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Abstract7

In this technical supplement, we provide further details concerning the penalized EM al-8

gorithm for a mixture of pdRCON models, and numerical performance with the quantile9

values of metric scores in the case of a balanced mixture proportion w = (0.5, 0.5) for two10

sub-populations.11
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S1. Technical details of the penalized EM algorithm14

In this section, we provide a more technical detail of EM algorithm which alternates between15

(E-step) for computation of the conditional expectation of the penalized complete log-16

likelihood with current values of parameters, and (M-step) for updating the parameters17

based on maximizing the conditional expectation computed in E-step, until convergence.18

(E-step) Given the observed data y1, . . . ,yN under current values of parameters (w(t),Θ
(t)
G )19

at the t-th iteration of the algorithm, the posterior distribution of the latent variables Znk20

is given by τ
(t)
nk = p(Znk | yn,w

(t),Θ
(t)
G ) specified by21

τ
(t)
nk =

w
(t)
k p(yn | Θ(t)

Gk
)∑K

l=1w
(t)
l p(yn | Θ(t)

Gl
)
.

(M-step) We use τ
(t)
nk to evaluate the conditional expectation of the penalized complete22

log-likelihood, which is denoted by23

Open

(
(w,ΘG), (w

(t),Θ
(t)
G )

)
=

N∑
n=1

K∑
k=1

τ
(t)
nk

(
logwk + log p(yn | ΘGk

)
)
− penλ1,λ2

(ΘG). (1)

We observe that (1) can be decomposed into independent expressions as24

Open

(
(w,ΘG), (w

(t),Θ
(t)
G )

)
= O(w,w(t)) +Open(ΘG ,Θ

(t)
G ),
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where25

O(w,w(t)) =
N∑

n=1

K∑
k=1

τ
(t)
nk logwk, and

Open(ΘG ,Θ
(t)
G ) =

N∑
n=1

K∑
k=1

τ
(t)
nk log p(yn | ΘGk

)− penλ1,λ2
(ΘG).

We update the new parameters
(
w(t+1),Θ

(t+1)
G

)
by maximizing the two independent com-26

ponents of (1) as follows.27

1. Update mixture proportion w(t+1). Using the Lagrange multiplier η to constrain28 ∑K
k=1wk = 1, we arrive at the updating formula as29

ŵ
(t+1)
k = argmax

w

{ K∑
k=1

N∑
n=1

τ
(t)
nk logwk − η

( K∑
k=1

wk − 1
)}

By taking the partial derivative of the Lagrange function with respect to wk and30

setting it to 0, we get31 ∑N
n=1 τ

(t)
nk

wk
− η = 0 so that ŵ

(t+1)
k =

∑N
n=1 τ

(t)
nk

η
.

Since
∑K

k=1wk = 1, we find the multiplier η as32

K∑
k=1

wk − 1 =
K∑
k=1

∑N
n=1 τ

(t)
nk

η
− 1 =

N∑
n=1

∑K
k=1 τ

(t)
nk

η
− 1 =

N∑
n=1

1

η
− 1 = 0

which implies that η = N . Hence ŵ
(t+1)
k = N

(t)
k /N with N

(t)
k =

∑N
n=1 τ

(t)
nk .33

2. Update models’ parameters ΘG. The second term of (1) can be written as34

Open(ΘG ,Θ
(t)
G )

=
N∑

n=1

K∑
k=1

τ
(t)
nk log p(yn | ΘGk

)−
K∑
k=1

λ
[1]
k ∥ΘGk

∥1 −
K∑
k=1

λ
[2]
k

(
∥ΘLL

Gk
−ΘRR

Gk
∥1 + ∥ΘLR

Gk
−ΘRL

Gk
∥1
)

=
1

2

K∑
k=1

N
(t)
k

[
log det(ΘGk

)− tr
(
S
(t)
k ΘGk

)]
−

K∑
k=1

λ
[1]
k ∥ΘGk

∥1 −
K∑
k=1

λ
[2]
k

(
∥ΘLL

Gk
−ΘRR

Gk
∥1 + ∥ΘLR

Gk
−ΘRL

Gk
∥1
)
, (2)

where S
(t)
k =

∑N
n=1 τ

(t)
nky

T
nyn/N

(t)
k is denoted as a weighted sample covariance for35

k ∈ {1, . . . ,K} and tr(·) is the trace of a square matrix, i.e. the sum of elements on36

the main diagonal entries. As shown in (2), performing the update for the Gaussian37
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networks’ parameters corresponds to solving K separated fused lasso problems using38

the alternating direction method of multiplier (ADMM) algorithm proposed by Boyd39

et al. (2011). In particular, for every k ∈ {1, . . . ,K},40

Θ̂
(t+1)
Gk

= argmin
{
−N

(t)
k

[
log det(ΘGk

)− tr
(
S
(t)
k ΘGk

)]
+ λ

[1]
k ∥ΘGk

∥1 + λ
[2]
k

(
∥ΘLL

Gk
−ΘRR

Gk
∥1 + ∥ΘLR

Gk
−ΘRL

Gk
∥1
)}

. (3)

We refer the readers to Ranciati et al. (2021), Ranciati and Roverato (2023) for the41

application of ADMM to the graphical lasso for paired data. More specifically, the42

optimization problem in (3) is equivalent to ADMM form with respect to Θk and Xk43

by minimizing44

−N
(t)
k

(
log detΘGk

− tr(S
(t)
k ΘGk

)
)
+ λ

[1]
k ∥Xk∥1 + λ

[2]
k

(
∥XLL

k −XRR
k ∥1 + ∥XLR

k −XRL
k ∥1

)
(4)

subject to ΘGk
−Xk = 0.

The ADMM algorithm for (4) is implemented by iterating the following steps:45

(a) Θ
(l+1)
Gk

= argmin−N
(t)
k

(
log detΘGk

− tr(S
(t)
k ΘGk

)
)
+ α

2 ∥ΘGk
−X

(l)
k + U

(l)
k ∥2F46

(b) X
(l+1)
k = argmin

(
λ
[1]
k ∥Xk∥1 + λ

[2]
k ∥XLL

k −XRR
k ∥1 + α

2 ∥Θ
(l+1)
Gk

−Xk + U
(l)
k ∥2F

)
47

(c) U
(l+1)
k = U

(l)
k +Θ

(l+1)
Gk

−X
(l+1)
k48

where ∥ · ∥F is the Frobenius norm, i.e. the square root of the sum of the squares of49

the matrix entries. Step (a) has an analytical solution which is given by50

Θ
(l+1)
Gk

= QDQT , (5)

where D is a diagonal matrix with the positive elements dp =
N

(t)
k

(
γp+

√
γ2
p+4α/N

(t)
k

)
2α51

for p ∈ {1, . . . , P} with α > 0, and Q is the P × P matrix whose p-th column is52

the eigenvector so that QQT = QTQ = I. Here, {γ1, . . . , γP } are eigenvalues of the53

orthogonal eigenvalue decomposition of α
(
X

(l)
k − U

(l)
k

)
/N

(t)
k + S

(t)
k .54

We turn now to step (b) of the algorithm. The update X
(l+1)
k for step (b) of the outer55

ADMM algorithm is thus the symmetric matrix such that X
(l+1)
k = Sβ1(x[β1=0,β2]

)56

with β1 = λ
[1]
k /ρ, β2 = λ

[2]
k /ρ×12Q2+Q withQ = P/2, and Sκ(·) is the soft thresholding57

operator defined as58

Sκ(a) =


a− κ, if a > κ

0, if |a| ≤ κ

a+ κ, if a < −κ,

and x[β1=0,β2]
is the optimal solution of a generalized lasso problem which is updated59

until convergence by the following steps60
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(i) x(m+1) = (I + ρ′F TF )−1
[
Θ

(l)
Gk

+ U
(l)
k + ρ′F T (v(m) − t(m))

]
61

(ii) v(m+1) = Sβ2/ρ
′(Fx(m+1) + t(m))62

(iii) t(m+1) = t(m) + Fx(m+1) − v(m+1),63

where F is a matrix encoding all (linear) equality constraints, i.e.64

F =

 IQ −IQ 0QS 0QS 0QS 0QS 0QQ

0SQ 0SQ IS −IS 0SS 0SS 0SQ
0SQ 0SQ 0SS 0SS IS −IQS 0SQ


where I and O are respectively the identity and zero matrix, with S = Q(Q−1)/2. For65

more details, see (Boyd et al., 2011, Section 6.4.1 and 6.6) and Ranciati and Roverato66

(2023).67

S2. Additional details on the applications68

This section provide the numerical performance of fused graphical lasso compared to the69

classical graphical lasso method to the mixture of pdRCON models when the (true) mixture70

proportions of two sub-populations are w = (0.5, 0.5).71
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Figure S1: The quantile values of averaged Kullback-Leibler losses obtained from 100 repli-
cations of the graphical lasso method and fused graphical lasso (blue box-
plot) for the two-components pdRCON models with the mixture proportion
w = (0.5, 0.5). Subfigures (a), (b), and (c) show the results recorded for scenario
A, scenario B, and scenario C, respectively, of the generated concentrations.

References72

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed73

optimization and statistical learning via the alternating direction method of multipliers.74

Foundations and Trends® in Machine learning, 3(1):1–122, 2011. doi: https://doi.org/75

10.1561/2200000016.76

Saverio Ranciati and Alberto Roverato. On the application of Gaussian graphical models77

to paired data problems. arXiv preprint arXiv:2307.14160, 2023.78



Technical supplement

20

30

40

dense/dense dense/sparse sparse/sparse
symmetry density

||Θ
es

tim
at

e
−

Θ
tr

ue
|| F2

(a)

20

25

30

35

40

dense/dense dense/sparse sparse/sparse
symmetry density

||Θ
es

tim
at

e
−

Θ
tr

ue
|| F2

(b)

20

30

40

dense/sparse sparse/dense sparse/sparse
symmetry density

||Θ
es

tim
at

e
−

Θ
tr

ue
|| F2

(c)

Figure S2: The quantile values of Frobenius norm values of the difference between the true
and estimated concentration matrices for sub-population k = 1, obtain from the
graphical lasso (red boxplot) and fused graphical lasso method (blue boxplot).
Subfigures (a), (b), and (c) show the results recorded for scenario A, scenario B,
and scenario C, respectively, of the generated concentrations of two-component
pdRCON models with the mixture proportion w = (0.5, 0.5).
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Figure S3: The quantile values of Frobenius norm values of the difference between the true
and estimated concentration matrices for sub-population k = 2, obtain from the
graphical lasso (red boxplot) and fused graphical lasso method (blue boxplot).
Subfigures (a), (b), and (c) show the results recorded for scenario A, scenario B,
and scenario C, respectively, of the generated concentrations of two-component
pdRCON models with the mixture proportion w = (0.5, 0.5).
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