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e Can we design an automatic tuner that tunes the learning rate
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e Can we show both generalization capabilities as well as wall Samples used for fitting quadratlc.approxmatlon IS val.ld only fo.r sm.aII errors. The left aqd the middle figures have small
. . . . . < Test Samples perturbations and the quadratic approximation is accurate. The right figure shows a large optimal
clock time savings by incorporating certain methods that take L True loss:cEmodel:atiniinimum

perturbation, causing the approximation error to blow up. To combat this, we clip ¢ as shown below
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Performance of LRTuner

Quadratic Approximation

e We approximate the loss function for the next time step as a

quadratic polynomial by applying Taylor series expansion. | 0,200 ST
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