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In the supplementary material, we further verify the efficiency of our network initialization strategy1

and provide details regarding ground truth (GT) normal acquisition in our real-world dataset, more2

material and normal map estimation results. We compare the model size and inference time of3

SfPUEL against other methods and then provide the detailed network architecture.4

A Code for Reproduction5

We provide the test code, the model checkpoint of SfPUEL, and examples of synthetic data and6

real-world data at https://anonymous.4open.science/r/SfPUEL-E243 for reproduction.7

B Efficiency of Network Initialization with SDM-UniPS Weights8

We initialize the Polarization Feature Extraction module (PolFEM) and the image-level attention9

module in Global Context Extractor with the pretrained weights from SDM-UniPS (7). To evaluate10

the impact of network initialization on framework performance, we initialized these two modules of11

SfPUEL with Xavier initialization (6) and trained the framework with the same strategy discussed in12

Sec. 4.3 of the main paper. We find that the network struggled to converge even after being trained13

for over 80 epochs on the synthetic dataset. It suggests that initializing SfPUEL with the pretrained14

weights from SDM greatly facilitates the training process.15

C Ground Truth Normal Acquisition16

In our real dataset, polarization images and the ground truth normal maps of 6 objects are provided17

for quantitative evaluation. We acquire the GT normal maps following the guideline of (12). We use18

EinScan-SP V2 SPECS Desktop 3D Scanner to scan the objects and generate the object meshes. The19

six objects in our dataset and the scanned meshes are displayed in Fig. 1. We calibrate the polarization20

camera to get camera intrinsic parameters (14), then conduct the image-mesh alignment to get the21

camera extrinsic parameters, and finally render the “ground truth” normal in Blender (4).22

D Material Estimation Results23

To further validate SfPUEL on material estimation, we provide more results on synthetic data, as24

shown in Fig. 2. Our method also stably works in scenes containing objects with multiple material25

types.26
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Figure 1: Six objects in our dataset and the corresponding scanned meshes.
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Figure 2: Material estimation of our method on the synthetic data, where red denotes dielectric
material and green denotes metallic material.

E Model Size and Inference Time27

We compare the model size (#Param) and test running time of the state-of-the-art methods (i.e.,28

SfPW (8), DeepSfP (1), UNE (2), DSINE (3), and One-2-3-45 (9)) and our model. The test time29

of each method is calculated by processing a single test sample with a resolution of 512, and these30

experiments are conducted on the same device (Ubuntu 20.04 LTS with an NVIDIA RTX 3090). The31

results are listed in Table 1. One-2-3-45 has the most parameters and takes the longest time in the32

inference stage. The test time of our method is slightly longer than other single-shot-based methods33

since the current model has not been optimized for computational efficiency. Adopting advanced34

lightweight attention mechanisms like efficient additive attention (11) in Global Context Extractor35

may help to reduce our model’s computation complexity.

Table 1: Model size and computational costs comparisons.
Method SfPW (8) DeepSfP (1) One-2-3-45 (9) UNE (2) DSINE (3) SfPUEL

#Param 42.5M 10.8M 1.29G 72.4M 72.6M 141M
Test time .571s 1.06s 136s .319s .423s 1.61s

36

F Normal Estimation on Real Data37

In the main paper, we display the normal predictions of SfPUEL on 4 objects compared to the38

state-of-the-art methods. In this section, we provide normal results on the rest two objects in Fig. 3.39
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Input SfPW (8) DeepSfP (1) One-2-3-45 (9) UNE (2) DSINE (3) SfPUEL GT

27.46 23.76 N/A 38.60 16.86 14.01

39.22 21.99 N/A 37.50 18.46 12.99

Figure 3: Qualitative results of our method on real data compared to the state-of-the-art approaches.
The number below each normal map represents mean angular error.

Input SfPW (8) DeepSfP (1) One-2-3-45 (9) UNE (2) DSINE (3) SfPUEL PANDORA (5)

54.02 18.13 N/A 49.45 12.37 10.65

42.55 19.25 N/A 38.34 15.81 15.69

42.06 29.06 N/A 53.89 29.17 20.45

Figure 4: Visual results of our method against previous approaches, including SfPW (8), DeepSfP (1),
One-2-3-45 (9), UNE (2), DSINE (3) and PANDORA (5). The number below each result denotes
mean angular error.

In addition, we compare SfPUEL to PANDORA (5), the multi-view 3D reconstruction method taking40

polarization images, as well as SfP (8; 1), 3D generation approach One-2-3-45, and single-image-41

based approaches (2; 3) on the real data released by (5). The qualitative results are shown in Fig. 4.42

Our method outperforms previous SfP and single-shot normal estimation approaches. Taking as input43

single-view polarization images, SfPUEL also produces comparable results against the multi-view44

method (5).45

G Network Details46

We tabulate the detailed structures of some SfPUEL modules in Table 2. SfPUEL consists of two47

main parts: Pol&PS Feature Extractor and Global Context Extractor. Pol&PS Feature Extractor takes48

as input angle of linear polarization (AoLP) and degree of linear polarization (DoLP) maps, image49

intensities, polarization images, and the mask, which has two parallel branches: the polarization50

feature extraction module (PolFEM) and the photometric stereo prior extraction module (PSPEM).51

PolFEM and PSPEM produce features corresponding to individual input images in a shared-weight52

manner. The backbone of PolFEM has the same structure as that of PSPEM, and ConvNeXt-T (10) is53

adopted as the image encoder in the two branches. Pyramid Pooling Module (PPM) of UPerNet (13)54

is used for fusing hierarchical features from Image Encoder. In PolFEM, we propose to extract55

features directly from polarization properties using the polarization encoder, whose structure is56

tabulated in Table 2. For efficient feature fusion between PolFEM and PSPEM, we introduce the57

DoLP cross-attention block in PSPEM. The polarization features encoded from PolFEM are taken as58

the query, and the PS features from PSPEM are taken as the key and the value in the cross-attention59

block. After two-source feature fusion, the extracted features FPolPS from Pol&PS Feature Extractor60
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Table 2: The detailed structures of the polarization encoder in PolFEM, adopted zero convolutional
layers, and prediction heads in SfPUEL. H and W denote the height and the width of the input tensor,
respectively, and Npixel represents the number of sampled pixels.

Layer Description Output Tensor Size
Polarization Encoder

Conv2d(kernel=3, padding=1) (H,W,16)
SiLU (H,W,16)
Conv2d(kernel=3, padding=1) (H,W,16)
SiLU (H,W,16)
Conv2d(kernel=3, padding=1, stride=2) (1⁄2H,1⁄2W,32)
SiLU (1⁄2H,1⁄2W,32)
Conv2d(kernel=3, padding=1) (1⁄2H,1⁄2W,32)
SiLU (1⁄2H,1⁄2W,32)
Conv2d(kernel=3, padding=1, stride=2) (1⁄4H,1⁄4W,96)
SiLU (1⁄4H,1⁄4W,96)
Conv2d(kernel=3, padding=1) (1⁄4H,1⁄4W,96)
SiLU (1⁄4H,1⁄4W,96)

Zero Convolution Layer
Conv2d(kernel=1, padding=0) (H,W,dim_input)

Normal-MLP
Linear(in_dim=384, out_dim=192) (Npixel, 192)
ReLU (Npixel, 192)
Linear(in_dim=192, out_dim=3) (Npixel, 3)

Material-MLP
Linear(in_dim=384, out_dim=192) (Npixel, 192)
ReLU (Npixel, 192)
Linear(in_dim=192, out_dim=2) (Npixel, 2)

are fed to 5 cascaded image-level self-attention blocks. The image-axis self-attention block has61

a vanilla transformer structure composed of multi-head self-attention blocks, layer normalization,62

and feed-forward networks, producing image-level enhanced feature Fenh. Then, Fenh are sampled63

spatially, and we use cross-attention to query per-pixel features and conduct pixel-level self-attention64

to generate the global context features. Finally, the global features are fed into two MLPs to predict65

normal vectors and material logits.66
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