8th ICML Workshop on Automated Machine Learning (2021)

LRTuner: A Learning Rate Tuner for Deep Neural Networks

Abstract

One very important hyperparameter for training deep neural networks is the learning rate
schedule of the optimizer. The choice of learning rate schedule determines the computa-
tional cost of getting close to a minima, how close you actually get to the minima, and
most importantly the kind of local minima (wide/narrow) attained. The kind of minima
attained has a significant impact on the generalization accuracy of the network. Current
systems employ hand tuned learning rate schedules, which are painstakingly tuned for each
network and dataset. Given that the state space of schedules is huge, finding a satisfactory
learning rate schedule can be very time consuming. In this paper, we present LRTuner,
a method for tuning the learning rate as training proceeds. Our method works with any
optimizer, and we demonstrate results on SGD with Momentum, and Adam optimizers.

We extensively evaluate LRTuner on multiple datasets, models, and across optimizers.
We compare favorably against standard learning rate schedules for the given dataset and
models, including ImageNet on Resnet-50, Cifar-10 on Resnet-18, and SQuAD fine-tuning
on BERT. For example on ImageNet with Resnet-50, LRTuner shows up to 0.2% absolute
gains in test accuracy compared to the hand-tuned baseline schedule. Moreover, LRTuner
can achieve the same accuracy as the baseline schedule in 29% less optimization steps.

1. Introduction

Learning rate is one of the most important hyperparameters that impact deep neural net-
work (DNN) training performance. It determines the speed of reaching the minima, im-
pacting the computational cost of optimization, e.g. higher learning rates may get in the
neighborhood of a minima faster than lower learning rates (Nar and Sastry, 2018). The
learning rate also determines the kind of minima (e.g. wide vs narrow) attained (Keskar
et al. (2016); Wu et al. (2018); Jastrzebski et al. (2019); Iyer et al. (2020)), which has a
significant impact on the generalization accuracy.

Therefore, it is not surprising that a lot of effort has gone into automatically tuning
the learning rate (Schaul et al. (2013); Smith (2017); Rolinek and Martius (2018); Carvalho
et al. (2021)). However, these techniques have not been able to deliver state of the art
test accuracy on standard benchmarks. Instead, deep learning researchers today rely on a
mixture of brute force or random search, augmented with simple decay heuristics such as
using a staircase, polynomial, cosine or exponential decay-based learning rate schedules. Jin
et al. (2021) show promising results in automatically tuning the learning rate on standard
benchmarks, but their method takes over 2x the total training time.

This problem is further exacerbated by the fact that different optimizers such as SGD,
Adam work best on different datasets and require very different learning rate schedules. For
example, image datasets such as Cifar-10 (Krizhevsky et al., 2009), ImageNet (Russakovsky
et al., 2015) perform very well with SGD-momentum optimizer and use a staircase learning
rate schedule; while NLP tasks such as machine translation (Vaswani et al., 2017) and

(©2021 Anonymous.

language modeling (Devlin et al., 2018) typically use Adam optimizer with a learning rate
schedule consisting of a linear warmup followed by polynomial decay.

Our learning rate tuning scheme is based on taking a quadratic approximation of the
local loss landscape (Section 2). We first probe for loss values attained by the optimizer,
as the current learning rate is perturbed by small values. Since we only make small per-
turbations, the loss function can be modeled locally via a Taylor series expansion. We then
make a quadratic approximation and solve for the optimal learning rate perturbation which
minimizes the loss. This is similar to Newton’s method, but applied only in the descent
direction. Extensive empirical analysis validates that this quadratic approximation works
well even for large DNNs. Although the basic idea is simple, it is complicated by the use of
minibatch based stochastic optimization methods in DNNs. The loss value computed from
a minibatch is a noisy estimate of the true loss, and can throw off our approximation. We
thus propose a few techniques to handle stochasticity.

Our method for learning rate tuning is a local method, and does not take into account
the non-convex global optimization landscape of deep networks. As a result, it can take
locally optimal, but globally suboptimal decisions which can impact generalization. To
tackle this, we take inspiration from Iyer et al. (2020), which proposes an Fxplore-Exploit
based learning rate schedule to allow the optimization to land in a wide minimum by training
at a high learning rate, before starting descent into this minimum by using a linear decay
schedule. We found that incorporating such an Ezplore phase into our method significantly
helped with generalization.

We demonstrate the efficacy of LRTuner! across a wide range of models and datasets,
including SQuAD on BERT-base, Transformer on IWSLT’14 (DE-EN), ResNet-50 on Ima-
geNet, Cifar-10 on ResNet18; and across multiple optimizers: SGD-Momentum and Adam.
In all cases, compared to the original hand-tuned learning rate baselines, LRTuner matched
or exceeded the test accuracy when trained using the original training budget. We also
achieve reduction of 29% and 24% training steps on ImageNet and IWSLT’14(DE-EN)
while matching baseline accuracies, resulting in significant gains in wall clock training time.

2. Method

Let L(0) be the loss of the network as a function of its parameters 6. Note that in practice,
since we work with stochastic optimizers such as SGD, the loss computed in each minibatch
is only an approximation of the true loss. This distinction is important when we come to
the estimation of the best learning rate, but can be ignored for the formulation below.

The loss of the network in the next time step is L(0 — ncf}, where d is the step direction,
and 7 is the learning rate. If we think of L(0 — ncf) as a function of the learning rate n, our
task is to find an 7 which minimizes this function. Since it is hard to directly estimate L
as a function of 7, we instead consider what happens if we perturb n by a small amount e,
i.e we look at L(6 — (n+ e)a?) Looking at this as a function of ¢, and applying Taylor series
expansion we get,

L(e) = L(0 — (n+ €)d) = L(0 — nd — ed)

- 1 -
=L —nd) —ed" G+ 562dTHd +0(), (1)

1. Our code is available here

 https://drive.google.com/drive/folders/17f4z8QWpXWtpNMiP1PVecFboLme1xgDI?usp=sharing

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

where ¢ is the gradient of L w.r.t 6, and H is the Hessian. Note that computing accurate
value of the gradient g is expensive, as it requires going over the entire dataset (not just a
minibatch), while computing the Hessian H is typically intractable for deep networks which
have millions of parameters. However, it turns out that we don’t actually need the values
of g and H. In fact, we can just look at L asa quadratic function of ¢, i.e.

L(€) = ko + k1e + koe® + O(€%). (2)

To compute {ko, k1, ko }, we simply evaluate the loss at a few values of € and fit a quadratic
polynomial. This can be done at the cost of one forward pass per ¢ sample. Note that
we are able to get away with having to calculate the high dimensional ¢, and H, because
the loss function only looks at the effect of these first and second order derivatives in one
single direction J: as determined by the terms dr g and dT Hd. Once we know the values of
{ko, k1, k2}, we can simply minimize this quadratic to get the optimal perturbation on the
current learning rate (€, = —2%), to minimize the loss L in the next time step. Observe

that our method only needs the search direction d for computing the various loss samples.
As a result, our method works for any optimizer by simply using its search direction in the
above formulation. To reduce computational cost, we tune the learning rate only every few
minibatches (See Appendix D for details on computation cost of our method).

We perform extensive empirical analysis in Appendix A to validate that this quadratic
approximation works well even for large DNNs. Note that it is very important to use a
perturbation e for the Taylor expansion in Equation 1, rather than just expanding on 7 via
L(6— ncf) = L(0) —nd G+ %nQdTHJ+ O(n?). This is because n may not be small, causing
the O(n®) error of the approximation to be quite large.

Epsilon Thresholding. Note that the quadratic approximation in Equation 2 is valid only
up to an O(e®) error. However, the optimal learning rate perturbation computed as the
quadratic minimum (€., = —2%), can be quite large at times, causing the approximation
error to blow up. This is illustrated in Figure 3 (Appendix). To avoid this, we threshold
the estimated €,,;, to a small value. Since we are interested in approximating the loss to
some precision, we use a relative threshold as follows. We approximate O(e3) as |e|3, and
bound the error:

le]® <7« L(6), (3)
where 7 is the epsilon threshold initialized before training (Refer Appendix E for details).

Stochasticity: For computation of the quadratic coefficients in Equation 2, we need to
compute the loss values f/(e) at multiple values of €. Note that in a typical DNN setting
we never compute the full loss, but only a stochastic loss based on a given minibatch. This
loss, however, can be noisy and throw off our estimate of €,,;,. To handle this we follow
two simple strategies. First, we use a bigger minibatch (called superbatch) for computing
the loss, and second, we use the same superbatch for computing all losses for a particular
estimate. We use an integer multiple of minibatches to make a superbatch. This allows us
to compute the superbatch loss by simply averaging multiple single batch forward passes,
and does not increase the peak GPU memory usage. See Appendix C for details on selection
of superbatch size.

Finally, as a safeguard we also added a rollback policy. In case our system makes a bad
call on the learning rate change (because of a bad superbatch sample), which leads to a
reduction in loss drop per iteration, we rollback the decision and revert the state of the
network to the time we made the learning rate change. Although, rollback triggers rarely,
it is helpful in preventing the optimization from going astray because of one bad decision.

2.1 Generalization

Due to the local nature of our method, it can take locally optimal, but globally suboptimal
decisions. This is a problem for DNNs, which have highly non-convex loss landscapes, and
such a local method can lead to bad generalization. To tackle this, we take inspiration from
the hypothesis proposed in Iyer et al. (2020). They hypothesize that the density of wide
minima is far lower than narrow minima, and emphasize on the need to train at a high
learning rate for sufficient period, even if the training loss stagnates. The high learning
rate training helps the optimizer escape narrow minima and land in a wide minimum with
high probability. Since wide minima are shown to generalize better than narrow minima
(Keskar et al., 2016; Jastrzebski et al., 2017; Wang et al., 2018; Chaudhari et al., 2019),
this leads to better generalization. They propose an Ezplore-Ezploit LR schedule where the
explore phase scans the landscape with a high LR for sufficient duration to land in a wide
minimum, followed by an exploit phase where they descend into this minimum.

Since LRTuner greedily finds the optimal learning rate for maximal reduction in the local
training loss, it may reduce the learning rate too quickly and this often generalizes badly.
To circumvent this, we add an Ezplore phase as recommended in Iyer et al. (2020), where
we train the network at only high learning rates. During this phase, LRTuner only allows
increases in learning rate proposals from the local quadratic approximation of Equation 2.
Any proposals to decrease the learning rate are rejected. This is then followed by an
Ezploit phase, where LRTuner permits proposals to reduce the learning rate and does not
allow increases. This two phase scheme achieves good generalization performance. See
Appendix B for a more detailed discussion on generalization.

3. Experiments

We extensively evaluate our method on multiple networks and datasets, as well as multiple
optimizers including SGD, Momentum and Adam. We have implemented LRTuner as an
optimizer in PyTorch (Paszke et al. (2017)), which wraps any existing optimizer. For our
experiments, we employ an out of the box policy as Rolinek and Martius (2018), where we
just wrap the existing optimizer with LRTuner, and do not modify anything else. We eval-
uate on multiple image datasets — Imagenet on Resnet-50, Cifar-10 on Resnet-18; as well as
NLP datasets — Squad v1.1 for BERT finetuning and IWSLT’14(DE-EN) on Transformers.

3.1 ImageNet image classification on Resnet-50

In this experiment we trained the ImageNet dataset (Russakovsky et al. (2015)) on Resnet-
50 (He et al., 2016) network 2. We evaluated our method on SGD with momentum of 0.9,
weight decay of le™* and a batch size of 256, similar to popular baselines. The baseline

2. We used the implementation at: https://github.com/cybertronai/imagenet18_old

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

runs use a standard step schedule of of 0.1, 0.01 and 0.001 learning rate for 30 epochs each.
With LRTuner, we trained the network with 25 explore epochs, and used the same seed
learning rate as the baseline schedule, i.e. 0.1. Table 1 shows the training loss and test
accuracies for the various runs. As shown, LRTuner improves on the test accuracy of the
baseline by a comfortable margin. We also observed that LRTuner can reach the baseline
top-1 accuracy of 75.87 around 64 epochs (29% reduction) in all our runs. See Figure 6 for
comparisons of training loss, test accuracy, and learning rate.

LR Schedule Training Loss Test Top 1 Acc. Test Top 5 Acc.

Baseline 0.74 (0.001) 75.87 (0.035) 92.90 (0.015)
LRTuner 0.74 (0.041) 76.06 (0.098) 93.03 (0.024)

Table 1: Training loss and Test accuracy for ImageNet on Resnet-50. We report the mean
and standard deviation over 3 runs.

3.2 Cifar-10 image classification on Resnet-18

In this experiment we trained the Cifar-10 dataset (Krizhevsky et al. (2009)) on Resnet-18
network (He et al. (2016)) 2. We evaluated our method on SGD with momentum of 0.9,
weight decay of 5e~% and batch size 128. For baseline runs, we used a standard step schedule
of 0.1, 0.01 and 0.001 learning rate for 100, 50, 50 epochs; while for LRTuner, we trained
the network with 100 explore epochs, and used the same seed learning rate as baseline, i.e.
0.1. Table 2 shows the training loss and test accuracy for the various runs. As shown,
LRTuner achieves nearly the same test accuracy as baseline. See Figure 5 for more detailed
comparisons of training loss, test accuracy, and learning rate.

LR Schedule Training Loss Test Acc

Baseline 0.002 (6.5e7°) 94.81 (0.001))
LRTuner 0.0008 (le™*) 94.79 (0.001)

Table 2: Training loss and Test accuracy for Cifar-10 on Resnet-18. We report the mean
and standard deviation over 7 runs.

3.3 SQuAD fine-tuning on BERT

We now evaluate LRTuner on a few NLP tasks. In the first task, we fine-tune the BERTgasg
model (Devlin et al. (2018)) on SQuAD v1.1 (Rajpurkar et al. (2016)) with the AdamW
optimizer?. Fine-tuning is typically run for only a few epochs. We use the standard baseline
which trains for 2 epochs with a seed learning rate of 2¢~° with linear decay. The LRTuner
runs were trained with 2500 explore steps (= half epoch), and the same seed learning rate
of 2¢7° as baseline. Table 3 shows our results over 3 runs. We achieve an EM score of 81.2,
compared to baseline’s of 80.7. Moreover, we found that LRTuner can reach the baseline
accuracy of 80.7 in 20% less training steps. See Figure 8 for detailed comparisons.

3. We used the implementation at: https://github.com/kuangliu/pytorch-cifar
4. We used the implementation at: https://github.com/huggingface/transformers

LR Schedule Train Loss (av) EM (av) F1 (av)

Baseline 0.96 (0.075) 80.7(0.18) 88.2 (0.02)
LRTuner 1.05 (0.008) 81.2 ((0.52) 88.5 (0.09)

Table 3: SQuAD fine-tuning on BERT. We report the average training loss, average test
EM and F1 scores over 3 runs.

3.4 Machine Translation on Transformer Network with IWSLT

In the second NLP task, we train the Transformer network (Vaswani et al. (2017)) on the
IWSLT German-to-English (De-En) dataset (Cettolo et al. (2014)) with the Adam optimizer
%, For baseline, we used the learning rate schedule mentioned in Vaswani et al. (2017). The
baseline learning rate starts at 1.25e~7, and is linearly increased for 4000 steps to 5e ™%,
followed by an inverse square root decay till 50 epochs. The training batches consist of
approximately 4000 tokens. With LRTuner, we trained the network with 8 explore epochs,
and used a seed learning rate of 1e~°. In both cases we use the model checkpoint with least
loss on the validation set for computing BLEU scores on the test set. Table 4 shows the
training loss and test accuracy averaged over 3 runs. As shown, LRTuner achieves a mean
test BLEU score of 34.88, compared to 34.70 for the baseline. Moreover, we observed that
LRTuner can reach the baseline BLEU score of 34.70 around 38 epochs (24% reduction)
in all our runs. See Figure 7 for detailed comparisons of training/validation perplexity,
learning rate, etc.

LR Schedule Train ppl Validation ppl Test BLEU Score

Baseline 3.55 (0.029) 5.10 (0.033) 34.70 (0.001)
LRTuner 3.46 (0.16) 4.86 (0.014) 34.88 (0.005)

Table 4: Training, validation perplexity and test BLEU scores for IWSLT on Transformer
networks. The test BLEU scores are computed on the checkpoint with the best validation
perplexity. We report the mean and standard deviation over 3 runs.

4. Conclusion and Future work

We present LRTuner, a novel learning rate tuning method via a local quadratic approxi-
mation of the loss landscape in the search direction. We extensively validate LRTuner on
both image (ImageNet, Cifar-10) and NLP (IWSLT, Squad) datasets, as well as multiple
optimizers, and achieve or exceed the test accuracy of original hand tuned learning rate
schedules. We also showed that LRTuner, in many cases, can achieve the same baseline ac-
curacy in significantly reduced training time. LRTuner has a few hyperparameters such as
epsilon threshold, and explore epochs. In future work, we would like to completely eliminate
these hyperparameters to have a fully automated learning rate tuning scheme.

5. We used the implementation at: https://github.com/pytorch/fairseq

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

References

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization
bounds for deep nets via a compression approach. arXiv preprint arXiv:1802.05296,
2018.

Carlo Baldassi, Fabrizio Pittorino, and Riccardo Zecchina. Shaping the learning landscape
in neural networks around wide flat minima. CoRR, abs/1905.07833, 2019. URL http:
//arxiv.org/abs/1905.07833.

Pedro Carvalho, Nuno Lourengo, and Penousal Machado. Evolving learning rate optimizers
for deep neural networks. arXiv preprint arXiv:2103.12623, 2021.

Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa Bentivogli, and Marcello Federico.
Report on the 11th iwslt evaluation campaign, iwslt 2014. In Proceedings of the Interna-
tional Workshop on Spoken Language Translation, Hanoi, Vietnam, page 57, 2014.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing

gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and Experi-
ment, 2019(12):124018, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiw:1810.04805, 2018.

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT Press, 2016.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Ky-
rola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd:
Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural Computation, 9(1):1-42,
1997.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: clos-
ing the generalization gap in large batch training of neural networks. arXiv preprint
arXiw:1705.08741, 2017.

Nikhil Iyer, V Thejas, Nipun Kwatra, Ramachandran Ramjee, and Muthian Sivathanu.
Wide-minima density hypothesis and the explore-exploit learning rate schedule. arXiv
preprint arXiv:2003.03977, 2020.

Stanistaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXw:1711.04623, 2017.

http://arxiv.org/abs/1905.07833
http://arxiv.org/abs/1905.07833

Stanistaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and
Amost Storkey. On the relation between the sharpest directions of DNN loss and the
SGD step length. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=SkgEajO5t7.

Yuchen Jin, Tianyi Zhou, Liangyu Zhao, Yibo Zhu, Chuanxiong Guo, Marco Canini, and
Arvind Krishnamurthy. Auto{lrs}: Automatic learning-rate schedule by bayesian opti-
mization on the fly. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=S1rgM9_lyju.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural infor-
mation processing systems, pages 586-594, 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiw preprint arXiv:1609.04836, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical
model of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Kamil Nar and Shankar Sastry. Step size matters in deep learning. In Advances in Neural
Information Processing Systems, pages 3436-3444, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep
learning. In Advances in Neural Information Processing Systems, pages 6433-6443, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115(3):211—
252, 2015.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
Conference on Machine Learning, pages 343-351, 2013.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACYV), pages 464-472. IEEE, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998-6008, 2017.

https://openreview.net/forum?id=SkgEaj05t7
https://openreview.net/forum?id=SlrqM9_lyju

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

Huan Wang, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. Identifying gen-
eralization properties in neural networks. arXiv preprint arXiv:1809.07402, 2018.

Lei Wu, Chao Ma, and E Weinan. How sgd selects the global minima in over-parameterized
learning: A dynamical stability perspective. In Advances in Neural Information Process-
ing Systems, pages 8279-8288, 2018.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural
networks through the lens of the hessian. In 2020 IEEE International Conference on Big
Data (Big Data), pages 581-590. IEEE, 2020.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=Syx4wnEtvH.

Appendix A. Validation of Quadratic Approximation

We want to validate whether our quadratic approximation is a good approximation for
modelling the loss as a function of the perturbation e. Figure 1 shows a few examples
demonstrating the effectiveness of second order approximation. As shown, the loss values
at various samples overlap with the quadratic curve almost perfectly, including those not
used in estimation of the quadratic (orange triangles). Also, the estimated loss value at the
quadratic minima matches the true loss value there quite well. Figure 2 shows quadratic
plots for more datasets/models. Figure 3 shows why limiting epsilon range is important.

Optimal Epsilon = 0.003481 Optimal Epsilon = -0.020481

2.316
2.2768

2.314
2.2766

2.312

22764 /(
2310 A

2.2762 A
2.308 A
22760
2306
2.2758 \‘\ //
B 2.304

-0.008 -0.006 —0.004 -0.002 0.000 0.002 0.004 0.006 0.008 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010

(a) Minimum within range (b) Minimum outside range

Figure 1: Quadratic approximation of loss as a function of €. Shown are two examples from
Cifar-10 on Resnet-18 runs where the minimum is (a) within and (b) outside the range of
loss samples. The orange triangles show loss samples used in fitting the quadratic, the blue
line shows our quadratic approximation, and the green triangles show more loss samples
which were not used for fitting. The red circle shows the minimum loss value as per the
quadratic, while the purple triangle show the true value at that e.

Appendix B. More on Generalization

Saturation Threshold: LRTuner may propose a drop in learning rate during the exploit
phase based on the local approximation, which may be sub-optimal globally and could

https://openreview.net/forum?id=Syx4wnEtvH

0.00080

000075

0.00070

0.00065

0.00060

0.00055

0.00050

+2.161

Optimal Epsilon = 0.012961

AN

AN

AN
N

S~ ,

-0010 -0.005 0000 0005 0010 0015

6.225

6220

6215

6210

6.205

6.200

Optimal Epsilon = -0.000134

A
A

-

A

~0.00015 -0.00010 —0.00005 0.00000 ~0.00005 0.00010

05936

05935

05934

05933

05932

Optimal Epsilon = -0.000002

N

~0.000010 -0.000005 0.000000 0.000005 0.000010

(a) ImageNet on Resnet-50 (b) IWSLT on Transformer (¢) SQuAD fine-tuning BERT

Figure 2: Quadratic approximation curve samples from (a) ImageNet on Resnet-50, (b)
IWSLT on Transformer and (¢) SQuAD fine-tuning on BERT. The legend is same as figure 1.
It can be seen that the quadratic approximation works pretty well.

Optimal Epsilon = -0.065769

Figure 3: Quadratic approximation error.
Orange and green triangles show loss sam-
ples used in fitting and testing, respectively.

o Red circle shows the minimum loss value, and
:i purple triangle shows the true loss at mini-
252 s mum. We clip €,,,;,, as mentioned in Equation
230 3 if €4, exceeds the upper bound.

-0.08 -0.06 -0.04 -0.02 0.00 0.02

drive the optimizer into local minima or saddle points. To circumvent this, we introduce a
saturation threshold. The idea is that we want to continue with the current learning rate and
not lower it, unless it has saturated in terms of loss drop per iteration. That is, if the training
loss drop rate has dropped below a threshold for the current learning rate, it suggests that
the current learning rate has served its purpose, and we can move on to a lower learning rate
if suggested so by LRTuner. We can either use an absolute threshold, or a relative threshold
where we use the ratio of loss-drop rate when we started using the current learning rate to
the current loss-drop rate. Finding the best absolute threshold for each model/dataset can
be tricky, so we use a relative threshold, which we found easy to tune. Also, we noticed that
the loss drop rate doesn’t change drastically towards the end of the training when the loss
has anyways stabilized. This can cause a high relative saturation threshold to be too strict
in the later stages of training, while it would perform well early on. To handle this, we used
a simple strategy where we choose a relative saturation threshold initially, and first time
the saturation threshold is crossed, we switch to an absolute threshold with the current
loss drop date as the absolute saturation threshold. This essentially amounts to using the
relative threshold to determine a good absolute threshold value for the current model and
dataset, which is then used subsequently. Refer to Appendix E for more details.

Note that, although both explore phase and saturation threshold prefer higher learning
rates, they serve different purposes. The explore phase allows for only increase in learning
rate and ensures that the optimization escapes sharp minima and reaches the neighborhood
of a wide minima with a good probability. Saturation threshold is activated only during
exploit phase where we strictly reduce the learning rate and do not allow increases. Satura-

10

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

tion threshold adds an overall preference for a higher learning rate until that learning rate
has served its purpose and is not optimizing the loss satisfactorily.

Recent work on generalization: Although understanding generalization of deep neural
networks is an open problem, there have been interesting findings recently. Recent works
show that wide minimas generalize much better than narrow minimas (Hochreiter and
Schmidhuber (1997); Arora et al. (2018); Keskar et al. (2016); Jastrzebski et al. (2017);
Wang et al. (2018)), even though they have the same training loss. Chaudhari et al. (2019)
design entropy based functions to drive optimizers into flatter surfaces. Iyer et al. (2020);
Wu et al. (2018); Baldassi et al. (2019) show that the density of wide minima are far
lower than narrow minima. Kawaguchi (2016) state that neural landscapes have multiple
local minimas, but all local minima are also the global minima (also see Goodfellow et al.
(2016)). Keskar et al. (2016) found that small batch SGD generalize better than large
batch SGD and also lands in wider minimas, suggesting that noise in SGD acts as an
implicit regularizer. Hoffer et al. (2017) propose to close the generalization gap in large
batch training by increasing the number of optimization steps to match small batch regime.
Jastrzebski et al. (2017) suggest that ratio of learning rate to batch size plays a key role in
determining the final minima width and a larger ratio leads to better generalization. More
recent work have been able to generalize quite well even with very large batch sizes. Goyal
et al. (2017); McCandlish et al. (2018) scale the learning rate linearly as a function of batch
size, while You et al. (2020) pre-train BERT,arge in 76 mins with square-root LR scaling.

Appendix C. Superbatch size selection

Stddev of loss over 10 trials vs superbatch size

To choose an appropriate superbatch size, we measure o
the standard deviation of loss as a function of superbatch ZZ:;
size. We compute this by evaluating the loss with 10 dif- oos
ferent randomly sampled superbatches and calculate the — oo
standard deviation. Figure 4 shows the measurements.
We used a conservative superbatch size of 100 in all our o
examples, as it corresponded to low variance. Note that
higher superbatch sizes add an increased computational
overhead, but since we recompute our learning rate infre-
quently the total overhead is not very high.

20 40 60 80 100

Figure 4: Standard deviation of
loss as a function of superbatch
size for Cifar1l0 on Resnet-18

Appendix D. Computational Cost

The primary computational cost of our method comes from computing the samples for
quadratic approximation. We use a superbatch size of 100 and pick 5 samples for ap-
proximating our quadratic, incurring a cost of 500 forward passes each time we need to
recompute the learning rate. In most of our examples we keep the recompute_window such
that our learning rate recomputation occurs once or twice every epoch, except in BERT
fine-tuning where we only have 2 epochs to train, and thus want more frequent tuning of
the learning rate. In ImageNet on ResNet50 for example, each epoch consists of 5000 steps
and we compute the approximation twice every epoch. A backward pass is typically 2x
more computationally expensive than forward pass, and 5000 minibatch steps cost 15000

11

forward pass worth of compute. Our recomputation per epoch costs 1000 forward passes
of compute, and thus the computational overhead is 1000/15000,~ 6.66%. Note that in
erploit phase, we do a recomputation of learning rate only when saturation threshold is
crossed. So the computational cost comes down even further and 6.66% overhead is an
upper bound. We also achieve baseline accuracy in 29% less training steps, demonstrating
significant wall clock time savings compared to baseline schedules. Similarly for IWSLT,
we compute our approximation once every epoch (1100 steps). Thus, the upper bound
in computational overhead is around 500/3300,~ 15%. We show that LRTuner achieves
the baseline BLEU score in 24% less training steps , thus showing speedup in training.
The automatic tuning method by Jin et al. (2021) also show reductions in training itera-
tions. However, their method takes 2x the total wall clock time as baseline because of high
computational overhead.

Note that since the main focus of this work was to develop an automatic learning rate
tuning scheme which generalizes as well as state of the art hand tuned learning rate sched-
ules, we have not invested much effort on reducing the computational cost. For example,
a 100 superbatch size is highly conservative and a size of 50 or fewer may be sufficient.
Similarly, 3 samples for estimating the quadratic are enough most of the times instead of
the 5, as the quadratic fit is usually accurate. Also, we can experiment with higher recom-
pute_window sizes towards the end of training as mentioned in Jin et al. (2021) and reduce
the overhead further.

Appendix E. Hyperparameters

Table 5 shows the hyperparameters used for all our examples. As shown, the main parameter
to tune is the explore epochs, which we typically set to around 20 —30% of the total budget.
The seed learning rates are same, except for IWSLT, where we had to choose a bigger seed
learning rate (1e~%), because the baseline seed Ir (1.25¢~7) hindered LRTuner’s ability to
compute larger epsilons to speed up optimization. On the other hand, LRTuner substitutes
warmup with explore, which can be explored further theoretically. Selection of seed learning
rates can be done with methods proposed in Smith (2017).

The reason for different scale of epsilon thresholds in NLP datasets compared to im-
age datasets, is because they typically run on much lower learning rates (of the order of
le=®) compared to image datasets (of the order of le~! to le~3), which suggests that the
optimization landscapes are more sensitive to smaller perturbations and thus need more
aggressive clipping. Since € o« (epsilon threshold)l/ 3 (Refer to equation 3), we found this
hyperparameter easy to set by simply choosing the value to be around twice or thrice the
order of the peak learning rate.

We also noticed that the loss drop rate changes much more drastically in image datasets
than NLP datasets, again most likely because of the very low learning rates used in NLP
datasets. Thus we need to use a lower saturation threshold in NLP experiments compared
to image ones. We found this hyperparameter very easy to set, by simply eyeballing at the
loss drop rate changes of a trial run with fixed LR for two epochs. This hyperparameter
switches to the loss drop rate seen during the first time it is crossed and stays the same for
the entirety of exploit phase, as mentioned in Appendix ?77.

We are also looking at ways to automate the explore epochs hyperparameter, by looking
at second order information about the loss landscape during training, and determine if we

12

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

have reached a wider minima region. See Jastrzebski et al. (2019); Yao et al. (2020) for
some interesting analysis on this front.

Experiments Explore Total = Seed Saturation Epsilon
Epochs Epochs LR Threshold Threshold
Cifar-10 100 200 0.1 100 le™3
Imagenet 25 90 0.1 500 le™3
IWSLT’14 (De-En) 10 50 le™® 5 le=8
SQuADv1.1 (Bert-Base) 0.5 2 2e~° 2 le=12

Table 5: Hyperparameters used for all experiments.

Appendix F. Detailed Plots

Training Loss vs Epochs

Test Accuracy vs Epochs

0 20 40 60 80 100 100 110 120 130 140 150 150 160 170 180 190 200
Learning Rate vs Epochs
0.125 0.12 0.016
0.014
0.120 0.10
0.012
0.08
0.115 0.010
0.06 0.008
0.110
0.006
0.04
0.105 0.004
0.02 0.002
0.100
0 20 40 60 80 100 100 110 120 130 140 150 150 160 170 180 190 200

Figure 5: Cifar-10 on Resnet-18 trained with Momentum. Shown are the training loss, test
accuracy and learning rate as a function of epochs, for the baseline scheme (orange) vs the
LRTuner scheme (blue). The plot is split into 3 parts to permit higher fidelity in the y-axis

13

Training Loss vs Epochs

0.95
5.0 15
45
14
0.90
4.0
13
35 0.85
12
3.0
11
25 0.80
1.0
2.0
00 0.75
15
0 5 10 15 20 25 30 30 35 a0 a5 50 55 60 60 65 70 75 80 85 90
Test Top-1 Accuracy vs Epochs
76 76.2
60
74 76.0
50 72
75.8
40 70
75.6
68
30
75.4
66
20
752
64
0 5 10 15 20 25 30 30 35 40 45 50 55 60 60 65 70 75 80 85 90
Test Top-5 Accuracy vs Epochs
90
93
93.0
80 92
0 929
70
° 928
60
89
927
50 8
40 87 926
86
0 5 10 15 20 25 30 30 35 40 45 50 55 60 60 65 70 75 80 85 90

Learning Rate vs Epochs

0.200 0.00100
0.030

0175 0.00098
0.025

0150 0.00096
0.020

0.125 0.00094
0.015 0.00092

0.100

0.010 0.00090
0.075
0.00088
0.050 0.005
0.025 0.000 0.00086
0 5 10 15 20 25 30 30 35 40 as 50 55 60 60 65 70 75 80 85 90

Figure 6: ImageNet on Resnet-50 trained with Momentum. Shown are the training loss,
top-1/top-5 test accuracy and learning rate as a function of epochs, for the baseline scheme
(orange) vs the LRTuner scheme (blue). The plot is split into 3 parts to permit higher
fidelity in the y-axis range.

14

LRTuner: A LEARNING RATE TUNER FOR DEEP NEURAL NETWORKS

Training Perplexity vs Epochs

500
400
300
200
100
0
Validation Perplexity vs Epochs
5.20
200 5.7
175 5.6 5.15
%0 53 5.10
125 5.4
5.05
100
53
5.00
75
5.2
50 4.95
5.1
25
4.90
5.0
0 v T T T T T T T T T T T T T
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Learning Rate vs Epochs
0.00028 000018
0.00045
0.00026
0.00040 0.00017
0.00024
0.00035
0.00022 0.00016
0.00030
0.00020
0.00025 0.00015
0.00020 0.00018
0.00015 0.00016 — 0.00014
—
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 41 42 43 44 45 46 47 48 49

Figure 7: IWSLT on Transformer network trained with Adam. Shown are the training
perplexity, validation perplexity and learning rate as a function of epochs, for the baseline
scheme (orange) vs the LRTuner scheme (blue). The plot is split into 3 parts to permit
higher fidelity in the y-axis range.

15

Training Loss vs Epochs
1.30

2.6
2.4

1.25
2.2

1.204
2.0

1154
1.81
164 1.104
1.4 1.05

0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 18 2.0

Test EM Score vs Epochs

78 81.01
761
70 80.5
721

80.01
701
68 1

795
66 1
641 79.04

02 0.4 06 08 1

.0 1.2 1.4 1.6 1.8 2.0

Learning Rate vs Epochs

0.000030 0.000020

0.000025 0.000015 -

0.000020 0.000010
0.2 0.4 0.6 0.8 1

0.000015 A 0.000005 -

0.000010 0.000000 -

N
S)

.0 1.2 14 1.6 18

Figure 8: SQuAD fine-tuning on BERT trained with AdamW. Shown are the training loss,
test EM score, and learning rate as a function of epochs, for the baseline scheme (orange)
vs the LRTuner scheme (blue). The plot is split into 2 parts to permit higher fidelity in
the y-axis range.

16

	Introduction
	Method
	Generalization

	Experiments
	ImageNet image classification on Resnet-50
	Cifar-10 image classification on Resnet-18
	SQuAD fine-tuning on BERT
	Machine Translation on Transformer Network with IWSLT

	Conclusion and Future work
	Validation of Quadratic Approximation
	More on Generalization
	Superbatch size selection
	Computational Cost
	Hyperparameters
	Detailed Plots

