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Abstract
Online action detection aims to identify ongoing actions within
untrimmed video streams, with extensive applications in real-life
scenarios. However, in practical applications, video frames are re-
ceived sequentially over time and new action categories continually
emerge, giving rise to the challenge of catastrophic forgetting - a
problem that remains inadequately explored. Generally, in the field
of video understanding, researchers address catastrophic forgetting
through class-incremental learning. Nevertheless, online action
detection is based solely on historical observations, thus demand-
ing higher temporal modeling capabilities for class-incremental
learning methods. In this paper, we conceptualize this task as
Class-Incremental Online Action Detection (CIOAD) and propose
a novel framework, TS-ILM, to address it. Specifically, TS-ILM con-
sists of two components: task-level temporal pattern extractor and
temporal-sensitive exemplar selector. The former extracts the tem-
poral patterns of actions in different tasks and saves them, allowing
the data to be comprehensively observed on a temporal level before
it is input into the backbone. The latter selects a set of frames with
the highest causal relevance and minimum information redundancy
for subsequent replay, enabling the model to learn the temporal
information of previous tasks more effectively. We benchmark our
approach against SoTA class-incremental learning methods applied
in the image and video domains on THUMOS’14 and TVSeries
datasets. Our method outperforms the previous approaches.

CCS Concepts
• Computing methodologies → Activity recognition and un-
derstanding.
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3681456

Keywords
Online action detection, Class incremental learning

ACM Reference Format:
Xiaochen Li, Jian Cheng, Ziying Xia, Zichong Chen, Junhao Shi, Zhicheng
Dong, andNyima Tashi. 2024. TS-ILM:Class Incremental Learning for Online
Action Detection. In Proceedings of the 32nd ACM International Conference
on Multimedia (MM ’24), October 28–November 1, 2024, Melbourne, VIC,
Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3664647.3681456

1 Introduction
Online action detection (OAD) aims to identify ongoing actions in
video streams without foreknowledge of the future. This task holds
significant sway across various real-life applications, including
but not limited to autonomous driving [22, 24], video surveillance
[1, 20], and anomaly detection [34, 36]. Researchers in related fields
have also devised numerous efficacious solutions to tackle this
challenge [8, 9, 13, 14, 28].

However, video frames are received sequentially over time in
most real-world scenarios, and new action categories continually
emerge. Constrained by memory and privacy considerations, the
model can only access the current data, with previously observed
classes being unavailable or partially accessible. Under these cir-
cumstances, a straightforward resolution is to fine-tune the mode
sequentially, enabling the model to assimilate knowledge from
the continuously arriving new data and categories. Nevertheless,
this approach may result in the model overfitting to the current
categories, leading to a marked decline in the recognition capabil-
ities for previously learned categories (a phenomenon known as
catastrophic forgetting [32]). This adverse characteristic has cat-
alyzed extensive research within the domain of continual learning
[2, 26, 44, 56]. Our focus lies on a specific variant of continual
learning, Class-Incremental Learning (CIL), wherein labels across
tasks are mutually exclusive, and the model lacks access to task IDs
during inference. Prior works have delved into the CIL paradigm
within the context of video domains [4, 37, 39, 40, 51, 52, 61], with
these studies predominantly focused on scenarios where the model
has the capacity to observe the entire video at any given moment.
In contrast, the challenge of OAD rests on the reliance solely on
historical observations without the possibility of accessing future
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Figure 1: Illustration of CIOAD. Themodel assimilates knowl-
edge from the newly acquired data at each incremental step.
Concurrently, it is imperative that the model sustains its
ability to recognize previously encountered data.

video frames. This restriction places a more significant demand
on the model’s capacity for long-duration modeling and causal
reasoning and leads to an exacerbated occurrence of catastrophic
forgetting. This paper first presents this problem and designates it
as Class-Incremental Online Action Detection (CIOAD) (as shown
in Figure 1).

Within the setup of CIL, previous methodologies have primarily
tackled the issue of forgetting through two strategies [7, 46, 57]:
(1) preserving old knowledge whilst acquiring new information,
which typically involves limited expansion of the network archi-
tecture, and (2) employing a restrained memory budget to select
and store representative samples from old classes for rehearsal.
However, prior approaches tend to disrupt temporal relations to a
certain extent by storing additional frames, which mitigates their
effectiveness in CIOAD (as illustrated in Figure 2). To address these
issues, we introduce a Time-sensitive Incremental Learning Method
(TS-ILM). This method is comprised of two components: Task-Level
Temporal Pattern Extractor (TPE) and Temporal-Sensitive Exemplar
Selector (TES).

First, given that each action has a different temporal pattern, the
backbone network might only concentrate on the temporal patterns
of the action class of the current task during training, inadvertently
overlooking those from past tasks. This could result in the network
developing a temporal bias, leading to a decline in its performance
on previous tasks. In response to this challenge, we propose the
TPE, engineered to extract and preserve the temporal patterns of
actions across different tasks, thereby facilitating an exhaustive
temporal assessment of data prior to its entry into the backbone
network.

Second, video streams are composed of a sequence of background
and action frames, among which there exists a simultaneous exis-
tence of causality and information redundancy. The selection of
exemplary representative samples is paramount [6, 23]. To address
this, we propose TES to select and preserve a set of frames that
maximize causal relationships while minimizing information re-
dundancy on the temporal level, allowing the network to more
effectively learn temporal information from previous category sam-
ples during exemplar replays.

(a) (b) (c)

Figure 2: Comparision between TS-ILM and the SoTA CIL
methods applied in video domains: (a) Comparision of the
performance at each incremental step; (b) Comparision of
the average performance; (c) Comparision of the memory
loss on THUMOS’14 with 20 steps. The results indicate that
existing methods cannot effectively solve the CIOAD task.

To obtain a more compelling evaluation, we apply state-of-the-
art CIL methodologies from the image and video domains to this
task, establishing a baseline for the CIOAD challenge and con-
trasting our approach with them. We adapted the THUMOS’14
and TVSeries datasets—both frequently employed for OAD task
evaluations—to align with the CIL settings. Subsequent thorough
evaluations across various configurations on these adapted datasets
demonstrate the effectiveness of the proposed framework.

The contributions of this paper can be summarized as follows:

• We observe that models designed for OAD experience cata-
strophic forgetting seriously when actually deployed. Fur-
thermore, due to the task’s need for strong temporal mod-
eling, CIL methods applied in video domains fail to address
the problem adequately. We are the first to propose this issue
and name it Class-Incremental Online Action Detection.

• We propose a novel method named TS-ILM to tackle the
new task. Specifically, it comprises two critical components:
TPE and TES. The former extracts and preserves temporal
patterns of actions corresponding to different tasks, while the
latter selects a set of frames with maximal causal relevance
and minimal information redundancy for subsequent replay.

• We benchmark our approach against SOTA CIL approaches
applied in the image and video domains on two widely used
OAD datasets that comply with the CIL settings. Our method
significantly outperforms the previous approaches.

2 Related Work
In this section, we present methods related to CIOAD, which cover
image class-incremental learning, video class-incremental learning,
and online action detection.
2.1 Image Class-Incremental Learning
The problem of class-incremental learning has received widespread
research attention in recent years and has been extensively ap-
plied within the image domain [10, 31, 35]. For image classification,
current methods can be broadly divided into three categories: pa-
rameter isolation methods, regularization methods, and rehearsal
methods. Parameter isolation methods alleviate catastrophic for-
getting by segregating the parameter space of the neural network.
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Some of these approaches dynamically change the network architec-
ture to adapt to new information [3, 12, 45], while others implement
parameter isolation by masking individual parameters or layers
[29, 30]. Rehearsal methods typically involve the preservation of a
representative subset of original training data [41, 44, 54, 56] or the
use of generative models to emulate the training data of previous
tasks [33, 47, 60]. These examples are subsequently used as supple-
mentary data to guide the model while training new tasks, thus
mitigating catastrophic forgetting to some extent. The methods
based on regularization attempt to protect old knowledge from
being overwritten by new knowledge by penalizing drastic changes
in the weights related to previous tasks. Among these methods,
some measure the importance of each parameter in the network
and regularize the weights [2, 26, 27], while others focus on using
regularization terms to avoid forgetting the feature representations
of previous tasks [43, 49].

2.2 Video Class-Incremental Learning
Recentworks have started to explore the problem of class-incremental
learning within the video domain. [61] mitigates catastrophic for-
getting by decomposing and transferring spatiotemporal knowl-
edge. TCD [37] identifies the most contributory channel subsets
within feature maps through an importance mask. vCLIMB [52]
introduces a temporal consistency regularization to diminish the
influence of subsampled instances on the model. FrameMaker [39]
compresses videos into a single frame to conserve memory. SMILE
[4] posits that in class-incremental learning tasks for action recog-
nition, storing a single frame per video to ensure sample diversity is
more efficacious than retaining the temporal information of whole
videos. However, within CIOAD tasks, we are required to perform
frame-by-frame recognition of actions in untrimmed videos with-
out prior knowledge of future information, which demands greater
temporal precision compared to the recognition of actions in pre-
trimmed videos. TS-ILM enhances performance by extracting and
saving temporal modalities of actions from various tasks, as well as
by choosing and saving downsampled videos that demonstrate the
strongest causal relationships and the least information redundancy
on a temporal level.

2.3 Online Action Detection
Distinct from action recognition tasks with the luxury of observing
entire videos, the objective of OAD tasks is to identify the class
of the current frame without foresight. Hence, researchers con-
centrate on employing robust temporal modeling to address this
conundrum. TRN [58] employs the latent states of LSTM [15] to
model the historical and contextual relationships of videos in order
to predict future actions and detect current actions via the temporal
correlation between future and current actions. OadTR [55] lever-
ages the long sequence modeling capability of Transformers [50]
to capture historical data while concurrently modeling extensive
global temporal information, thereby forecasting future contexts
to identify the present action. LSTR [59] has instituted a mecha-
nism for long-term and short-termmemory for protracted sequence
data, enabling the analysis of more historical video content. HCM
[28] identifies the suitable division between action and background
clips through deep metric learning [21], thus distinguishing action
frames from the background ones better. Although researchers have

proposed many solutions for the OAD task, how to address the cat-
astrophic forgetting issue that arises in practical applications due
to the continuous influx of data has not yet been actively explored.

3 Method
In this section, we first illustrate the formulation of CIOAD (Sec. 3.1),
and then outline the framework of TS-ILM in Sec. 3.2. Following this,
we propose the Task-Level Temporal Pattern Extractor (Sec. 3.3) to
ensure a comprehensive temporal-level observation of data before
it is input into the backbone network. Concurrently, we introduce
the Temporal-Sensitive Exemplar Selector (Sec. 3.4) to select a set
of frames that have the most significant temporal causality and
minimal information redundancy for example replay. Finally, in
(Sec. 3.5), we thoroughly detail the specifics of using TS-ILM for
class incremental training.

3.1 Problem Formulation
Similar to vCLIMB benchmark [52], CIOAD requires the training of
a neural network 𝑓Θ : 𝑋 → 𝑌 , which is moderated by the parameter
Θ. The network’s objective is to discern the class 𝑦0 of the current
frame 𝑥0 within video stream 𝑥 = [𝑥𝑡 ]0𝑡=−𝑇+1, where x𝑖 ∈ 𝑋 and
y𝑖 ∈ 𝑌 ∀𝑖 ,in the case that future frames 𝑥1, 𝑥2, ..., are not accessible.
The parameter Θ of the model is learned from a sequence of m
tasks, collectively referred to as

{
T 1,T 2, . . . ,T𝑘 , . . . ,T𝑚

}
, where

each T𝑘 is associated with a unique dataset𝐷𝑘 =
{
𝑉𝑘
1 ,𝑉

𝑘
2 , . . . ,𝑉

𝑘
𝑛

}
.

These datasets are composed of untrimmed videos𝑉𝑘
𝑖
, which incor-

porate a series of frames
{(
𝑥𝑘
𝑖1
, 𝑦𝑘

𝑖1

)
,

(
𝑥𝑘
𝑖2
, 𝑦𝑘

𝑖2

)
, . . . ,

(
𝑥𝑘
𝑖𝑇
, 𝑦𝑘

𝑖𝑇

)}
,where

𝑦𝑘
𝑖𝑛

∈ {0}⋃ {
𝐶𝑘
1 , . . . ,𝐶

𝑘
𝑞−1

}
⊂ 𝑌 . Herein, label 0 reflects a quies-

cent background class devoid of action, whereas
{
𝐶𝑘
1 , . . . ,𝐶

𝑘
𝑞−1

}
corresponds to the specific action categories germane to the extant
task and 𝑞 represents the number of categories in the task. It is
worth emphasizing that in this arrangement, the action categories
for each task do not overlap.

3.2 Overview
Figure 3 illustrates the overall framework of our method. In in-
cremental step 𝑘 , given an input video 𝑉𝑘

𝑖
∈ 𝐷𝑘 , following the

convention [28, 55, 59], we first use the temporal feature extractor
to extract the motion information of video frames, which are then
concatenated with the appearance information extracted by the
spatial feature extractor to form the feature sequence 𝐹𝑘

𝑖
∈ R𝑇×𝐷 .

Then, we input the feature sequence into Task-Level Temporal Pat-
tern Extractor(Sec. 3.3) to ensure it is thoroughly observed on a
temporal level before entering the backbone network, avoiding tem-
poral attention bias. Afterward, we input the output 𝑋𝑘

𝑖
∈ R𝑇×𝐷

from the Task-Level Temporal Pattern Extractor into the backbone
to identify the action of the current frame.

After incremental step k, given a video 𝑉𝑘
𝑗
∈ 𝐷𝑘 , we utilize the

Temporal-Sensitive Exemplar Selector (Sec. 3.4) at a specific ratio
to filter out a set of frames 𝑉𝑘 ′′

𝑗
to be stored in memory bank𝑀𝑘 .

This set of frames maximizes causal relationships on the temporal
level and minimizes information redundancy. Replaying exemplars
from𝑀𝑘 in subsequent incremental steps allows the model to better
learn the temporal information of previous tasks.
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Figure 3: An overview of the proposed TS-ILM. At each training section, we extract the temporal patterns associated with each
task through the self-attention layers that belong to the respective task. The features enhanced through different patterns
are then weighted and summed before being added to the original features and fed into the backbone. After training, we use
the herding strategy to roughly filter out representative frames. Then, we measure the distance between frames using the
inter-class distance and intra-class distance and employ a Minimum Frame Distance Selector to filter and save the set of frames
with the smallest total distance for subsequent replay.

3.3 Task-Level Temporal Pattern Extractor
To prevent catastrophic forgetting, we extract the unique temporal
information of each task through the Task-Level Temporal Pat-
tern Extractor (TPE) and preserve it for use during the training of
subsequent tasks. This enables videos to be thoroughly observed
on a temporal level before they are put into the backbone net-
work. Formally, for each task T𝑘 , we design a self-attention layer
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘 (𝐹𝑘

𝑖
;𝜑𝑘 ) , which is a Standard Self-Attention layer[50],

regulated by a weight matrix 𝜑𝑘 . This layer is deployed to identify
which temporal segments should be paid more attention to within
this task. Given the feature sequence 𝐹𝑘

𝑖
extracted from 𝑉𝑘

𝑖
∈ 𝐷𝑘 ,

the output after passing through the self-attention layer associated
with the task 𝑘 can be elucidated as follows:

𝐼 𝑖
𝑘
= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘 (𝐹 𝑖

𝑘
;𝜑𝑘 ) ∈ R𝑇×𝐷 (1)

where 𝐼𝑘
𝑖
represents the output of 𝑘-th self-attention layer, 𝐹𝑘

𝑖
∈

R𝑇×𝐷 denotes the input feature sequence, 𝑇 is the length of the
feature sequence, and 𝐷 corresponds to the dimension of each
feature. After the training of T𝑘 is completed, the parameters of
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘 are frozen. Subsequently, a new self-attention layer
with adjustable parameters is set to focus on the temporal infor-
mation of the forthcoming task. In addition, we define a learnable
weight for each self-attention layer to integrate the features output
from each self-attention layer. This integration allows the fused

feature to encompass the temporal modalities of various tasks com-
prehensively. The sequence of weights up to T𝑘 is denoted by
𝑊 = {𝜔1, 𝜔2, . . . 𝜔𝑘 }, and the integrated feature sequence can be
calculated as follows:

𝐻𝑘
𝑖 =

𝑘∑︁
𝑗=1

𝑒𝜔 𝑗∑𝑘
𝑗=1 𝑒

𝜔 𝑗

𝐼
𝑗
𝑖
∈ R𝑇×𝐷 (2)

To circumvent interference with previously preserved informa-
tion by the temporal modalities of subsequent tasks during training,
we introduce a regularization term designed to penalize changes in
the weight parameters of self-attention layers from prior tasks:

L𝑘
𝑟𝑒𝑔 =

𝑘−1∑︁
𝑗=1

𝜔𝑘
𝑗 − 𝜔𝑘−1

𝑗

2
𝐹

(3)

where 𝜔𝑘
𝑗
represents the weight parameters of the self-attention

layer for task 𝑗 at the incremental training step 𝑘 , and | | · | | de-
notes ℓ2-normalization. Following the inspiration from [16], we
employ a method of residual summation to amalgamate the inte-
grated features with the original features. This process enhances
the representation capability of the features and improves training
stability. Subsequently, we normalize to generate the final feature
𝑋𝑘
𝑖
, which is then input into the backbone network. Generally, this

process can be formulated as follows:
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𝑋𝑘
𝑖 = Norm

(
𝐹𝑘𝑖 + 𝐻𝑘

𝑖

)
∈ R𝑇×𝐷 (4)

We can learn an effective feature representation that integrates
the temporal modalities of past tasks and the current task. This
allows a comprehensive observation of the video before it is input
into the backbone network.

3.4 Temporal-Sensitive Exemplar Selector
In addition, untrimmed videos contain both background frames
and action frames. There might be a dense overlap of informa-
tion between successive frames of the same type, which leads to
a significant amount of redundant information. If we store these
frames simultaneously, it cannot make effective use of the replay
memory. Meanwhile, there exists a strong causal relationship in
transitions between adjacent frames of different types, such as from
background to action or from action to the background, which
also contains a substantial amount of information. Therefore, we
utilize the Temporal-Sensitive Exemplar Selector (TES) to maxi-
mize the temporal causality between frames of stored videos while
simultaneously minimizing their informational redundancy. This
enables the network to better learn the temporal information of past
category samples through a replay mechanism. Formally, Given a
video 𝑉𝑘

𝑗
∈ 𝐷𝑘 ∀𝑗 after incremental step 𝑘 , we classify each frame

into two collections based on their labels: action frames set 𝐴𝑘
𝑗
and

background frames set 𝐵𝑘
𝑗
, where all frames in 𝐴𝑘

𝑗
have non-zero

labels, and all frames in 𝐵𝑘
𝑗
have labels of zero. At a considerable

ratio 𝛼 , we select respective representative subsets of frames for𝐴𝑘
𝑗

and 𝐵𝑘
𝑗
using the herding strategy [44], and arrange them in their

original temporal sequence 𝑉𝑘 ′
𝑗

=

{
𝑣𝑘

′
𝑗1
, 𝑣𝑘

′
𝑗2
, . . . , 𝑣𝑘

′
𝑗 (𝑎+𝑏)×𝛼

}
to form

a temporally downsampled version of 𝑉𝑘
𝑗
, where 𝑎 and 𝑏 represent

the number of frames of 𝐴𝑘
𝑗
and 𝐵𝑘

𝑗
respectively. Afterwards, we

will further refine the selection on𝑉𝑘 ′
𝑗

to ensure that the ultimately
selected frames have a strong temporal association. Specifically, we
have defined the inter-class distance as:

𝐷𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑎𝑠𝑠
(
𝑣𝑘

′
𝑗𝑛
, 𝑣𝑘

′
𝑗𝑚

)
=

𝑣𝑘 ′
𝑗𝑛
− 𝑣𝑘

′
𝑗𝑚

2
𝐹

(5)

where 𝑣𝑘
′

𝑗𝑛
and 𝑣𝑘

′
𝑗𝑚

are of the same class, that is, both are either back-
ground frames or action frames, and | |·| | represents ℓ2-normalization.
In addition, we define the intra-class distance as:

𝐷𝑖𝑛𝑡𝑟𝑎−𝑐𝑙𝑎𝑠𝑠
(
𝑣𝑘

′
𝑗𝑛
, 𝑣𝑘

′
𝑗𝑚

)
= 𝐹max −

𝑣𝑘 ′
𝑗𝑛
− 𝑣𝑘

′
𝑗𝑚

2
𝐹

(6)

where 𝑣𝑘
′

𝑗𝑛
and 𝑣𝑘

′
𝑗𝑚

are of different classes, meaning one frame is
a background frame and the other one is an action frame, | | · | |
represents ℓ2-normalization and 𝐹𝑚𝑎𝑥 represents the maximum ℓ2-
normalization between frames. Then, at a ratio 𝛽 , we use the Prim
algorithm [42] to select a set of frames 𝑉𝑘 ′′

𝑗
with the minimum dis-

tance from 𝑉𝑘 ′
𝑗
for storage to replay in subsequent training. Frames

of the same class in this set are spatially the farthest apart and
contain the maximal amount of diverse information, thus maximiz-
ing the total information content of the frame subset. Meanwhile,

frames of different classes are spatially the closest, and the correla-
tion between the background frame and the action frame achieves
its best, thereby strengthening the causal relationship between
frames.

3.5 Training and inference
During the training of incremental step 𝑘 , we use dataset 𝐷′𝑘 =

𝐷𝑘 ⋃𝑀1:(𝑘−1) to update model 𝑓𝜃𝑘−1 , where 𝐷
𝑘 is the dataset for

T𝑘 , consisting of untrimmed videos that belong to 𝐿𝑘 .𝑀1:(𝑘−1) is
the memory bank, which is composed of the temporally downsam-
pled videos selected by TES from 𝐿1 to 𝐿𝑘−1, where 𝐿𝑘 represents
the collection of untrimmed videos that belong to the k task, assist-
ing the model in learning the temporal information from previous
tasks better. Moreover, during the training of incremental step 𝑘 ,
only the parameters of 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘 in the TPE are adjustable, while
all other parameters of the self-attention layers remain frozen, with
gradients set to zero. In addition, the final objective function for
T𝑘 is formally defined as:

𝐿𝑘
𝑓 𝑖𝑛𝑎𝑙

= 𝐿𝐷
𝑘

𝑐𝑒 + 𝛾𝐿𝑀
1:𝑘

𝑐𝑒 + 𝜂𝐿𝑘𝑟𝑒𝑔 (7)

where 𝐿𝐷
𝑘

𝑐𝑒 and 𝐿𝑀
1:𝑘

𝑐𝑒 respectively represent the cross-entropy loss
from the training of samples for the new task data 𝐷𝑘 and the
samples from the memory bank𝑀1:𝑘 , 𝐿𝑘𝑟𝑒𝑔 is the regularization loss
on weights in the TPE module, and 𝛾 and 𝜂 are weights used to
balance the different loss terms.

During inference, for each new video, we first use the temporal
feature extractor to extract motion information from the video
frames. Then, we concatenate it with the appearance information
extracted by the spatial feature extractor to form a feature sequence.
Subsequently, we input the feature sequence into the TPEmodule to
ensure a thorough observation at the temporal level before entering
the backbone, to avoid temporal attention bias. After that, we input
the output of the TPE into the backbone to recognize the action in
the current frame.

4 Experiments
In this section, we apply state-of-the-art CIL methods from the
image and video domains to this task, constructing a baseline for
the CIOAD task and comparing our method against them. We also
present ablation experiments demonstrating the effectiveness of
different components and analyze the results under different prac-
tical designs. Finally, we analyze the generalization ability of the
model and conducted a qualitative analysis of its performance.

4.1 Experiment setup
DatasetsWe evaluate our model on two publicly available datasets,
which are the standardOADdatasets: THUMOS’14 [18] and TVSeries
[9]. The THUMOS’14 dataset consists of a training set, a test set,
and a validation set, containing background frames and 20 types
of action frames. We use its validation set for training and its test-
ing set for evaluation. The TVSeries dataset is composed of 27
untrimmed long videos with actions labeled under 30 categories,
with the remaining parts corresponding to the background class.
Following the conventions [5, 55], we select 20 videos for training
and use the remaining 7 for evaluation.
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Table 1: Comparison with the state-of-the-art approaches over online action detection class-incremental performance on
THUMOS’14 and TVSeries. Our TS-ILM achieves the best performance under all experimental settings. The bold-faced numbers
indicate the best performance.

Model
THUMOS’14 TVSeries

Mem. Frame
Instances(G)

10 Tasks 20 Tasks Mem. Video
Instances(G)

10 Tasks 30 Tasks

mAP ↑ Forget ↓ mAP ↑ Forget ↓ cAP ↑ Forget ↓ cAP ↑ Forget ↓
Finetuning None 41.27% 68.53% 32.76% 74.05% None 71.18% 21.02% 63.85% 25.73%

MAS None 30.05% 84.37% 34.07% 70.20% None 76.59% 14.44% 65.92% 31.95%
EWC None 46.95% 55.89% 36.14% 64.82% None 75.78% 12.75% 65.50% 33.09%

iCaRL 0.20 44.01% 65.32% 39.97% 58.49% 0.17 75.23% 18.13% 65.58% 27.02%
BiC 0.20 46.42% 54.74% 42.07% 52.92% 0.17 75.51% 16.40% 66.32% 24.56%

vCLIMB(iCaRL+TC) 0.20 46.88% 60.85% 40.56% 59.91% 0.17 75.54% 16.50% 65.71% 26.29%
vCLIMB(BiC+TC) 0.20 48.06% 51.75% 42.49% 52.16% 0.17 73.88% 17.89% 66.17% 23.41%

TCD 0.20 47.83% 55.45% 43.34% 47.80% 0.17 72.79% 19.24% 66.09% 25.48%

TS-ILM(ours) 0.20 54.03% 33.13% 50.42% 24.85% 0.17 77.26% 13.63% 68.51% 21.46%

Upper bound 4.08 73.38% - 73.38% - 3.45 84.99% - 84.99% -

Figure 4: The performance of various methods on THU-
MOS’14 with 10 steps at each incremental step. In most incre-
mental steps, TS-ILM achieved higher accuracy, indicating
its strong capability to preserve past knowledge.

Benchmark We follow the basic guidelines of CIL [11, 17], and in
line with the setup for background in object detection incremental
learning [48], we divide the OAD dataset into settings conforming
to CIL and establish a benchmark. Specifically, for the training
set, we consider action frames not belonging to the current task’s
categories as background frames and discard untrimmed videos
that only consist of background frames, which are not used in the
training of the current task. For the test set, we keep frames of all
action categories that have appeared up to the current task and
consider other frames as background frames. For the THUMOS’14
dataset, we split the 20 action categories into 10 and 20 tasks. For
the TVSeries dataset, we split the 30 action categories into 10 and
30 tasks. Training and evaluation were conducted across all four
scenarios.
Evaluation Protocal Following the OAD task conventions [28, 55],
we assess the single incremental step of the THUMOS’14 and
TVSeries datasets using per-frame mean average precision (mAP)

Table 2: The results of using different networks as the back-
bone on THUMOS’14 with 10 steps.

Model Backbone mAP ↑ Forget ↓

iCaRL LSTR 44.01% 65.32%
BiC LSTR 46.42% 54.74%

TS-ILM(ours) LSTR 54.03% 33.13%

iCaRL TRN 27.76% 67.21%
BiC TRN 28.83% 71.82%

TS-ILM(ours) TRN 31.64% 49.10%

iCaRL OadTR 39.40% 66.44%
BiC OadTR 38.91% 60.46%

TS-ILM(ours) OadTR 45.40% 44.60%

Table 3: Ablations for Task-Level Temporal Pattern Extractor
(TPE) and Temporal-Sensitive Exemplar Selector (TES) on
THUMOS’14 with 10 steps and TVSeries with 10 steps.

THUMOS’14 TVSeries

TPE TES mAP ↑ Forget ↓ cAP ↑ Forget ↓
✗ ✗ 41.27% 68.53% 71.18% 21.02%
✓ ✗ 43.71% 60.33% 72.70% 19.20%
✗ ✓ 52.84% 34.73% 76.31% 13.25%
✓ ✓ 54.03% 33.13% 77.26% 11.71%

and per-frame mean calibrated average precision (cAP) [9], respec-
tively. The calibrated average precision can be formulated as:

𝑐𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑤

(8)

𝑐𝐴𝑃 =

∑
𝑡 𝑐𝑃𝑟𝑒𝑐 (𝑡) × 𝐼 (𝑡)∑

𝑇𝑃
(9)
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Table 4: Ablations for memory budget on THUMOS’14 with 10 steps and TVSeries with 10 steps.

Model
THUMOS’14 TVSeries

Mem. Frame
Instances(G) mAP ↑ Forget ↓ Mem. Frame

Instances(G) cAP ↑ Forget ↓

iCaRL 0.12 42.04% 70.13% 0.10 74.31% 18.44%
BiC 0.12 44.03% 58.92% 0.10 74.68% 18.53%

TS-ILM(ours) 0.12 47.74% 51.51% 0.10 75.76% 14.87%

iCaRL 0.20 44.01% 65.32% 0.17 75.23% 18.13%
BiC 0.20 46.42% 54.74% 0.17 75.51% 16.40%

TS-ILM(ours) 0.20 54.03% 33.13% 0.17 77.26% 11.71%

iCaRL 0.41 45.41% 62.13% 0.35 75.61% 17.80%
BiC 0.41 47.66% 54.61% 0.35 77.12% 17.60%

TS-ILM(ours) 0.41 56.73% 27.44% 0.35 79.37% 10.31%

where 𝐼 (𝑡) is equal to 1 if frame 𝑡 is 𝑇𝑃 . The coefficient 𝑤 is the
ratio between negative and positive frames. After each incremental
step, we evaluate the model on all seen classes and assess the THU-
MOS’14 and TVSeries datasets separately through the average mAP
and average cAP across all tasks (denoted by “mAP” and “cAP”). In
addition, we follow [61] and report the rate of forgetting during the
incremental process and the memory overhead of the saved sample
frames (denoted by “Forget” and “Mem. Frame Instances(G)”).
Implementation Details TS-ILM was implemented on PyTorch
[38] using Nvidia RTX 3090 during the training and testing phases.
LSTR [59] is used as our backbone, and we follow LSTR’s data pre-
processing process. For feature extractors, We employ a two-stream
network [53] pretrained on TSN-kinetics [5], where ResNet-50 [16]
and BN-Inception [19] were used for spatial and temporal subnet-
works respectively. To learn the model weights, we use an Adam
optimizer with a weight decay of 5 × 105 [25]. Each incremental
step in the training phase lasts 25 epochs with a batch size of 16.
For a fair comparison, the training settings for all methods and
backbone are the same, with the loss weight 𝛾 and 𝜂 set to 0.95 and
0.45, respectively.

4.2 Main Results
This section delineates the comparative assessment of our proposed
TS-ILM against existing class incremental learning methods applied
in the image and video domains under multiple challenging settings
on two datasets. Specifically, We test the regularization methods
MAS [2] and EWC [26], exemplar replay techniques iCaRL [44]
and BiC [56] in the image domain, and the class-incremental learn-
ing approaches vCLIMB [52] and TCD [37] in the video domain,
adapting all of these methods to the CIOAD task setting. For fair
comparisons, all methods use the same feature extractor and back-
bone, with the exemplar replay methods using the same exemplar
memory.

Table 1 reports the performance of various methods under differ-
ent settings on the THUMOS’14 and TVSeries datasets, from which
we can draw the following conclusions. First, TS-ILM significantly
outperforms the other methods, particularly in the 20-task setting
on the THUMOS’14 dataset, with the mAP increase of over SOTA
by 7.08 %while reducing the forgetting rate by 22.95%, substantially
mitigating the catastrophic forgetting issue in OAD tasks. Second,

Table 5: Ablations for regularization loss on THUMOS’14
with 10 steps and TVSeries with 10 steps.

Regularization loss THUMOS’14 TVSereis

mAP ↑ Forget ↓ cAP ↑ Forget ↓
✗ 51.78% 35.98% 74.20% 19.86%
✓ 54.03% 33.13% 77.26% 11.71%

Table 6: Ablations for each component in TES on THUMOS’14
with 10 steps and TVSeries with 10 steps.

Herding Stategy Minimun Distanse
Selector

THUMOS’14 TVSeries

mAP ↑ Forget ↓ cAP ↑ Forget ↓
✗ ✗ 42.23% 67.26% 72.65% 19.52%
✓ ✗ 45.13% 63.03% 75.90% 15.67%
✗ ✓ 49.75% 45.59% 74.98% 17.13%
✓ ✓ 54.03% 33.13% 77.26% 11.71%

we find that the catastrophic forgetting on the THUMOS’14 dataset
is generally more severe than on TVSeries, which we speculate is
due to its more complex action patterns and greater likelihood of
confusion between actions. Third, we observe that on the TVSeries
dataset, storing only 5% of the data, our method reached 90.91% of
the performance of joint training, i.e., the upper bound, indicating
that our method utilizes replay memory effectively and significantly
reduces the demand for memory capacity.

Figure 4 shows the performance of various models at each incre-
mental step. TS-ILM achieves higher accuracy in most incremental
steps, indicating its robust capability to preserve past knowledge.

4.3 Generalization
The proposed method specifically focuses on the issue of cata-
strophic forgetting that occurs during the continual learning pro-
cess and is agnostic to the type of backbone, thus allowing TS-ILM
to be easily integrated into any OAD method. We evaluate the gen-
eralization ability of TS-ILM using three different backbones, as
shown in Table 2. The results indicate that across the three different
backbones, the performance of our method consistently surpasses
that of other class-incremental learning methods,demonstrating
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Figure 5: Qualitative analysis of the different combinations
of the two components of the proposed TS-ILM method. The
bars in different colors represent the true categories, while
the lines indicate the action scores of the method.

that the superior performance of TS-ILM on CIOAD tasks is inde-
pendent of the backbone category, evidencing robust generalization
capabilities.

4.4 Ablation Study
Effect of each component To demonstrate the effectiveness of
the Task-Level Temporal Pattern Extractor (TPE) and Temporal-
Sensitive Exemplar Selector (TES), we conducted experiments to
test various combinations of these two modules on the THUMOS’14
and TVSeries datasets. The experimental results for each combina-
tion are presented in Table 3, which indicates that each introduced
component contributes positively to the performance, and their
amalgamation yields the best performance.
Effect of memory size To substantiate the robustness of TS-ILM
in memory consumption, we assessed the performance of vari-
ous methods under different memory capacities on two datasets,
with the results delineated in Table 4. It is observable that on the
THUMOS’14 dataset, our TS-ILM incurs merely 0.12GB of memory
expenditure, which is comparable to the performance of BiC [56]
that utilizes 0.41GB, thereby economizing 70.7% of memory under
equivalent performance metrics. This underlines the efficient uti-
lization of memory by our method. Additionally, the table reveals
that regardless of the memory budget, TS-ILM consistently sur-
passes other methodologies, indicating its outstanding capability
to counteract catastrophic forgetting.
Effect of regularization loss As discussed in Section 3.3, within
the TPE module, we define a learnable weight for the self-attention
layer associated with each task, denoted by𝜔 , and introduce a regu-
larization loss 𝐿𝑟𝑒𝑔 to penalize variations in the weight parameters
of the self-attention layers that pertain to prior tasks. To evaluate
the efficacy of this loss, we assessed performance with and without
the loss on two datasets, as shown in Table 5. The results indicate
that this additional loss has led to performance gains of 2.25% on
THUMOS’14 and 3.06% on TVSeries, while the forgetting rate de-
creased by 2.85% and 8.15% respectively. These findings suggest
that this loss function can effectively preserve information from
past actions and mitigate catastrophic forgetting.
Effect of each component in TES As described in Section. 3.4,
our TES module can be roughly decomposed into two components:
initially, frames are coarsely filtered using the herding strategy [44],
and then further refined and stored through Minimum Distance
Selector. Table 6 enumerates the results of testing different combi-
nations of the two parts of TES on two datasets. It is noteworthy

Figure 6: Attention visualization maps. It demonstrates how
the self-attention heads, belonging to different tasks, focus
differently on the temporal dimension. The colorbar indi-
cates the degree of attention to time.
that the tests were conducted with the same memory budget and
that a random sampling strategy was employed to select the frames
to be saved when both components were disabled. The findings
corroborate that each component individually contributes to per-
formance improvement, and their conjunctive application leads to
superior performance outcomes.

4.5 Qualitative Analysis
Visualization of action scores Figure 5 visualizes video clips and
their corresponding action scores. These action scores were inferred
from videos in the dataset of the 10-th task after training on 10 tasks
on THUMOS’14. The category "Javelin Throw" displayed in the
figure is part of the training set of the 7-th task and did not appear
in subsequent training. The results indicate that both components
of our proposed TS-ILM, as well as their combination, significantly
enhance the model’s ability to remember previous action categories,
effectively overcoming the issue of catastrophic forgetting.
Visualization of self-attention layers in TPE As detailed in
Section 3.3, within the TPE module, we integrate a self-attention
layer for each task to memorize its temporal action patterns. Figure
6 displays the visualized results of the self-attention layers for
different tasks, where higher values indicate greater attention by
the self-attention layer at that specific time. The results suggest
that the focus of self-attention layers varies across different tasks.
Integrating these observations can effectively prevent biases in the
backbone of the temporal dimension caused by discrepancies in the
categories of actions in different tasks.

5 Conclusion
In this paper, we introduce the novel task of Class-Incremental
Online Action Detection and propose an innovative framework
to address this challenge. Specifically, our framework comprises
two key components. The first one extracts and saves the temporal
patterns of divergent actions in different tasks, allowing for a com-
prehensive temporal analysis before the data enters the backbone
network. The second one selects a set of frames that maximize
temporal causality and minimize information redundancy for sub-
sequent replay, enabling the model to learn the temporal informa-
tion of previous tasks better. Finally, we establish a benchmark for
this task and conduct a thorough evaluation of our approach in
comparison to state-of-the-art class-incremental learning methods
previously applied in the image and video domains, demonstrating
the effectiveness of our method.
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