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Abstract

We introduce the Dendritic Network Model (DNM), a generative framework for

creating ultra-sparse, bio-inspired networks. Instead of random initialization, DNM

uses parametric distributions, optimized via network science, to define topology.

DNM consistently outperforms standard methods at 99% sparsity in image

classification and improves sparse Transformers for machine translation, offering a

structural advantage for more scalable and efficient AI.

The Dendritic Network Model. Traditional models treat neurons as simple integrators. In contrast, our brain-inspired approach

organizes connections into dendritic branches, creating a structured topology where distinct groups of inputs are processed locally.

Compared to previous multi-layered dendritic models4,5, DNM embeds dendritic properties directly into the bipartite network topology.
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The Dendritic Network Model (DNM)

Experiments

Results Analysis

Inspired by biological neurons, the Dendritic Network Model (DNM) creates a

structured connectivity pattern where each output neuron connects to the input

layer via several distinct "dendritic branches." Each branch links the output

neuron to a consecutive block of input neurons. All of an output neuron's branches

must form within a predefined "receptive window" of the input layer. This

method results in structured, clustered sparsity.

Geometric and topological characterization of the Dendritic Network Model. The figure compares a baseline random network (a)

with various DNM configurations (b-d) for a 3-layered MLP of size 98x196x196 with 90% sparsity. Each panel shows a coalescent

embedding in hyperbolic space (left), the first layer's adjacency matrix (top right), a bipartite graph representation (bottom right), and

key network science metrics: characteristic path length (L), modularity (Q), structural consistency (σc), and the power law exponent of

the degree distribution (ɣ). The network in (b) is a standard DNM model, generated using fixed distributions for all parameters. Panels

(c-d) modify this standard configuration by switching a single parameter's distribution to spatial Gaussian: (c) degree distribution, (d)

synaptic distribution.

We evaluate DNM on static and dynamic sparse training (DST). For static training, 

we test MLPs on image classification tasks (MNIST, Fashion MNIST, EMNIST, 

CIFAR-10) and benchmark DNM against random, BSW, BRF, Ramanujan, CSTI, 

and SNIP initializations. For DST, we compare against the same methods and use 

SET1 and RigL2 as baselines, while also testing DNM as an initializer for state-of-

the-art CHTs and CHTss3. Finally, we evaluate DNM as an initializer for 

Transformers on machine translation tasks (Multi30k, IWSLT14, WMT17), 

comparing it with the BRF method.

Image classification on MNIST, Fashion MNIST, and EMNIST of the CHTs and CHTss models on MLPs with 99% sparsity over

various topological initialization methods, compared to the fully-connected (FC) model. The scores indicate the accuracy of the

models, averaged over 3 seeds ± their standard errors. Bold values denote the best performance amongst initialization methods different

from CSTI. The performances that surpass CSTI are marked with "*".

Performance comparison on machine translation tasks across the WMT, Multi30k, and IWSLT datasets For tests on WMT, the

DNM model's parameters were transferred from the best-performing combinations of previous tests, avoiding any parameter search.

Entries are BLEU scores (higher is better), averaged over 3 seeds ± standard error. Bold values denote the best performance for a given

sparsity and initialization. Values that surpass the fully connected (FC) transformer are denoted by “*”

Image classification accuracy of statically trained, 99% sparse MLPs with different initial network topologies, compared to the

fully-connected (FC) model. The scores are averaged over 3 seeds ± their standard errors. Bold values denote the best performance

amongst initialization methods different from CSTI and SNIP.

Representation of the best performing DNM models on image classification. The figure compares the best performing DNM

architectures on MNIST and Fashion MNIST (a), EMNIST (b), and CIFAR10 (c). Each panel shows the network's adjacency matrix

(top) and the network's layerwise representation (bottom). Furthermore, each panel exhibits the network's topological measures:

characteristic path length (L), modularity (Q), structural consistency (σc), and the power law exponent of the degree distribution (ɣ).

Experiments show that DNM consistently outperforms alternative topological

initializers at extreme sparsity in both static and dynamic training. Crucially,

results suggest that simpler datasets favor hierarchical, scale-free structures, while

complex visual data prefers distributed, non-hierarchical connectivity. This finding

hints that the optimal sparse topology is task-dependent and establishes DNM as a

principled platform for exploring the relationship between topology and function.
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