
A The des-file Format

A.1 Tutorial

As part of the release of MiniHack, we release an interactive tutorial jupyter notebook for the
des-file format, which utilises MiniHack to visualise how the des-file affects the generated
level.9 Here we present an overview of the different kinds of des-files, how to add entities to
levels, and the main sources of randomness that can be used to create a distribution of levels on which
to train RL agents. An in-depth reference can also be found in [39].

A.2 Types of des-files

There are two types of levels that can be created using des-file format, namely MAZE-type and
ROOM-type:

1. MAZE-type levels are composed of maps of the level (specified with the MAP command)
which are drawn using ASCII characters (see Figure 3 lines 4-14), followed by descriptions
of the contents of the level, described in detail below. In MAZE-type environments, the
layout of the map is fixed, but random terrain can be created around (or within) that map
using the MAZEWALK command, which creates a random maze from a given location and
filling all available space of a certain terrain type.

2. ROOM-type levels are composed of descriptions of rooms (specified by the ROOM command),
each of which can have its contents specified by the commands described below. Generally,
the RANDOM_CORRIDORS command is then used to create random corridors between all
the rooms so that they are accessible. On creation, the file specifies (or leaves random)
the room’s type, lighting and approximate location. It is also possible to create subrooms
(using the SUBROOM command) which are rooms guaranteed to be within the outer room
and are otherwise specified as normal rooms (but with a location relative to the outer room).
Figure 15 illustrates an instance of the Oracle level specified by the ROOM-type des-file
in Figure 14.

A.3 Adding Entities to des-files

As we have seen above, there are multiple ways to define the layout of a level using the des-file
format. Once the layout is defined, it is useful to be able to add entities to the level. These could
be monsters, objects, traps or other specific terrain features (such as sinks, fountains or altars). In
general, the syntax for adding one of these objects is:

ENTITY: specification , location , extra -details

For example:

MONSTER: ('F',"lichen"), (1,1)
OBJECT: ('%',"apple"), (10 ,10)
TRAP: 'fire', (1,1)
# Sinks and Fountains have no specification
SINK: (1,1)
FOUNTAIN: (0,0)

As can be seen in Figure 14 lines 4-11, some objects (such as statues) have extra details that can be
specified, such as the monster type (montype) of the statue. Note that many of the details here can
instead be set to random, as shown for example in Figure 14, lines 29 and 33-36. In this case, the
game engine chooses a suitable value for that argument randomly each time the level is generated. For
monsters and objects, this randomness can be controlled by just specifying the class of the monster or
object and letting the specific object or monster be chosen randomly. For example:

MONSTER: 'F', (1,1)
OBJECT: '%', (10 ,10)

9The tutorial can be found in MiniHack’s documentation at https://minihack.readthedocs.io.
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This code would choose a random monster from the Fungus class (https://nethackwiki.com/
wiki/Fungus), and a random object from the Comestible class (https://nethackwiki.com/
wiki/Comestible).

A.4 Sources of Randomness in des-file

We have seen how to create either very fixed (MAZE-type) or very random (ROOM-type) levels, and
how to add entities with some degree of randomness. The des-file format has many other ways of
adding randomness, which can be used to control the level generation process, including where to
add terrain and in what way. Many of these methods are used in IF statements, which can be in one
of two forms:

IF[50%] {
MONSTER: 'F', (1,1)

} ELSE {
# ELSE is not always necessary
OBJECT: '%', (1,1)

}

IF[$variable_name < 15] {
MONSTER: 'F', (1,1)

}

In the first form, a simple percentage is used for the random choice, whereas in the second, a variable
(which could have been randomly determined earlier in the file) is used. A natural way to specify
this variable is either in other conditional statements (perhaps you randomly add some number of
monsters, and want to count the number of monsters you add such that if there are many monsters,
you also add some extra weapons for the agent), or through dice notation. Dice notation is used to
specify random expressions which resolve to integers (and hence can be used in any place an integer
would be). They are of the form NdM, which means to roll N M-sided dice and sum the result. For
example:

$roll = 2d6
IF[$roll < 7] {

MONSTER: random , random
}

Dice rolls can also be used for accessing arrays, another feature of the des-file format. Arrays are
initialised with one or more objects of the same type, and can be indexed with integers (starting at 0),
for example:

# An array of monster classes
$mon_letters = { 'A', 'L', 'V', 'H' }
# An array of monster names from each monster class respectively
$mon_names = { "Archon", "arch -lich", "vampire lord", "minotaur" }
# The monster to choose
$mon_index = 1d4 - 1
MONSTER :( $mon_letters[$mon_index],$mon_names[$mon_index ]) ,(10,18)

Another way to perform random operations with arrays is using the SHUFFLE command. This
command takes an array and randomly shuffles it. This would not work with the above example, as
the monster name needs to match the monster class (i.e. we could not use (’A’, "minotaur")).
For example:

$object = object: { '[',')','*','%' }
SHUFFLE: $object

Now the $object array will be randomly shuffled. Often, something achievable with shuffling can
also be achieved with dice-rolls, but it is simpler to use shuffled arrays rather than dice-rolls (for
example, if you wanted to guarantee each of the elements of the array was used exactly once, but
randomise the order, it is much easier to just shuffle the array and select them in order rather than try
and generate exclusive dice rolls).
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1 MAZE: "mylevel", ' '
2 GEOMETRY:center ,center
3 MAP
4 ...........
5 ...........
6 ...........
7 ...........
8 ...........
9 ...........

10 ...........
11 ...........
12 ...........
13 ENDMAP
14 REGION :(0,0,11,9),lit ,"ordinary"
15 REPLACE_TERRAIN :(0,0,11,9), '.', 'C', 33%
16 REPLACE_TERRAIN :(0,0,11,9), '.', 'T', 25%
17 TERRAIN:randline (0,9) ,(11,0), 5, '.'
18 TERRAIN:randline (0,0) ,(11,9), 5, '.'
19 $center = selection: fillrect (5,5,8,8)
20 $apple_location = rndcoord $center
21 OBJECT: ('%', "apple"), $apple_location
22
23 $monster = monster: { 'L','N','H','O','D','T' }
24 SHUFFLE: $monster
25 $place = { (10 ,8) ,(0,8) ,(10,0) }
26 SHUFFLE: $place
27 MONSTER: $monster [0], $place [0], hostile
28 STAIR:$place [2],down
29 BRANCH :(0,0,0,0) ,(1,1,1,1)

Figure 13: An example des-file based on the HideNSeek environment. Figure 22 presents several
instances of environments generated using this des-file.

A.5 Random Terrain Placement

When creating a level, we may want to specify the structure or layout of the level (using a MAZE-type
level), but then randomly create the terrain within the level, which will determine accessibility and
observability for the agent and monsters in the level. As an example, consider the example des-file
in Figure 13. In this level, we start with an empty 11x9 MAP (lines 3-13). We first replace 33% of
the squares with clouds C, and then 25% with trees T (lines 15,16). To ensure that any corner is
accessible from any other, we create two random-walk lines using randline from opposite corners
and make all squares on those lines floor (.). To give the agent a helping hand, we choose a random
square in the centre of the room with rndcoord (which picks a random coordinate from a selection
of coordinates, see lines 19,20) and place an apple there.

Several other methods of randomly creating selections such as filter (randomly remove points
from a selection) and gradient (create a selection based on a probability gradient across an area)
are described in the NetHack wiki des-file format page [39].
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LEVEL: "oracle"

ROOM: "ordinary" , lit , (3,3), (
center ,center), (11,9) {

OBJECT :('`',"statue") ,(0,0),
montype:'C',1

OBJECT :('`',"statue") ,(0,8),
montype:'C',1

OBJECT :('`',"statue") ,(10,0),
montype:'C',1

OBJECT :('`',"statue") ,(10,8),
montype:'C',1

OBJECT :('`',"statue") ,(5,1),
montype:'C',1

OBJECT :('`',"statue") ,(5,7),
montype:'C',1

OBJECT :('`',"statue") ,(2,4),
montype:'C',1

OBJECT :('`',"statue") ,(8,4),
montype:'C',1

SUBROOM: "delphi" , lit , (4,3)
, (3,3) {

FOUNTAIN: (0, 1)
FOUNTAIN: (1, 0)
FOUNTAIN: (1, 2)
FOUNTAIN: (2, 1)
MONSTER: ('@', "Oracle"),

(1,1)
ROOMDOOR: false , nodoor ,

random , random
}

MONSTER: random , random
MONSTER: random , random

}

ROOM: "ordinary" , random ,
random , random , random {

STAIR: random , up
OBJECT: random ,random

}

ROOM: "ordinary" , random ,
random , random , random {

STAIR: random , down
OBJECT: random , random
TRAP: random , random
MONSTER: random , random
MONSTER: random , random

}

ROOM: "ordinary" , random ,
random , random , random {

OBJECT: random , random
OBJECT: random , random
MONSTER: random , random

}

ROOM: "ordinary" , random ,
random , random , random {

OBJECT: random , random
TRAP: random , random
MONSTER: random , random

}

ROOM: "ordinary" , random ,
random , random , random {

OBJECT: random , random
TRAP: random , random
MONSTER: random , random

}

RANDOM_CORRIDORS

Figure 14: The ROOM-type des-file for the Oracle level in NetHack.

Figure 15: A screenshot of the Oracle level specified using the des-file in Figure 14.

B MiniHack

B.1 Observation Space

MiniHack, like NLE, has a dictionary-structured observation space. Most keys are inherited from NLE,
while some are added in MiniHack. Note that using different observation keys can make environments
significantly easier or harder (see Section 3.5 for discussion of how to ensure comparable experiments
are performed).
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• glyphs is a 21 × 79 matrix of glyphs (ids of entities) on the map. Each glyph represents an
entirely unique entity, so these are integers between 0 and MAX_GLYPH (5991). In the standard
terminal-based view of NetHack, these glyphs are represented by characters, with colours and other
possible visual features.

• chars is a 21× 79 matrix of the characters representing the map.
• colors is a 21× 79 matrix of the colours of each of the characters on the map (some characters

represent different objects or monsters depending on their colour).
• specials is a 21× 79 matrix of special extra information about the view of that cell on the map,

for example, if the foreground and background colour should be reversed.
• blstats ("Bottom Line Stats") is a representation of the status line at the bottom of the screen,

containing information about the player character’s position, health, attributes and other statuses. It
comes in the form of a dimension 25 vector.

• message is the utf-8 encoding of the on-screen message displayed at the top of the screen. It’s a
256-dimensional vector.

• tty_chars is the character representation of the entire screen, including the message and map, of
size 24× 80.

• tty_colors is the color representation of the entire screen, including the message and map, of
size 24× 80.

• tty_cursor is the location of the cursor on the screen, a 2-dimensional vector of (x,y) coordinates.
• inv_glyphs is a 55-dimensional vector representing the glyphs present in the current inventory

view.
• inv_letters is a 55-dimensional vector representing the letters present in the current inventory

view.
• inv_oclasses is a 55-dimensional vector representing the class of objects present in the current

inventory view.
• inv_strs is a 55× 80 matrix containing utf-8 encodings of textual descriptions of objects present

in the current inventory view.

MiniHack adds the following observation keys:

• screen_descriptions is a 21× 79× 80 tensor of utf-8 encodings of textual descriptions of each
cell present in the map. NetHack provides these textual descriptions (which can be accessed by the
user by using the describe action on a specific tile).

• pixel. We provide pixel-level observations based on the official NetHack tile-set. This is a
representation of the current screen in image form, where each cell is represented by a 16x16x3
image, meaning the entire observation is so 336× 1264× 3 (with 3 channels for RGB). Examples
of this pixel observation can be seen in Figure 1 and Figure 6.

• Cropped observations. For glyphs, chars, colors, specials, tty_chars, tty_colors,
pixel, and screen_descriptions a cropped observation centered the agent can be used by
passing the observation name suffixed with _crop (e.g. chars_crop). This is a NxN matrix
centered on the agent’s current location containing the information normally present in the full view.
The size of the crop can easily be configured using corresponding flags. Cropped observations can
facilitate the learning, as the egocentric input makes representation learning easier.

B.2 Interface

There are two main MiniHack base classes to chose from, both derived from a common MiniHack
base class.

MiniHackNavigation can be used to design mazes and navigation tasks that only require a small
action space. All MiniHack navigation tasks we release, as well as MiniGrid and Boxoban examples,
make use of the MiniHackNavigation interface. Here the pet is disabled by default. The in-game
multiple-choice question prompts as well as menu navigation, are turned off by default.

MiniHackSkill provides a convenient mean for designing diverse skill acquisition tasks that require
a large action space and more complex goals. All skill acquisition tasks in MiniHack use this
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base class. The in-game multiple-choice question prompts is turned on by default, while the menu
navigation is turned off. The player’s pet and auto-pickup are disabled by default.

When designing environments, we particularly suggest using partially underspecified levels in order
to use the built-in procedural content generator that changes the environment after every episode.
For example, several aspects of the level described in Figure 3, such as the types and locations of
monsters, objects, and traps, are not fully specified. The NetHack engine will make corresponding
selections at random, making that specific feature of the environment procedurally generated. This
enables a vast number of environment instances to be created. These could be instances the agent has
never seen before, allowing for evaluation of test-time generalisation.

B.3 Level Generator

When creating a new MiniHack environment, a des-file must be provided. One way of providing
this des-file is writing it entirely from scratch (for example files see Figure 14 and Figure 3, and for
example environment creation see Figure 16a). However, this requires learning the des-file format
and is more difficult to do programmatically, so as part of MiniHack we provide the LevelGenerator
class which provides a convenient wrapper around writing a des-file. The LevelGenerator class
can be used to create MAZE-type levels with specified heights and widths, and can then fill those
levels with objects, monsters and terrain, and specify the start point of the level. Combined with the
RewardManager which handles rewards (see Appendix B.4), this enables flexible creation of a wide
variety of environments.

The level generator can start with either an empty maze (in which case only height and width are
specified, see Figure 16b line 2) or with a pre-drawn map (see Figure 16c). After initialisation, the
level generator can be used to add objects, traps, monsters and other terrain features. These can
all be either completely or partially specified, in terms of class or location (see Appendix A.3 and
Appendix A.4 for more information on how this works, and Figure 16b lines 6-10). Terrain can also
be added programmatically at a later stage (Figure 16b lines 11-12). Once the level is complete, the
.get_des() function returns the des-file which can then be passed to the environment creation
function (Figure 16b lines 26-29).

B.4 Reward Manager

Along with creating the level layout, structure and content through the LevelGenerator, we also
provide an interface to design custom reward functions. The default reward function of MiniHack is a
sparse reward of +1 for reaching the staircase down (which terminates the episode), and 0 otherwise,
with episodes terminating after a configurable number of time-steps. Using the RewardManager,
one can control what events give the agent reward, whether those events can be repeated, and what
combinations of events are sufficient or required to terminate the episode.

In Figure 16b lines 14-24 present an example of the reward manager usage. We first instantiate the
reward manager and add events for eating an apple or wielding a dagger. The default reward is +1,
and in general, all events are required to be completed for the episode to terminate. In lines 23-24,
we add an event of standing on a sink which has a reward of -1 and is not required for terminating the
episode.

While the basic reward manager supports many events by default, users may want to extend this
interface to define their own events. This can be done easily by inheriting from the Event class
and implementing the check and reset methods. Beyond that, custom reward functions can be
added to the reward manager through add_custom_reward_fn method. These functions take the
environment instance, the previous observation, action taken and current observation, and should
return a float.

We also provide two ways to combine events in a more structured way. The
SequentialRewardManager works similarly to the normal reward manager but requires the events
to be completed in the sequence they were added, terminating the episode once the last event is com-
plete. The GroupedRewardManager combines other reward managers, with termination conditions
defined across the reward managers (rather than individual events). This allows complex conjunctions
and disjunctions of groups of events to specify termination. For example, one could specify a reward
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1 # des_file is the path to the des-file
2 # or its content as a string
3 env = gym.make(
4 "MiniHack-Navigation-Custom-v0",
5 def_file=des_file)

(a) Creating a MiniHack navigation task via
des-file.

1 # Define a 10 by 10 grid area
2 lvl_gen = LevelGenerator(w=10, h=10)
3

4 # Populate it with different objects,
5 # a monster (goblin) and features (lava)
6 lvl_gen.add_object("apple", "%")
7 lvl_gen.add_object("dagger", ")")
8 lvl_gen.add_trap(name="teleport")
9 lvl_gen.add_sink()

10 lvl_gen.add_monster("goblin")
11 lvl_gen.fill_terrain("rect", "L",
12 0, 0, 9, 9)
13

14 # Define a reward manager
15 reward_manager = RewardManager()
16 # +1 reward and termination for eating
17 # an apple or wielding a dagger
18 reward_manager.add_eat_event("apple")
19 reward_manager.add_wield_event("dagger")
20 # -1 reward for standing on a sink
21 # but isn't required for terminating
22 # the episode
23 reward_manager.add_location_event("sink",
24 reward=-1, terminal_required=False)
25

26 env = gym.make(
27 "MiniHack-Skill-Custom-v0",
28 des_file=lvl_gen.get_des(),
29 reward_manager=reward_manager)

(b) Creating a skill task using the LevelGenerator
and RewardManager.

# Define the maze as a string
maze = """
--------------------
|.......|.|........|
|.-----.|.|.-----|.|
|.|...|.|.|......|.|
|.|.|.|.|.|-----.|.|
|.|.|...|....|.|.|.|
|.|.--------.|.|.|.|
|.|..........|...|.|
|.|--------------|.|
|..................|
--------------------
"""
# Set a start and goal positions
lvl_gen = LevelGenerator(map=maze)
lvl_gen.set_start_pos((9, 1))
lvl_gen.add_goal_pos((14, 5))
# Add a Minotaur at fixed position
lvl_gen.add_monster(name="minotaur",

place=(19, 9))
# Add wand of death
lvl_gen.add_object("death", "/")

env = gym.make(
"MiniHack-Skill-Custom-v0",
des_file = lvl_gen.get_des())

(c) Creating a MiniHack skill task using the
LevelGenerator with a pre-defined map layout.

Figure 16: Three ways to create MiniHack environments: using only a des-file, using the LevelGener-
ator and the RewardManager, and LevelGenerator with a pre-defined map layout.

function that terminates if a sequence of events (a,b,c) was completed, or all events {d,e,f} were
completed in any order and the sequence (g,h) was completed.

B.5 Examples

Figure 16a presents how to create a MiniHack navigation task using only the des-file, as in Figure 3
or Figure 14.

Figure 16b shows how to create a simple skill acquisition task that challenges the agent to eat an
apple and wield a dagger that is randomly placed in a 10x10 room surrounded by lava, alongside a
goblin and a teleportation trap. Here, the RewardManager is used to specify the tasks that need to be
completed.

Figure 16c shows how to create a labyrinth task. Here, the agent starts near the entrance of a maze
and needs to reach its centre. A Minotaur is placed deep inside the maze, which is a powerful monster
capable of instantly killing the agent in melee combat. There is a wand of death placed in a random
location in the maze. The agent needs to pick it up, and upon seeing the Minotaur, zap it in the
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direction of the monster. Once the Minotaur is killed, the agent needs to navigate itself towards the
staircase (this is the default goal when RewardManager is not used).

C MiniHack tasks

This section presents detailed descriptions of existing MiniHack task and registered configurations.
Tasks are grouped into similar tasks, within which several attributes are varied to make more difficult
versions of the same task.

C.1 Navigation Tasks

Room. These tasks are set in a single square room, where the goal is to reach the staircase down
(see Figure 17). There are multiple variants of this level. There are two sizes of the room (5x5,
15x15). In the simplest variants, Room-5x5 and Room-15x15), the start and goal position are
fixed. In the Room-Random-5x5 and Room-Random-15x15 tasks, the start and goal position are ran-
domised. The rest of the variants add additional complexity to the randomised version of the environ-
ment by introducing monsters (Room-Monster-5x5 and Room-Monster-15x15), teleportation traps
(Room-Trap-5x5 and Room-Trap-15x15), darkness (Room-Dark-5x5 and Room-Dark-15x15), or
all three combined (Room-Ultimate-5x5 and Room-Ultimate-15x15).10

Figure 17: Various instances of the Room-Ultimate-15x15 task.

Corridor. These tasks make use of the RANDOM_CORRIDORS command in the des-file. The
objective is to reach the staircase down, which is in a random room (see Figure 18). The agent is also
in a random room. The rooms have randomised positions and sizes. The corridors between the rooms
are procedurally generated and are different for every episode. Different variants of this environment
have different numbers of rooms, making the exploration challenge more difficult (Corridor-R2,
Corridor-R3, and Corridor-R5 environments are composed of 2, 3, and 5 rooms, respectively).

Figure 18: Four instances of the Corridor-R5 task.

KeyRoom. These tasks require an agent to pick up a key, navigate to a door, and use the key to
unlock the door, reaching the staircase down within the locked room. The action space is the standard
movement actions plus the PICKUP and APPLY actions (see Figure 19). In the simplest variant of
this task, (KeyRoom-Fixed-S5), the location of the key, door and staircase are fixed. In the rest of
the variants, these locations randomised. The size the outer room is 5x5 for KeyRoom-S5 and 15x15
for KeyRoom-S15. To increase the difficulty of the tasks, dark versions of the tasks are introduced

10The agent can attack monsters by moving towards them when located in an adjacent grid cell. Stepping on a
lava tile instantly kills the agent. When the room is dark, the agent can only observe adjacent grid cells.
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(KeyRoom-Dark-S5 and KeyRoom-Dark-S15), where the key cannot be seen if it is not in any of
the agent’s adjacent grid cells.

Figure 19: Various instances of the KeyRoom-S15 task.

MazeWalk. These navigation tasks make use of the MAZEWALK command in the des-file, which
procedurally generates diverse mazes on the 9x9, 15x15 and 45x19 grids for MazeWalk-9x9,
MazeWalk-15x15, and MazeWalk-45x19 environments, respectively (see Figure 20). In
the mapped versions of these tasks (MazeWalk-Mapped-9x9, MazeWalk-Mapped-15x15, and
MazeWalk-Mapped-45x19), the map of the maze and the goal’s locations are visible to the agent.

Figure 20: Various instances of the MazeWalk-15x15 task.

River. This group of tasks requires the agent to cross a river using boulders (see Figure 21).
Boulders, when pushed into the water, create a dry land to walk on, allowing the agent to cross
it. While the River-Narrow task can be solved by pushing one boulder into the water, other
River require the agent to plan a sequence of at least two boulder pushes into the river next
to each other. In the more challenging tasks of the group, the agent needs to additionally fight
monsters (River-Monster), avoid pushing boulders into lava rather than water (River-Lava), or
both (River-MonsterLava).

Figure 21: Three instances of the River task.

HideNSeek. In the HideNSeek task, the agent is spawned in a big room full of trees and clouds
(see Figure 22). The trees and clouds block the line of sight of the player and a random monster
(chosen to be more powerful than the agent). The agent, monsters and spells can pass through clouds
unobstructed. The agent and monster cannot pass through trees. The goal is to make use of the
environment features, avoid being seen by the monster and quickly run towards the goal. The layout
of the map is procedurally generated, hence requires systematic generalisation. Alternative versions
of this task additionally include lava tiles that need to be avoided (HideNSeek-Lava), have bigger
size (HideNSeek-Big) or provide the locations of all environment features but not the powerful
monster (HideNSeek-Mapped).

Figure 22: Four instances of the HideNSeek task.
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CorridorBattle. The CorridorBattle task challenges the agent to make best use of the dungeon
features to effectively defeat a horde of hostile monsters (see Figure 23). Here, if the agent lures the
rats into the narrow corridor, it can defeat them one at a time. Fighting in rooms, on the other hand,
would result in the agent simultaneously incurring damage from several directions and quick death.
The task also is offered in dark mode (CorridorBattle-Dark), challenging the agent to remember
the number of rats killed in order to plan subsequent actions.

Figure 23: A screenshot of the CorridorBattle task.

Memento. This group of tasks test the agent’s ability to use memory (within an episode) to pick
the correct path. The agent is presented with a prompt (in the form of a sleeping monster of a specific
type) and then navigates along a corridor (see Figure 24). At the end of the corridor, the agent reaches
a fork and must choose a direction. One direction leads to a grid bug, which if killed terminates the
episode with a +1 reward. All other directions lead to failure through an invisible trap that terminates
the episode when activated. The correct path is determined by the cue seen at the beginning of the
episode. We provide three versions of this environment: one with a short corridor before a fork
with two paths to choose from (Memento-Short-F2), one with a long corridor with a two-path fork
(Memento-F2), and one with a long corridor and a four-fork path (Memento-F4).

Figure 24: A screenshot of the Memento-F4 task.

MazeExplore. These tasks test the agent’s ability to perform deep exploration [42]. It’s inspired
by the Apple-Gold domain from [22], where a small reward can be achieved easily, but to learn the
optimal policy deeper exploration is required. The agent must first explore a simple randomised
maze to reach the staircase down, which they can take for +1 reward (see Figure 25). However, if
they navigate through a further randomised maze, they reach a room with apples. Eating the apples
gives a +0.5 reward, and once the apples are eaten the agent should then return to the staircase down.
We provide an easy and a hard version of this task (MazeExplore-Easy and MazeExplore-Hard),
with the harder version having a larger maze both before and after the staircase down. Variants can
also be mapped (MazeExplore-Easy-Mapped and MazeExplore-Hard-Mapped), where the agent
can observe the layout of the entire grid, making it easier to navigate the maze. Even in the mapped
setting, the apples are not visible until the agent reaches the final room.

Figure 25: Four instances of the MazeExplore-Hard task. The apples are located near the right
vertical wall (unobservable in the figure). The goal is located in the middle area of the grid.

The full list of navigation tasks in MiniHack is provided in Table 1.

C.2 Skill Acquisition Tasks

C.2.1 Skills

The nature of commands in NetHack requires the agent to perform a sequence of actions so that the
initial action, which is meant for interaction with an object, has an effect. The exact sequence of
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Table 1: Full list of MiniHack navigation tasks and corresponding capabilities for assessment.

Name Capability

Room-5x5-v0 Basic Learning
Room-15x15-v0 Basic Learning
Room-Random-5x5-v0 Basic Learning
Room-Random-15x15-v0 Basic Learning
Room-Dark-5x5-v0 Basic Learning
Room-Dark-15x15-v0 Basic Learning
Room-Monster-5x5-v0 Basic Learning
Room-Monster-15x15-v0 Basic Learning
Room-Trap-5x5-v0 Basic Learning
Room-Trap-15x15-v0 Basic Learning
Room-Ultimate-5x5-v0 Basic Learning
Room-Ultimate-15x15-v0 Basic Learning

Corridor-R2-v0 Exploration
Corridor-R3-v0 Exploration
Corridor-R5-v0 Exploration

KeyRoom-Fixed-S5-v0 Exploration
KeyRoom-S5-v0 Exploration
KeyRoom-Dark-S5-v0 Exploration
KeyRoom-S15-v0 Exploration
KeyRoom-Dark-S15-v0 Exploration

MazeWalk-9x9-v0 Exploration & Memory
MazeWalk-Mapped-9x9-v0 Exploration & Memory
MazeWalk-15x15-v0 Exploration & Memory
MazeWalk-Mapped-15x15-v0 Exploration & Memory
MazeWalk-45x19-v0 Exploration & Memory
MazeWalk-Mapped-45x19-v0 Exploration & Memory

River-Narrow-v0 Planning
River-v0 Planning
River-Monster-v0 Planning
River-Lava-v0 Planning
River-MonsterLava-v0 Planning

HideNSeek-v0 Planning
HideNSeek-Mapped-v0 Planning
HideNSeek-Lava-v0 Planning
HideNSeek-Big-v0 Planning

CorridorBattle-v0 Planning & Memory
CorridorBattle-Dark-v0 Planning & Memory

Memento-Short-F2-v0 Memory
Memento-F2-v0 Memory
Memento-F4-v0 Memory

MazeExplore-Easy-v0 Deep Exploration
MazeExplore-Hard-v0 Deep Exploration
MazeExplore-Easy-Mapped-v0 Deep Exploration
MazeExplore-Hard-Mapped-v0 Deep Exploration
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subsequent can be inferred by the in-game message bar prompts.11 For example, when located in the
same grid with an apple lying on the floor, choosing the Eat action will not be enough for the agent
to eat it. In this case, the message bar will ask the following question: "There is an apple here; eat it?
[ynq] (n)". Choosing the Y action at the next timestep will cause the initial EAT action to take effect,
and the agent will eat the apple. Choosing the N action (or MORE action since N is the default choice)
will decline the previous EAT action prompt. The rest of the actions will not progress the in-game
timer and the agent will stay in the same state. We refer to this skill as Confirmation.

The PickUp skill requires picking up objects from the floor first and put in the inventory. The
tasks with InventorySelect skill necessities selecting an object from the inventory using the
corresponding key, for example, "What do you want to wear? [fg or ?*]" or "What do you want to
zap? [f or ?*]". The Direction skill requires choosing one of the moving directions for applying
the selected action, e.g., kicking or zapping certain types of wands. In this case, "In what direction?"
message will appear on the screen. The Navigation skill tests the agent’s ability to solve various
mazes and labyrinths using the moving commands.

C.2.2 Tasks

The full list of skill acquisition tasks, alongside the skills they require mastering, is provided in
Table 2. The skill acquisition tasks are suitable testbeds for fields such as curriculum learning and
transfer learning, either between different tasks within MiniHack or to the full game of NetHack.

Figure 26: Random instances of the Eat-Distract, Wear-Distract and Pray-Distract tasks.

Simple Tasks. The simplest skill acquisition tasks require discovering interaction between one
object and the actions of the agent. These include: eating comestibles (Eat), praying on an altar
(Pray), wearing armour (Wear), and kicking locked doors (LockedDoors). In the regular versions
of these tasks, the starting location of the objects and the agent is randomised, whereas in the fixed
versions of these tasks (Eat-Fixed, Pray-Fixed, Wear-Fixed and LockedDoors-Fixed) both are
fixed. To add a slight complexity to the randomised version of these tasks, distractions in the form of
a random object and a random monster are added to the third version of these tasks (Eat-Distract,
Pray-Distract and Wear-Distract, see Figure 26). These tasks can be used as building blocks
for more advanced skill acquisition tasks.

Figure 27: Five random instances of the LavaCross task, where the agent needs to cross the lava
using (i) potion of levitation, (ii) ring of levitation, (iii) levitation boots, (iv) frost horn, or (v) wand
of cold.

Lava Crossing. An example of a more advanced task involves crossing a river of lava. The agent
can accomplish this by either levitating over it (via a potion of levitation or levitation boots) or
freezing it (by zapping the wand of cold or playing the frost horn). In the simplest version of
the task (LavaCross-Levitate-Potion-Inv and LavaCross-Levitate-Ring-Inv), the agent
starts with one of the necessary objects in the inventory. Requiring the agent to pick up the corre-
sponding object first makes the tasks more challenging (LavaCross-Levitate-Potion-PickUp

11Hence the messages are also used as part of observations in the skill acquisition tasks.
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and LavaCross-Levitate-Ring-PickUp). The most difficult variants of this task group require
the agent to cross the lava river using one of the appropriate objects randomly sampled and placed at
a random location. In LavaCross-Levitate, one of the objects of levitation is placed on the map,
while in the LavaCross task these include all of the objects for levitation as well as freezing (see
Figure 27).

Figure 28: A screenshot of the WoD-Hard task.

Wand of Death. MiniHack is very convenient for making incremental changes to the difficulty of a
task. To illustrate this, we provide a sequence of tasks that require mastering the usage of the wand of
death [WoD, 38]. Zapping a WoD in any direction fires a death ray which instantly kills almost any
monster it hits. In WoD-Easy environment, the agent starts with a WoD in its inventory and needs to
zap it towards a sleeping monster. WoD-Medium requires the agent to pick it up, approach the sleeping
monster, kill it, and go to the staircase. In WoD-Hard the WoD needs to be found first, only then the
agent should enter the corridor with a monster (who is awake and hostile this time), kill it, and go to
the staircase (see Figure 28). In the most difficult task of the sequence, the WoD-Pro, the agent starts
inside a big labyrinth. It needs to find the WoD inside the maze and reach its centre, which is guarded
by a deadly Minotaur.

Figure 29: Two instances of the Quest-Hard task.

Quest. Quest tasks require the agent to navigate mazes, cross rivers and fight powerful monsters.
Quest_Easy, the simplest environment in the group, challenges the agent to use objects in the
inventory to cross the river of lava and fight a few relatively weak monsters. In Quest_Medium the
agent engages with a horde of monsters instead and must lure them into the narrow corridors to
survive. The Quest_Hard task, the most difficult environment of the group, requires the agent to
solve complex, procedurally generated mazes, find objects for crossing the lava river and make use of
the wand of death to kill a powerful monster (see Figure 29).

C.3 Ported Tasks

The full list of tasks ported to MiniHack from MiniGrid [12] and Boxoban [21] which we used
in our experiments is provided in Table 3. Note that more tasks could have similarly been ported
from MiniGrid. However, our goal is to showcase MiniHack’s ability to port existing gridworld
environments and easily enrich them, rather than porting all possible tasks.

D Experiment Details

Instructions on how to replicate experiments we present can be found in MiniHack’s repository:
https://github.com/facebookresearch/minihack. Below we provide details on individual
components.

D.1 Agent and Environment Details

The agent architecture used throughout all experiments is identical to it in [33]. The observations used
by the model include the 21× 79 matrix of grid entity representations and a 21-dimensional vector
containing agent statistics, such as its coordinates, health points, etc. Every of the 5991 possible
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Table 2: Full list of MiniHack skill acquisition tasks.

Name Skill

Eat-v0 Confirmation or PickUp+Inventory
Eat-Fixed-v0 Confirmation or PickUp+Inventory
Eat-Distract-v0 Confirmation or PickUp+Inventory
Pray-v0 Confirmation
Pray-Fixed-v0 Confirmation
Pray-Distract-v0 Confirmation
Wear-v0 PickUp+Inventory
Wear-Fixed-v0 PickUp+Inventory
Wear-Distract-v0 PickUp+Inventory
LockedDoor-v0 Direction
LockedDoor-Random-v0 Direction

LavaCross-Levitate-Ring-Inv-v0 Inventory
LavaCross-Levitate-Potion-Inv-v0 Inventory
LavaCross-Levitate-Ring-Pickup-v0 PickUp+Inventory
LavaCross-Levitate-Potion-PickUp-v0 PickUp+Inventory
LavaCross-Levitate-v0 PickUp+Inventory
LavaCross-v0 PickUp+Inventory

WoD-Easy Inventory+Direction
WoD-Medium PickUp+Inventory+Direction
WoD-Hard PickUp+Inventory+Direction
WoD-Pro Navigation+PickUp+Inventory+Direction

Quest-Easy-v0 Inventory
Quest-Medium-v0 Navigation+Inventory
Quest-Hard-v0 Navigation+PickUp+Inventory+Direction

Table 3: Tasks ported to MiniHack from other benchmarks.

Name Capability

MultiRoom-N2-v0 [12] Exploration
MultiRoom-N4-v0 [12] Exploration
MultiRoom-N2-Monster-v0 Exploration
MultiRoom-N4-Monster-v0 Exploration
MultiRoom-N2-Locked-v0 Exploration
MultiRoom-N4-Locked-v0 Exploration
MultiRoom-N2-Lava-v0 Exploration
MultiRoom-N4-Lava-v0 Exploration
MultiRoom-N2-Extreme-v0 Exploration
MultiRoom-N4-Extreme-v0 Exploration

Boxoban-Unfiltered-v0 [21] Planning
Boxoban-Medium-v0 [21] Planning
Boxoban-Hard-v0 [21] Planning
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entities in NetHack (monsters, items, dungeon features, etc.) is mapped onto a k-dimensional vector
representation as follows. First, we split the entity ids (glyphs) into one of twelve groups (categories
of entities) and an id within each group. We construct a partition of the final vector which includes
the following components as sub-vectors: group, subgroup_id, color, character, and special, each of
which uses a separate embedding that is learned throughout the training. The relative length of each
sub-vector is defined as follows: groups=1, subgroup_ids=3, colors=1, chars=2, and specials=1. That
is, for a k = 64 dimensional embeddings, we make use of an embedding dimension of 24 for the id,
8 for group, 8 for color, 16 for character, and 8 for special. These settings were determined during a
set of small-scale experiments.

Three dense representations are produced. First, all visible entity embeddings are passed to a CNN.
Second, another CNN is applied to the 9× 9 crop of entities surrounding the agent. Third, an MLP
is used to encode the agent’s statistic. These three vectors are concatenated and passed to another
MLP which produces the final representation ot of the observation. To obtain the action distribution,
we feed the observations ot to a recurrent layer comprised with an LSTM [26] cells, followed by an
additional MLP.

For results on skill acquisition tasks, the in-game message, encoded using a character-level CNN [63],
is also included as part of observation.

For all conducted experiments, a penalty of −0.001 is added to the reward function if the selected
action of the agent does not increment the in-game timer of NetHack. For instance, when the agent
attempts to move against a wall or navigates in-game menus, it will receive the −0.001 penalty.

D.2 TorchBeast Details

We employ an embedding dimension of 64 for entity representations. The size of the hidden dimension
for the observation ot and the output of the LSTM ht is 256. We use a 5-layer CNN architecture
(filter size 3 × 3, padding 1, stride 1) for encoding both the full screen of entities and the 9 × 9
agent-centred crop. The input channel of the first layer of the CNN is the embedding size of entities
(64). The dimensions of all subsequent layers are equal to 16 for both input and output channels.

The characters within the in-game messages are encoded using an embedding of size 32 and passed
to a 6-layer CNN architecture, each comprised of a 1D convolution of size 64 and ReLU nonlinearity.
Maxpooling is applied after the first, second, and sixth layers. The convolutional layers are followed
by an MLP.

We apply a gradient norm clipping of 40, but do not clip the rewards. We employ an RMSProp
optimiser with a learning rate of 2 ∗ 10−4 without momentum and with ε = 10−6.12 The entropy cost
is set to 10−4. The γ discounting factor is set to 0.999.

The hyperparameters for Random Network Distillation [RND, 17] are the same as in [33] and mostly
follow the author recommendations. The weights are initialised using an orthogonal distribution with
gains of

√
2. A two-headed value function is used for intrinsic and extrinsic rewards. The discount

factor for the intrinsic reward is set to 0.99. We treat both extrinsic and intrinsic rewards as episodic
in nature. The intrinsic reward is normalised by dividing it by a running estimate of its standard
deviation. Unlike the original implementation of RND, we do not use observation normalisation due
to the symbolic nature of observations used in our experiments. The intrinsic reward coefficient is
0.1. Intrinsic rewards are not clipped.

For our RIDE [46] baselines, we normalise the intrinsic reward by the number of visits to a state. The
intrinsic reward coefficient is 0.1. The forward and inverse dynamics models have hidden dimension
of 128. The loss cost is 1 for the forward model and 0.1 for inverse model.

These settings were determined during a set of small-scale experiments.

The training on MiniHack’s Room-5x5 task for two million timesteps using our IMPALA baseline
takes approximately 4:30 minutes (roughly 7667 steps per second). This estimate is measured using
2 NVIDIA Quadro GP100 GPUs (one for the learner and one for actors) and 20 Intel(R) Xeon(R)
E5-2698 v4 @ 2.20GHz CPUs (used by 256 simultaneous actors) on an internal cluster. Our RND
baseline completes the same number of timesteps in approximately 7:30 minutes (roughly 4092 steps
per second) using the same computational resources.

12For results on skill acquisition tasks, we use a learning rate of 5 ∗ 10−5.
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D.3 Agent Architecture Comparison Details

Here we provide details on the architectures of models used in Figure 11. The medium model uses
the exact architectures described in Appendix D.2, namely a 5-layer CNN, hidden dimension size
256, and entity embedding size 64. The small model uses a 3-layer CNN, hidden dimension size
64, and entity embedding size 16. The large model uses a 9-layer CNN, hidden dimension size 512,
and entity embedding size 128. The rest of the hyperparameters are identical for all models and are
described in Figure 11.

D.4 RLlib Details

We release examples of training several RL algorithms on MiniHack using RLlib [34]. RLlib is an
open-source scalable reinforcement learning library built on top of Ray [37], that provides a unified
framework for running experiments with many different algorithms. We use the same model as in
the TorchBeast implementation described above, adjusted to not manage the time dimension for the
models that use an LSTM (as RLlib handles the recurrent network logic separately). To enable future
research on a variety of methods, we provide examples of training DQN [36], PPO [51] and A2C [35]
on several simple MiniHack environments. Our DQN agent makes use of Double Q-Learning [55],
duelling architecture [59] and prioritized experience replay (PER) [50]. We perform a limited sweep
over hyperparameters, as we are not trying to achieve state-of-the-art results, just provide a starting
point for future research.

In all experiments, we use 1 GPU for learning, and 10 CPUs for acting (with multiple instances of
each environment per CPU), to speed up the wall-clock run-time of the experiments. These options
can be configured easily in the code we release.

Results for these experiments can be seen in Figure 12. Hyperparameters for DQN, PPO, and A2C
are detailed in Table 4, Table 5 and Table 6, respectively.

Table 4: RLlib DQN Hyperparameters
Name value

learning rate 1e-6
replay buffer size 100000
PER β 0.4
n-step length 5
target network update frequency 50000
learning start steps 50000
PER annealing timesteps 100000

Table 5: RLlib PPO Hyperparameters
Name value

learning rate 1e-5
batch size 128
SGD minibatch size 32
SGD iterations per epoch 2
rollout fragment length 128
entropy penalty coefficient 0.0001
value function loss coefficient 0.5
shared policy and value representation True
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Table 6: RLlib A2C Hyperparameters
Name value

learning rate 1e-5
batch size 128
rollout fragment length 128
entropy penalty coefficient 0.001
value function loss coefficient 0.1

D.5 Unsupervised Environment Design

We base our UED experiments using PAIRED on MiniHack largely on those outlined in [15]. The
hyperparameters used for training are provided in Table 7. Note that except where explicitly noted,
all agents share the same training hyperparameters.

The adversary constructs new levels starting from an empty 5 × 5 grid. At each of the first 10
timesteps, the adversary chooses a position in which to place one of the following objects: {walls,
lava, monster, locked door}. If a selected cell is already occupied, no additional object cell is
placed. After placing the objects, the adversary then chooses the goal position followed by the agent’s
starting position. If a selected cell is already occupied, the position is randomly resampled from
among the free cells.

At each time step, the adversary policy encodes the glyph observation using two convolution layers,
each with kernel size 3× 3, stride lengths of 1 and 2, and output channels, 16 and 32 respectively,
followed by a ReLU activation over the flattened outputs. We embed the time step into a 10-
dimensional space. The image embedding, time-step embedding, and the random noise vector are
concatenated, and the combined representation is passed through an LSTM with a hidden dimension
of 256, followed by two fully connected layers with a hidden dimension of 32 and ReLU activations
to yield the action logits over the 169 possible cell choices.

We make use of the same architecture for the protagonist and antagonist policies, with the exceptions
of using the agent-centred crop, rather than the full glyph observation, and producing policy logits
over the MiniHack action space rather than over the set of possible cell positions.

Table 7: PAIRED hyperparameters
Name value

γ 0.995
λGAE 0.95
PPO rollout length 256
PPO epochs 5
PPO minibatches per epoch 1
PPO clip range 0.2
PPO number of workers 32
Adam learning rate 1e-4
Adam ε 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
value loss coefficient 0.5
protagonist/antagonist entropy coefficient 0.0
adversary entropy coefficient 0.005

E Full Results

Figure 30, Figure 31, and Figure 32 present the results of baseline agents on all navigation, skill
acquisition and ported MiniHack tasks, respectively.
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Figure 30: Mean episode returns on all MiniHack navigation tasks across five independent runs. The
median of the runs is bolded.
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Figure 31: Mean episode returns on all MiniHack skill acquisition tasks across five independent runs.
The median of the runs is bolded.
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Figure 32: Mean episode returns on tasks ported to MiniHack from existing benchmarks. The median
of the five runs is bolded.
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