumption 2. For each reward function, there is an opti-

mal policy 77 € II such that forall x € X, j € [m]

0 ifi=3j

€; otherwise.

A (2, 7H(2)) < {

Since there are H steps per episode, this assumption im-
plies that 7} is at most H X e; suboptimal under reward
7;. Algorithm 2 receives € € R™ as an input and uses
it as an additional slack when testing for a positive gap.
This ensures that only actions with op(A(z,a) —¢) > 0
can be eliminated and the actions of all policies 7} from
Assumption 2 always survive.

In the bandit case, Algorithm 1 did not need the additional
slack. There, we could argue that if the best action (the
one with the smallest operator-gap) is eliminated, then only
actions can survive that have the same operator gap up to a
constant factor. So the algorithm will incur the best possible
regret from that point on, again up the a constant factor. In
the MDP case, there is the additional challenge that the gap
at level h depends on the optimal behavior in later layers
through the optimal value functions. If we eliminate all
actions that are optimal for some reward functions, then we
will underestimate the optimal value for that policy in earlier
states. Accounting for such errors with known arguments
unfortunately would yield an exponential in H error. We
therefore opted for the additional slack of size € in Algo-
rithm 2. Note that related work on multi-task RL (Zhang
& Wang, 2021) also assumes knowledge of the equivalent
quantity in that setting (similarity of tasks).

Our main result in the MDP setting is:

Theorem 3. If Assumption 2 holds for some ¢ € R™ and
op is a coherent risk measure, then Algorithm 2 with pa-
rameters op, € and § has, with probability at least 1 — 9§,
expected operator-regret

) HO In(mSAT/5)
O (; max{op(e), op(A(z,a)), AsF(z)} + TH5> )

where ASF(x) is the second-smallest operator-gap in state
x, that is, the second-smallest entry of op(A(z,-)).

Thus, for each state-action pair, we always pay the inverse
of its operator gap, second smallest operator gap in that
state or just op(e), whichever is most favorable. To ease the
comparison with the single reward case, we again look at the
case where op = max, € = 0 and where there is a unique
optimal action in each state. Then, our bound evaluates to

. H?In(mSAT/$)
o (Z max{maX(A(l’, a)), Aanax(x)}>

z,a
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Algorithm 2: Multi-Reward Action Elimination in Tabular MDPs

1 Input: m reward functions (fi)ie[m], operator op, slack parameters (€;);c,], failure prob. ¢
2 Initialize Qé(a:,a) =0,Qu(z,a) =H+1—hforallz € Xy, a € A he|H

3

4

5

6
7

10
11
12
13

14

15

16

17

18

19

20

21

22

23
24

Initialize Vi (2541) = Vo(zms1) =0
Initialize G; = @ and A;(z) = Aforallz € X

Set learning rate oy, = H+L for all k € N and bonuses b,, = cy/ w with a universal const. cforalln € N

H+k
fork=1,2,3,...,T do

acAg(x)

forh=H,H—-1,...,1do
if 2, ;, € Gi, then
| continue

for i € [m] do
~. h—1 _;
Set RL(zk,ns @hn) = Y 5—p 7 (T ak 5)

K;{I (Ikvh) = ma‘XaeAk(Ik,h) QZ (Ik,hv CL)

Vi(@k,n) = MaXee A, (25 ) Qi (Thp, @)

for (:z:,a) € (X X Ak(x)) \ {iﬁc,h»ak,h}}é[H] do

Qk(xﬂ a) = Qk,l(im a), Qp(z,a) = Qp_1(z,a)
L V(@) =V i (2), Vi(z) = Vi1 (2)
Eliminate Actions

Set Grt1 = {x € X: |[Apq1(x)| =1}

Collect data: sample one episode xj, 1,0k, 1, Tk 2, Ak,2; - -

T (z) € argmax op (Q_4(z,a) — Qk_l(x,a))

., X, H+1 With policy

Ve e X ey

Let n = ng(ag h, ax,») be the number of visits to (x5, axk 1)
Let z;, 5, be the first state after xy, 5, that is not in Gy,
Perform regular Q-function update for each reward function:

Q;(ﬂﬂk,h, ak,p) = max{0, (1 — )@, | (Tkn, ak,n) + n (RE (2ppy ann) + Vi (@ew) — ba)}
@lk({ﬂk}h, ak’h) = mln{H —h+1, (1 — an)@;@f1(wk,ha a;mh) +an(§};(xk,h7 ak,h) +V;71($k,h’) + bn)}

Set Ap11(z) = {a € Ap(x): 0 > op(V(z) — Qx(x,a) —¢)} forallz € X

and the bound for learning with a single reward 7 is (Xu
etal., 2021)

5
5 <Z H lin(SAT/f) )
p max{A¥(x,a), A(x)}
where A% (z) is the smallest nonzero gap according to 7 in
x. Just as in the bandit case, we see that we benefit from
the largest gap across all reward functions for each state-
action pair. Hence, as long as there is agreement among
reward functions on an optimal policy, ¢ = 0, multi-reward
RL enjoys more favorable guarantees compared to using a
single reward function.

The proof of Theorem 1 in the appendix builds largely on
the single-reward analysis. However, naively applying the
operator op to various parts of the existing analysis would
require exchanging max and op at some point, which only

works for op = max. To handle the op # max case, we
first had to carefully decompose the op-gap before applying
the max. Further, when ¢ > 0, we effectively deal with a
misspecified model. Although common in UCB analyses,
misspecification was absent from existing action elimination
theory and required particular care in our proofs.

5.1. Illustrative Example

We now provide an example of an MDP and optimal policy
where the structure of the MDP is such that the effective gaps
for multiple rewards are much larger, compared to the gaps
of any individual reward, due to the structure of the MDP.
Let n € N and consider an MDP with |X},| = n states on
each of the H = n layers. We denote the j-th state in layer
h by 27", All states in layers h > 2 have a single action
which transitions the agent from 27" to 27:"+1, that is, states
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form n chains of length H — 1. States z*1,..., 2" 1! in

the initial layer have two actions 1 and 2 that transition the
agent from 27°! to 27>2 and 27+1+2 respectively. Initial states
are chosen uniformly at random from this set. We would
like the policy that takes action 1 in all states to be optimal.

Consider a single reward function r’ and denote by v;» the
value that it associates with state 272 and by A’: X x A —
R its associated gap function. The only relevant gaps in this
example are A’(27'1,2) for j € [n — 1] which satisfy
Al(27,2) < vj = Vg + 1,

since the reward function may assign an immediate reward
of 0 to action 2 and 1 to action 1. Furthermore, since rewards
are normalized in [0, 1], we have v € [0, H—1] = [0,n—1].
Considering the sum of relevant inverse gaps that govern the
regret (with a In(7T') factor) in this problem. By convexity
of x — 1/x, we have

w1 (n—1)2 (n—1)2
i e 2
j=1 (@71,2) Zj:l Ar(z1,2) n

On the other hand, consider multi-reward RL with op =
max and n — 1 reward functions #* with their respective
gaps A’ and values v} at level 2. Each 7 assigns a reward
of 1 and O to actions 1 and 2 in the first layer respectively. It
further assigns values v; = 1{j < i}(H — 1) to the second
layer. We then have max(A(z71,2)) = H = n and the
sum of inverse effective gaps are

n—1

opA(x#1,2)  n

j=1

Hence, there is a difference of ©2(n) between the regret
bound for RL with any arbitrary individual reward on this
problem and the bound for RL with multiple rewards. Note
that if we compare the two in terms of sample complexity
(number of times a suboptimal arm was chosen), then the
difference becomes even larger £2(n?) since we pay roughly
constant regret when choosing action 2 according to the
individual reward vs. n in the multi-reward case. This ex-
ample shows that the guarantees for multi-reward RL can
be substantially better in MDPs, even when compared to RL
with the single best reward function.

We validate our theoretical findings by simulating this ex-
ample. We compare the performance of single-reward RL
against multi-reward RL for different values of n. As a
single-reward algorithm, we use Algorithm 2 but where
we only expose the reward function r! that assigns a value
vj = j—1to 272, Our computation above suggests that this
is the optimal choice for a single reward. For multi-reward
RL we use Algorithm 2 with n rewards: the single reward
function just described and in addition the n — 1 reward

MDP with H=n,S=n, A=2 and m=n rewards

® Single-reward RL: Reg® A

Multi-reward RL: Reg"
300004 * Multi-reward RL: max;(Reg’)

£ 20000 °
K] *
£l
£ 15000 .
“ 10000 ®

® x

5000 e »
*
o{e » ¢

5 10 15 20 25
Size of the MDP and reward functions n

Figure 2. Simulation of the example in Section 5.1.

functions 7 from above. We compare the total regret after
100% steps in Figure 2. We observe a substantially faster
learning when we compare the performance of single- and
multi-reward RL measured by the regret in the first reward
function (r! that both have access to). Even if we consider
the largest regret under any of the reward functions for multi-
reward RL, we still observe a factor of 2 improvement in
regret when n > 20.

6. Conclusion

We have shown that directly incorporating different rewards
for the same task into the reinforcement learning algorithm
can significantly speed up learning. We have studied this
both in multi-armed bandits and tabular MDPs and provided
improved regret bounds for action-elimination based algo-
rithms. We further illustrated with several examples the
benefits of multiple rewards. Notably, for MDPs, depend-
ing on the transition structure and the optimal policy, we
can achieve guarantees for multi-reward RL that are strictly
better than what is possible with any single reward.

To the best of our knowledge, this is the first work to show
provable benefits for incorporating multiple rewards for
the same task. It motivates several directions for future
research. We focused, for example, on action-elimination
algorithms due to their simplicity but it would be desirable
to adapt other algorithms, e.g. optimism-based ones, to
work with multiple rewards for provably faster learning.
This would also be a good step towards studying this setting
in combination with function approximation.
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A. Proofs for Multi-Armed Bandits
A.1. Proof of Theorem 1

Proof of Theorem 1. We first write the regret using sub-additivity of op as

T
op (Reg(T)) = op <Z A(%)) < ZOP (A(ar))

Let ¢* € argmin,. 4 op(A(a)) an action with minimal operator-gap. Further let 7* be the round when a* gets elim-
inated and 7" = min{7T™*,T}. For rounds up to 7’ where some actions a € A° was played, its regret contribution is
ny(a) op A(a) which can be upper-bounded by ny+(a) op A(a; a*) + nyr(a) op A(a*). For convenience, we denote by
l: = In(mAln(t)/) the log-term in the UCB after ¢ observations. We then have for every round ¢ € [T”] and a € A;44

N ln a
op(A(a;a*)) <op | A(a;a*) +¢ +(a) (Lemma 1)
ni(a)
=0 (ﬁ(a' a*)) +c bns(a) (translational invariance)
= 0p ;
ny(a)
l
< ’ n¢(a)
(C+C) nt(a) (a € At+1)

This holds for a given action « in all rounds up to the round before it was eliminated and n;(a) increases by at most 1
afterwards. Therefore, we have

2

nrr (a)

I
nor (a)

op(A(a;a*)) < (c+ ) —1<(c+)

where the second equality holds because every action needs to be played at least 2 times before being eliminated. As a result,
it holds that

ny(a) op Aa;a*) < (¢ + )\ 2l (a).

Hence, we can control the op-regret up to time 7" directly as

op (Reg(T")) < ) nrv(a) op(A(a))

- ai@nw(a) op(A(a)) — n7+(a) op(A(a))) + % no(a) op(A(a)
< 2; [2(¢ + ¢) /2l (@) - nr(a) op(A(a))]

ae+ ;E 2n7(a) op(A(a®)) + %s nrs(a) op(A(a)) (by inequality above)
< g [2( + ¢)v/2lgmr(a) - na () op(A(a))| + 277

(since op(A(a*)) < maxgg4- op(A(a)) <€)

I\
M

{x _ IQSF;ELAC(;)ZH o

(substitute x = 2(c¢’ 4 ¢)+/2l7n7s(a) and maximize over x)

/ 2
_ Z 4(C +AC) Iy +2T's
2= “op(A(a)

13
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To bound the regret after a* gets eliminated (if it does), we will argue that only actions that are not much worse than a*
could have survived up to this point. To this end, note that at the time of elimination 7* we have

y lnT* (a) < op <3T* (a*, .AT*))

nr+(a)
ln * \a
<op|A(a*, Ar+) + ¢ z+ (@) (Lemma 1)
np«(a)
ln * (a . . .
= op (A(a*, Ar+)) + ¢ r+ (@) (translational invariance)
nps(a)
l
< op (A(a*)) + ¢y [ (@) (monotonicity)
(A@")) + o[ 220 y
Rearranging terms gives
burs (a)

nr(a)’

Let now a € Ap-41 be any action that survived a*. This action must have passed the elimination test in round 7 and thus
satisfy

e @ > op (AT*(CL,AT*))

l

> op (A(a,AT*) —c W) (Lemma 1)

lnT* a
= op (A(a, Ar+)) — ¢ (@)

(translational invariance)

np-(a)
* bnrs (a) .
> op (Ar+(a;a™)) + ¢ (monotonicity)
nr+(a)
Rearranging terms gives
ln *(a) c +c *
op (Afa;a")) < (¢ + e | 205 < 57 op (Ala"))
which allows us to bound the gap of a as
* * c/ + ¢ *
op(A(a) < op(A(a;a®) +op(A(a”)) < |1+ Z— 1 op (A(a))
Since this holds for any action a € A1, we can bound the regret incurred in rounds 77 + 1, ..., T as
. d+ec . d+e
(T —T%) [1+c’—c} op (A(a*)) < (T -T") {14—0/_0]6
Choosing ¢’ = 2c¢ and putting everything together gives a regret bound of
Ir
op(Reg(T)) < 36¢ —— +4T¢
(Reg(T)) <36 2, S0y
O

14
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A.2. Proof of Theorem 2

Proof of Theorem 2. First note that a* is never eliminated. This is true because for any active action a

N ln a*
op(A¢(a*;a)) <op [ A(a*;a) +¢ +(a”) (Lemma 1)
ng(a*)
ln a* . . .
< op (A(a*;a)) + ¢ +(a”) (translational invariance)
ng(a*)
Ln, (ar
< op(A(a*)) +c 2 *) (monotonicity of op)
ni(ax)

(a* optimal)

(d=2c>¢)

where I, = In(mAln(t)/d). As a result, have for all actions a from the proof of Theorem 1 that

nr(a) op(A(a)) = nr(a) op(A(a; a®))

< (¢ + ¢)v/nr(a)2ly = 3ev/2nr(a)lr.

Rerranging terms and resolving the quadratic form yields

CQZT
nrla) < 18 R @)e

Hence, the regret vector can be readily bounded as

Reg(T) = > nr(a)A(a) + > nr(a)A(a)

a€ Az a¢ As
< Z nr(a)A(a) + Z nr(a) op(A(a)) (op = max)
a€ Az ag¢ As

< Z nr(a)A(a) + Te (A€ definition)
acAs

VAN
—_
0
Ql\?
Ry
>
&
+
N
o

O

Lemma 1 (Concentration). Let Ay(a;a’) = 7y(a’) — 74(a) be the empirical gap between actions a and o'. Then with
probability at least 1 — ¢ forallt € Nanda € A;_4

In(mAln(ng(a))/é

ne(a)

Ai(asa’) - Aa;a)] < c\/

where ¢ > 0 is an absolute constant.

Proof. This follows from a time-uniform Hoeffding bound, a union bound and the observation that the number of observa-
tions n¢(a) and n(a’) between two active actions can deviate at most by 1. O
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B. Proofs for Markov Decision Processes
B.1. Proof of Theorem 3

Proof of Theorem 3. The regret under each reward function can then be bounded as

ofE
i

p(Reg(

IIM’ﬂ

—

V* 1‘1 Vﬂk (xl))>

" T H
Z]Emc V* Ih Q*(Il'h,ah > = Oop (ZZEﬂ—k [A(I}Ua’h)])

h=1 k=1 h=1

W

op

el
Il
—

E™ [op (A(zh, an))] (sub-additivity of op)

Mm

h

5

T H
E™ [1{zn € Gi} op (A(zn, an)) ZZ E™ [1{zn ¢ Gk} op (A(zn, an))].
k=1 h=1

Mm&

>
Il

1

By Lemma 3, we know that 7} is never eliminated for all i € [m] in event £. Hence, all {7} };c[,,,)] need to agree on states
x € Gy Further, since 7 is optimal for reward ¢, the remaining action needs to be optimal under all reward functions and
incur no regret. Hence, the regret is bounded in event £ as

T H
op(Reg(T ZZE” [1{zn ¢ Gr} op (A(zn, an))]

k=1h=1

Uncertainty potential. We now upper-bound the max-gap by the maximum uncertainty for state-action pairs (z, a) that
is not yet eliminated, i.e., a € Ag(z)

op (A(z,a)) = op (V*(z) = Q" (x,a))
<op (Vk_l(:z:) -Q, (=, a)) (Lemma 5 and monotonicity of op)
= op (Qk_l(x, a) — qu(x’a)) (where @ = argmax,, Q,_,(x,a’))
= op (@kfl(‘%&) _Qk,l(l‘vd)"‘rakfl(xva) _Qk 1(1‘7(1)
+ Qk_l(xv d) - Qkfl(xﬂ a))

< op (Qk—l(xv d) - Qk_l(x7 A)) + op <Qk—1(x7 (I) Qk 1(1‘, a’))

+op (Q,H(% @) = Q- (, a)) (sub-additivity)
<2 max op (Qui(r.0) = Q, ,(.0)) +0p (Q_,(#.8) ~Qpos(z.a)

=20p (Qk_l(di,ﬂ'k(ﬁt)) - Qk_l(a:,ﬂ'k(x))) +op (Qk_l(sc, a) — Q. (, a)) (definition of 7y)

The second term can further be bounded using the elimination condition as

op (Qk (z,a) — @kfl(ama)) < op (Vy_1(x) = Qp_y(z,0)) (monotonicity of op)
=op (Vi_1(z) = Qp_y(2,0) —c +¢)
< op (Vi_1(2) = Qp_1(w,a) —€) + op (¢) (sub-additivity of op)
< op(g) (elimination condition)
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We define the potential function

Wi(z,a) = 1{z ¢ Gi} [OP (@k71($7a) _Qk—l(x’a)) + OPQ(E)}

which we have shown satisfies for all active actions a’ € Ay (z) and a = 7 (z)

M2 LGS oA )) < Wilea).

Since Q,, > Q, uniformly, it also holds that

]l{%wk}s < Wi(z, a).

For each state , let (op(A(z, a')));e(4) be the sorted max-gaps, that is op(A(z, a)) < op(A(x,a?)) fori < j. We then
denote the second-smallest max-gaps as AS®(z) = op(A(z,a?)). This may be zero if there a multiple actions that are
optimal under all reward functions. We then also have

HE898 agr () < Wi

Putting the pieces together, the expected regret, conditioned on the event £ where all the concentration argument hold, can
be bounded as

z,a).

Elop(Reg(T))|€] < 2E

T H
ZZ k(@n, an) S] 2)
k: :

Recursive form of potential. We can recursively bound the uncertainty @;_1 (z,a) — Q;ﬁ (@, a) foralli € [m] as
@k—l(xa CL) - szl(xv CL)
Nk—1

=al H+ Z ol (V;c[t]q(w;cm) — Ki[t]ﬂ(%[t]) + 2by(, a)) (update rule)

Nkg—1
<ab, H+2b,  (z,0)+ > of (Vfc[t]fl('w;c[t]) - Ki[t]q(x%[t}))
hes
<a), H+2b,,  (,0)+ Z apn, (@Zm 1 (@hpeg Ahpyg) — QZ @y a?v[t]))
ne
<a), H+2b,,  (z,0)+ Z apn, (@;[t]—l(‘x;@[t]va;@[t]) _Q;;[t],l(x;c[t]va;c[t])> 1{%@] ¢ gk}
= (x;ﬂ[t] never in G)

where nj_1 is the number of visits to (z, a) up to episode k& — 1, k[t] is the episode index of the ¢-th visit to (z, a) and x} is
the ¢-th successor state observed for (x, a). Applying op on both sides yields

Wi(z,a) < agk_lH—i— 2bp,_, (z,0a) + Z o, Wil xk[t] ak[t])

<

Clipping. Since W}, is only non-zero for (z, a) pairs with = ¢ Gy, and for those (x, a) we have Op(A(z’a))vgp(E)VAgp(I)

Wi (x, a), we can apply the following lemma with ¢ = OP(A(I7G))VSP(E)VAEP(I) andz = 1/H.

Lemma 2 (Claim A.8 of Xu et al. (2021)). For any three positive numbers ¢ < a + b, the following holds for all x € (0,1)
a+b <clip {a| %] +(1+2)b
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This gives
1 Nk—1
Wi(z,a) < (1 + H) (op(z—:) +a2k H+ Z o, _ Wiy xk a%[t]))
: op(e) V op(A( z,a)) VA3 (x)
+ clip [%n“(x a)| )V 2,
We denote ¢y, (2, a) = (1 + %) (op( ) + + clip {an OP(E)VOP(AAL(EG))VA;F(QJ)} and show for any h

71

T H
Wi(@p,n, ak,n) Z Z (hy D)y, (ks 17y ks 17
where w(h, h') = (14 1/H)2(" =) using the argument in Proposition 4.6 of Xu et al. (2021). This yields that

T H
DD Wilwkn, arn)

k=1h=1
< e*SAH? + ¢*TH op(e)

T H
. V op(A(z,a)) V Ay (x)
+ 2€2H Ch |:bn 1 Tk hsAk.h OP(E)
;}; P by (Thonsarn) | 1H

H5 mSAHT
< SAH? + TH op(e) + —log < )
z;; op(e) V op(A(z,a)) V AP (z) 0

Plugging the bound on the total sum of potential functions back in Equation 2 gives the desired result

E[op(Reg(T))|€] < O (Z > - Vot jo VAT (mS?HT> + SAH? +TH Op(g)>

TEX aeA

H° mSAHT
- (ZZ et avarm o (5 )*THOp(e))

zEX ac€A p

B.2. Supporting lemmas
Following the single-reward analysis of Xu et al. (2021), we decompose the optimal Q-function for a reward 7 as
Q*'(z,a) = Ry(,a) + Ji(z, a).

To define the two terms, we use the random variables =’ and &’ which denote the first unknown state encountered when
following 7 from (x, @) on and the time step when z’ is encountered, respectively. Then we have

h'—1

Ri(z,a) = E™ Z 7 (ze,a0) |z = 2,0, = a
t=h

Ji(z,a) =E™ [V*(2') |2 = 2, an = a]
where z € &},. The empirical versions of these quantities are

h'—1

Ry(z,a) =Y 7 (wh0,ak0)

{=h
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Ti(z,a) = V*i(zg )

where again i’ is the first time in episode % that an unknown state is encountered since from h on.

Lemma 3 (Concentration). With probability at least 1 — 0 the following conditions hold for all episodes k € [K], i € [m],
x € X\ Gk a€ Ag(x)

S B i 1
Zaflk (Rk[t] (z,a) — Ry (x,a)) < §bnk (z,a) (3)
t=1

Tk ~ . 1

ZO‘Z,« (le[t](JZ?a) - Ji[t](%a)) < §bnk (z,a) 4)
t=1

where ny, = ny(x, a) is the number of visits to (x, a) before episode k and k[t] = k[t](x, a) is the episode index of the t-th
visit to (x, a). The event where the inequalities above hold is denoted by E.

Proof. This follows from a simple martingale concentration argument in combination with union bounds. See also Lemma
4.1 of Xu et al. (2021). O]

The following quantities are a standard tool in the analysis of model-free RL algorithms and also used in our analysis:

n

al = ay H (1—ay) a%:H(l—ag)

f=t+1 =1

for 0 < t < n. These quantites satisfy the following properties
Lemma 4 (Lemma 4.1 by Jin et al. (2018)). The following properties hold for alln > 1,t > 1

4300 =1+ %
5. n (at )2 < 2H

Lemma 5 (Valid Confidence Bounds). In event £, we have for all k € [K|,i € [m],xz € X that the following statements
hold:

o H(x) € Ay()
e foralla € Ai(x)

Proof. We prove this inductively. First assume both claims holds for episodes up to including k. We will now show that the
first claim holds for k& + 1. Let « € X}, for arbitrary h and assume 7} (z) ¢ Ag41(z). Since 7} (z) € Ag(x), we have

op (Vi (2) — Qulz, 7} (2)) —€) < op (V*(2) — Q*(z, 7] (2)) —¢) (induction hypothesis and monotonicity)
= op (A(z, 7} (z)) —€) (gap definition)
< op (0) (Assumption 2)
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=0 (transitional invariance)

Hence, 7 (x) € Ag41(z) since it satisfies the condition in the active set update of Algorithm 2.

Note that the second claim holds trivially for all z € Xy, by definition. Assume now that the first claim holds for all
episodes up to k and the second claim holds for all episodes up to & — 1 and for all time steps & + 1, ..., H + 1 in episode
k. We will show that it also holds for time step h in episode k. Consider first Q. Since it only changes for (2 5, ax 1),
the condition holds by the induction hypothesis for all other (x, a) with € A}, and a € Ay (x). By the update rule in the

algorithm, we can write Q) (%, ax.p) as
@Z(iﬂk,h, ak,p) = min {H —h+1, o

ngk .
I{n, =0}(H —h+1)+ > al, (Ri[t] (@kjeg.n Wi, n) + Vigg—1 (@rgo,ne) + bt)) }, (6)

t=1

where ny = ny (x5, ak,n, is the number of visits of the state-action pair, k[t] is the episode of the ¢-th visit to (xy p, ak,p
and h’'[t] is the time step of the next unknown state encountered after that ¢-th visit. By the properties of the learning rate,
we can also write Q** in a similar form:

ngk

Q" (kny arp) = W{ng = 0}Q " (o, arn) + 3l @ (Thie) s Orfel )

t=1

Since Q*ﬁi(xk’ h,0kh) < H + 1 — h by the normalization of the rewards, the desired condition holds whenever the first
term in the min is tight in Equation 6 or nj = 0. For the remaining case, we have

. R nk —~. 71 .
Qr(@rn akn) — QY (wppsann) = > ab, (Rm (Tkit)h Okt 0) + Vg =1 (Tkpe),nee) + b8 — Q*’Z(xk[t],h,ak[t],h))

t=1
ng
= Zaik (RZM (Tt no arfe),n) — By (Thpe) b ak[t],h))
t=1
Nk X ] Nk
+ Z O‘fzk (Vlbc[t]—l(xk[t],h’ - le;[t] (Th[,hs ak[t],h)) + Z aflkbt (Equation 3)
t=1 t=1
ng ) ‘ ngk
> ZOZ:% (V;c[t]—l(xk[t],h’[t] — V*’l(xk[t],h/[t])> — by, + Za%k by (Lemma 3)
t=1 t=1
nk
> —bp, + Z ol by (induction hypothesis)
t=1
> 0. (Lemma 4)

Analogously, we can show that Q' (., ak.n) < Q" (%.n, ax,»). Finally, since Q' (z,a) < Q*(x,a) < Q..(z,a) for all
x € X, and a € Ag(x), we have

Vil(z) —V*i(z) = aglﬁ}((z) Qp(z,a) — max Q*"(x,a)

> *,1 _ *,1
_aég?((z)@ (,a) — max Q™(z, a)

> 0. (first claim holds: 7} € Ay(z))

Analogously, the condition for V can be shown. Hence, the second claim holds also for time step & in episode k& which
completes the induction argument. O
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