
Sparse Quadratic Optimisation over the
Stiefel Manifold with Application to

Permutation Synchronisation

Florian Bernard
TU Munich, University of Bonn

Daniel Cremers
TU Munich

Johan Thunberg
Halmstad University

A Proofs

Proof of Lemma 1

Proof. If the matrix W is not symmetric, we can split W into the sum of a symmetric part Ws

and skew-symmetric part Wa. It holds that tr(UTWaU) = 1
2 tr(UTWaU) + 1

2 tr(UTWT
a U) =

1
2 tr(UTWaU) − 1

2 tr(UTWaU) = 0. Further, if Ws is not positive semidefinite, we can shift its
eigenvalues via Ws−λmIm = W̃ to make it p.s.d. Since α tr(UT ImU) = αd is constant for any
scalar α, the term λmIm does not affect the optimisers of Problem (1). Thus, we can replace W in (1)
by the p.s.d. matrix W̃ without affecting the optimisers.

Proof of Lemma 2

Proof. Consider the eigenvalue decomposition (Λ, V) of W , i.e. W = V ΛV T , where Λ =
diag(λ1, . . . , λm) contains the decreasingly ordered (nonnegative) eigenvalues on its diagonal
and V ∈ St(m,m). Consider the matrix U ∈ St(m, d), which can be written as the product
of V and another matrix R ∈ St(m, d), i.e., U = V R. So, instead of optimising over U , we
can optimise over R. Let the i-th row of R be denoted as ri for i = 1, 2, . . . ,m. It holds that
tr(UTWU) = tr(RT ΛR) =

∑m
i=1 λi‖ri‖22. Thus, an equivalent formulation of Problem (1) is the

optimisation problem

max
R=[rT1 ,rT2 ,...,rTm]T∈St(m,d)

m∑
i=1

λi‖ri‖22. (A10)

We observe that 0 ≤ ‖ri‖22 ≤ 1, and that
∑m

i=1 ‖ri‖22 = tr(RRT) = tr(RTR) = d. Hence, a
relaxation to (A10) is given by

max
p∈Rm

m∑
i=1

λipi, (A11)

s.t. 0 ≤ pi ≤ 1, (A12)
m∑
i=1

pi = d. (A13)

This is a linear programming problem for which an optimal solution is given by p1 = . . . = pd = 1
and pd+1 = . . . = pm = 0 (since the λi’s are provided in decreasing order). Now we choose
R∗ = [Id,0]T ∈ Rm×d, so that

r∗1 = eT1 , r
∗
2 = eT2 , . . . , r

∗
d = eTd and r∗d+1 = . . . = r∗m = 0T

d , (A14)

where ei ∈ Rd is the unit vector with element equal to 1 at the i-th place. We observe that for
this choice R∗ ∈ St(m, d), and that the objective value for (A10) is the same as the optimal value

12

for the problem defined by (A11)-(A13). Since the latter problem was a relaxation of the former
problem, R∗ is an optimal solution to Problem (A10). The corresponding optimal U for Problem (1)
is U∗ = V R∗ = Vd. The observation that for any U ′ = VdQ with Q ∈ O(d) we have that
tr(U ′TWU ′) = tr(QTV T

d WVdQ) = tr(V T
d WVd) concludes the proof.

B Additional Experiments

In the following we provide further evaluations of our proposed algorithm.

B.1 Step Size and Comparison to Two-Stage Approaches

In this section, on the one hand we experimentally confirm that our approach of choosing the step
size αt (see Sec. 4.3) is valid and that in practice it is not necessary to perform line search. On
the other hand, we verify that our proposed algorithm leads to results that are comparable to two-
stage approaches derived from Lemma 4. Such two-stage approaches first determine the matrix
U0 ∈ im(Vd) that spans the d-dimensional dominant subspace of W , and subsequently utilise the
updates in equations (2) and (3) in order to make U0 sparser. As explained, this corresponds to finding
a matrix Q ∈ O(d) that maximises our secondary objective

g(U0Q) =

m∑
i=1

d∑
j=1

(U0Q)pij . (A15)

We compare our proposed algorithm to two different settings of two-stage approaches:

1. Our algorithm as stage two. Our proposed algorithm forms the second stage of a two-stage
approach. To this end, in the first stage we use the Orthogonal Iteration algorithm [21] to
find the matrix Vd that spans the d-dimensional dominant subspace of W . Subsequently in
the second stage, we initialise U0 ← Vd, and according to Lemma 4 we make use of the
updates in equations (2) and (3) in order to make Ut iteratively sparser. We consider two
variants for the second stage:

(a) In the variant denoted OURS/2-STAGE we run the second-stage updates exactly for
the number of iterations that the Orthogonal Iteration required in the first stage to find
Vd (with convergence threshold ε = 10−5). We use the step size αt as described in
Sec. 4.3.

(b) In the variant denoted OURS/2-STAGE/BT we utilise backtracking line search (as
implemented in the ManOpt toolbox [14]) in order to find a suitable step size αt in
each iteration. Here, we run the algorithm until convergence w.r.t. to g, i.e. until
g(UtQt)/g(Ut+1Qt+1) ≥ 1− ε for ε = 10−5.

2. Manifold optimisation as stage two. Further, we consider the trust regions method [2]
to find a (local) maximiser of (A15) in the second stage. Here, the optimisation over the
Riemannian manifold O(d) is performed using the ManOpt toolbox [14]. For the first
stage, we consider three different initialisations for finding the matrix Vd that spans the
d-dimensional dominant subspace of W : the Matlab functions eig() and eigs(), as well
as our implementation of the Orthogonal Iteration algorithm [21]. We call these methods
EIG+MANOPT, EIGS+MANOPT and ORTHIT+MANOPT, respectively.

Results are shown in Figs. 4 and 5 for the CMU house sequence and the synthetic dataset, respectively.
We observe the following:

• In terms of solution quality (fscore and objective), all considered methods are comparable
in most cases. For the real dataset (Fig. 4) EIGS+MANOPT performs worse due to numerical
reasons. For the largest considered permutation synchronisation problems (the right-most
column in the synthetic data setting shown in Fig. 5) OURS leads to the best results on
average.

• In terms of runtime, in overall OURS is among the fastest, considering both the real and
the synthetic data experiments. In the real dataset, where d = 30 is relatively small,
EIGS+MANOPT is the fastest (but with poor solution quality), while EIG+MANOPT is the

13

Eig+ManOpt Eigs+ManOpt OrthIt+ManOpt Ours/2-stage Ours/2-stage/bt Ours

20 40 60 80 100

k

0.8

0.9

1

fs
c
o

re

20 40 60 80 100

k

25.5

26

o
b

je
c
ti
v
e

20 40 60 80 100

k

0

1

2

3

ru
n

ti
m

e
 [

s
]

Figure 4: Comparison of OURS to different two-stage approaches on permutation synchronisation
problems from the CMU house sequence (see Sec. 4.3 for details). We consider the fscore (↑),
objective value (↑), and runtime (↓). The individual instances of permutation synchronisation
problems vary along the horizontal axis.

slowest (with comparable solution quality to OURS). Methods that utilise the Orthogonal
Iteration have comparable runtimes in the real data experiments.

Most notably, in the largest considered synthetic data setting (right-most column in Fig. 5)
OURS is among the fastest (together with OURS/2-STAGE), while OURS has the largest
fscore on average (as mentioned above) – this indicates that OURS is particularly well-suited
for permutation synchronisation problems with increasing size.

• Overall OURS is the simplest method, see Algorithm 1: the solution is computed in one
single stage rather than in two consecutive stages, and it does not require line search, as can
be seen by comparing OURS with OURS/2-STAGE/BT across all experiments.

Eig+ManOpt Eigs+ManOpt OrthIt+ManOpt Ours/2-stage Ours/2-stage/bt Ours

20 40 60 80

k

0.4

0.6

0.8

fs
c
o
re

 = 0.7, = 0.4, d = 300

0.3 0.4 0.5 0.6

0.9

0.95

1

fs
c
o
re

k = 50, = 0.4, d = 300

0.2 0.4 0.6 0.8

0.5

1

fs
c
o
re

 = 0.7, k = 50, d = 300

200 300 400 500

d

0.88

0.9
fs

c
o
re

 = 0.7, k = 50, = 0.4

20 40 60 80

k

0

50

100

ru
n
ti
m

e
 [
s
]

0.3 0.4 0.5 0.6
0

50

ru
n
ti
m

e
 [
s
]

0.2 0.4 0.6 0.8
0

100

200

ru
n
ti
m

e
 [
s
]

200 300 400 500

d

0

200

ru
n
ti
m

e
 [
s
]

Figure 5: Comparison of OURS to different two-stage approaches on synthetic permutation synchro-
nisation problems (see Sec. 4.3 for details). Each column shows a different varying parameter. The
first row shows the fscore (↑) and the second row the runtime (↓). Note that the right-most column
shows the largest considered permutation synchronisation instances – for these OURS obtains the
best fscore while being among the fastest (together with OURS/2-STAGE).

B.2 Comparison to Riemannian Subgradient and Evaluation of Different p

In Fig. 6 we compare OURS with p = 3 and p = 4 to the Riemannian subgradient-type method
(with QR-retraction) by Li et al. [27] with `1-norm as sparsity-inducing penalty. In the qualitative
results (bottom) we can observe that the Riemannian subgradient-type method and Ours (p = 4)
obtain sparse solutions with few elements with large absolute values (both positive and negative),
whereas Ours (p = 3) obtains a sparse and (mostly) nonnegative solution. Since for permutation
synchronisation we are interested in nonnegative solutions, OURS with p = 3 thus outperforms the
two alternatives quantitatively (top).

14

OrthIt+RiemannianSubgradient Ours (p=4) Ours (p=3)

20 40 60 80 100

k

0.8

0.9

1

fs
c
o

re

20 40 60 80 100

k

22

24

26

o
b

je
c
ti
v
e

20 40 60 80 100

k

0

1

2

ru
n

ti
m

e
 [

s
]

Figure 6: Comparison of OURS (with p = 3 and p = 4) to the Riemannian subgradient-type method
by Li et al. [27]. Here, permutation synchronisation problems from the CMU house sequence (see
Sec. 4.3 for details) are evaluated. Top: we consider the fscore (↑), objective value (↑), and runtime
(↓), where the individual instances of permutation synchronisation problems vary along the horizontal
axis. Bottom: for each of the three methods we show the obtained U -matrix for k = 20 (before
projection). It can be seen that the Riemannian subgradient-type method and Ours (p = 4) obtain
sparse solutions with few elements with large absolute values (both positive and negative), whereas
Ours (p = 3) obtains a sparse and (mostly) nonnegative solution.

15

Figure 7: Illustration of the effect of our sparsity-promoting secondary objective g for a synthetic
permutation synchronisation problem (k = 5, d = 30, ρ = 0.9, σ = 0.3, cf. Sec. 4.3). The matrix U
obtained by the Orthogonal Iteration algorithm (left) is not sparse. Our method gives a sparse and
mostly nonnegative U (right).

B.3 Effect of Sparsity-Promoting Secondary Objective

In Fig. 7 we illustrate the effect of our sparsity-promoting secondary objective. It can clearly be seen
that our method (right) results in a significantly sparser solution compared to the Orthogonal Iteration
algorithm (left).

16

	Introduction
	Preliminaries & Related Work
	Proposed Method for Sparse Quadratic Optimisation over the Stiefel
	Convergence
	Choosing Z(Ut) to Promote Sparsity

	Application to Permutation Synchronisation
	Permutation Synchronisation in a Nutshell
	Proposed Permutation Synchronisation Approach
	Experimental Results

	Discussion and Limitations
	Conclusion
	Proofs
	Additional Experiments
	Step Size and Comparison to Two-Stage Approaches
	Comparison to Riemannian Subgradient and Evaluation of Different p
	Effect of Sparsity-Promoting Secondary Objective

