A Proof of Lemma 2]

To prove Lemma [2) I we start by provmg a few inequalities. Since A is an (€1, €3, Q)-solver, using
Definition 4] and Taylor’s expansion, we get for any i € [n] and j € [k],

U?j < (Uj; + €2) 1D
= U +aUg ez + o(€3) (12)
< U + aes + o(e3), (13)

where the last inequality follows from the fact that U;; < 1. Also, for any 7 € [n] and j € [k], we
have

2 = B lly = llaes — 55 + 2 (@0 — )" (1 — ) + |85 — By (14)
< |l — pills+4-Roer + €, (15)

where the inequality follows from the fact that 4 is an (€1, €2, Q)-solver, the Cauchy-Schwarz
inequality, and the fact that since ; € B(0, R) so as p; € B(0, R), and thus Hml — Hng < 4-R2
Finally, we have for any i # j € [k],

17 — B3 > e — a5l + 1B — plls + 1By — ][5 + 2000 — )7 (B — p2s)

+2(p; — p‘j)T(ﬁ’j - IJ’j) + 2(ﬁz - I'l'i)T(ﬁj - Hj) (16)
> (|t — ;)]s — 2¢2 — 8Rey — 263 (17)
= [l =y l; — 8Rer — 4¢3, (18)

Now, with the above results, we note that

Jim (¥, P) ZZU |l: — (19)
i=1 j=1
n k 9 n k )
<Y N UG (o — || e > 0D |l — By ||, + o(€d). (20)
i=1j=1 i=1j=1

Now since p; € B(0, R), we can say that fi; € B(0,R+€1). x; — ﬁJHz < 2[R+ (R+

€1)?]. Hence,

n k
(X, P) < S STU ||a — By|[5 + 2nkaes[RE + (R+ 1)) + o). 1)
=1 j=1

Next, using (13), we get

n k
S - £ DU e R+ DU @

=1 5=1 =1 j=1 1=1 j=1
n k
<SS Ul -yl A4 Re €] (23)
i=1 j=1
=Jm(X,P)+n[4-R e +€i], (24)

where the second inequality follows from the fact that U;; € [0,1], and thus >, Z
i ijl i = n. Therefore, we obtain

zg—

Jin(X,P) < Jim(X,P) +n[4-R-e1 + €] + 2nkaes[R* + (R+e1)?] +0(e) (25
< Jim(X,P) +n-O(er) +nk - O(ez) +n - o(€]) + nk - o(e3). (26)
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We are now in a position to bound XB(X, P). Using (T8) and (26), we have

XB(X,P) = .Jf”‘(X’AP) — 27)
k- min |, 7

Jim (X, P) +n-O(e1) + nk - O(ez) +n - o(€3) + nk - o(€3)

< : 5 (28)
nk - [mmi# | 1; = 15|, — 8Res — 46%]

_ Jim (X, P) n-O(er) +nk - O(ez) +n-o(e2) + nk - o(e3)

nk - miniz || — b nk - minizg || — g
4 .me(X,P) s — 0(61) 5 +0(6% —|—6§) (29)

k- ity [|pe; — g minis; || = pl
— XB(X,P) + XB(X,P) - — Oer) +— Oez) .

T2 5 H/‘v - »“sz T2 5 ||“i - “jHZ
2 2
—|—0< __ate 2). (30)
minizj |1 — sl

Using the same steps a similar lower bound can be obtained, which concludes the proof.

B Auxiliary Lemmata

In this section we present and prove a few auxiliary results which will be used in the proofs our main
results. We start with the following standard concentration inequalities.

Lemma 3 (Hoeffding’s inequality). Let X1, Xa, ..., X, be i.i.d random variables, such that |X;| < R
a.s., and EX; = p, for all i € [n]. Then, with probability at least 1 — 6,

1 n
E;Xi_ﬂ

ifn > clog(1/9) where ¢ > 0 is some absolute constant.

< Re, €2y

2¢2 ’
Lemma 4 (Generalized Hoeffding’s inequality). Let X4, Xo, ..., X, be i.i.d random vectors, such
that ||X;||, < Ra.s., and EX; = p, for all i € [n]. Then, with probability at least 1 — 6,
1 ’
~> Xi—p|| <R% (32)
n
i=1 2

ifn > Cl%(gl/é), where ¢ > 0 is some absolute constant.

The following locality lemma states that the fuzzy k-means function is strictly increasing.
Lemma 5. Let (X, P*) be a clustering instance, where P* refers to the optimal solution for the
fuzzy k-mean problem (namely, minimizes the objective in (2)). Then, for any i,j € [n] and £ € [k]

with ||x; — ;L;Hg <|lx; — p; ; we have U;p > Uy

Proof of Lemmald] Consider some i,j € [n] and ¢ € [k] with |x; — u;ng < |lz; — u§||§ By

definition {U%,}7_, minimizes the cost 37, U% [|2; — ,||5. This implies that,

a 2 @ 2 ey 2 @ 2
U i — melly + UG lleg — pelly < UTe [l — pelly + Uzl — plly (33)
which is equivalent to,
a 2 2 o 2 2
Ui (s = pl = Ny = mal3] < U3 [l — magl3 = Ny — magl3] (34)
Since ||x; — u£||§ — |lz; — ;LZHE < 0, we get U > U, which concludes the proof. O
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Algorithm 6 Algorithm for estimating the mean p; for any j € [k].

Input: X, Ofyzzy, v, and m.
Output: i,
1: Initialize S <+ ¢.

2: fors=1,2,...,mdo

3:  Sample ¢ uniformly at random from [n] and update S + S U {i}.
4 Query Ofyzzy (1, 7).
5
6

: end for > e
N . o
: Compute p, = <L,
Pute ft; = =57 s Ug

Next, we analyze the performance of Algorithm[6] which estimates the center of a given cluster using
a set of randomly sampled elements. Note that this algorithm is used as a sub-routine in Algorithm|[T}

Lemma 6 (Estimate of mean using uniform sampling). Let (X, P) be a consistent center-based
clustering instance, and let § € (0, 1). With probability at least 1 — 6, Algorithm@outputs an estimate
p; such that

2 _4R? e 1
e = 855 = /5, loe (35)

where Y £ mingeg) % > ) Uij» and ¢ > 0 is some absolute constant.

i€ ij°

Proof of Lemmal6] First, note that
s 2ies Uiz _ (1/m) 3 ics Vg A e
! Zies U?j (1/m) ZiES U?j Y
Recall that the true mean of the ™" cluster is

o, = Eie[n] Ui _ (1/n) Eie[n] Uiz, s ﬁ 37
T Yiem UG (/1) Yiem Vs Y

It is clear that Az and Y are an unbiased estimators of A, and Y, respectively. Now, note that we can
write Az as an average of m i.i.d random variables T;, = U;?‘p ;Ti,, where i, is sampled uniformly

(36)

at random from [n], and included to the set S in the third step of Algorithm E] as the p*" sample.
Similarly, Y can also be written as the average of m i.i.d random variables Yz-p = U?p je Further, notice
that Ez; = A, ||, ||2 < R, and similarly, IEV% =Y, and qu| < 1,forallp € {1,2,...,m}.
Next, note that

A Az —As Az Y=Y
R B A e (8
Thus, using the triangle inequality we get
N Aw — Az Ae Y =Y Ao — Az Y-Y
-l < | H < R e
HJ J||2 Y ) Y Y |, Y ) Y |,

where in the last inequality we have used the fact that Hﬁj H y = Hj\m / \?HQ < R. Then, the generalized
Hoeffding’s inequality in Lemma[4] implies that with probability at least 1 — 9,

S 2 c 1
Az = Az|; < R21/%log5, (40)
1

2 _4R? [¢
< —— 3/ — —.
27 Y2 m10g5 “1)

which concludes the proof. O

for some ¢ > 0, and thus,

Hﬁj _l‘jH
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The following lemma shows that if for a given cluster 5 we have been able to approximate its center
well enough, then Algorithm [2]computes good estimates of the corresponding membership weights
with high probability.

Lemma 7 (Estimate of membership given estimated center). Let (X, P) be a consistent center-based
clustering instance, and recall the definition of v € Ry in (). Assume that for any j € [k|, there
exists an estimator le such that ||uj — le H2 < e with € < . Then, Algorithm |2|outputs Gij, for
i € [n], such that

0 S Uij - G’L] S mn, Gij € {07777 277a ey 1}) VZ € [n]a (42)
Sor some n € Ry, using Q = O (logn/n) queries to the membership-oracle.

Proof of Lemma [Z] First, note that since P is a consistent center-based clustering, we have

U Uﬂuj (i2)j if 41 <i9,%1,12 € [n] 43)

7y (i1)j =
Indeed, when the elements of X are sorted in ascending order according to their distance from g, if
x;, is closer to p; than it is to x;,, then U;, ; > U;, ;. Also, since H“j — ﬁng < € <+, using (§),
this ordering remains the same. Therefore, sorting the elements in X in ascending order from g ; as
in the first step of Algorithm [2]gives the same ordering with respect to the true mean. Now, given

n € Ry, foreachs € {0,1,2,...,1/n}, in the third step of Algorithmwe binary search to find an
index ¢, such that

ly = argmax U
1€[n]

> s1. 44)

Trﬁj (1) =
This is done by using O(logn/n) membership-oracle queries. Finally, in the last three steps of
Algorithm foreach s € {0,1,2,...,1/n}, and fori € {{,, s —1,..., €541y + 1}, we assign
Uﬂﬁj (iy; = sn. Itis then clear that the estimated memberships satisfy (#2), which concludes the
proof. O

C Proof of Theorem 1]

In this section, we prove Theorem [I] To that end we use the auxiliary results established in the
previous section. We start with the following result.

Lemma 8 (Estimate all means). Let (X, P) be a consistent center-based clustering instance, recall
the definition of B € (0, 1) in (2?), and let § € (0, 1). Then, with probability at least 1—6, Algorithm6]

Rk~
efe

4
outputs fi; such that Hil] — ujH2 <€ foralyje[k], ifm> ( ) clog %,for some ¢ > 0.

Proof. Using (??) and Holder’s inequality, for any j € [k] we have,

1/ (a—1)/c
a a/(a—1) b
PO 21 2> Uy = (45)
i€[n] 1€[n] i1€[n]
which implies that
1/«
N 5” _ ﬂnl/a
Z Uij Z kn(a—l)/a - k ’ (46)
1€[n]
and thus
n (e}
> U > kia 47
1€[n]
Therefore,
Y = min 721'6[71] U% > <£>a
JEK] n —\k
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Now, using Lemma@ and the last result, taking a union bound over all j € [k], we get

N 2Rk® / ¢ 1\1/4
17 = s, < =5 (g og g) se (48)
with probability 1 — kd’. Rearranging terms and substituting § = k¢, we get the proof of the
lemma. 0

Proof of Theorem Il We are now in a position to prove Theorem[I] Using Lemma|[g] we can conclude

w4
that by taking m > (':gn ) clog % in Algorithm which would require km membership-oracle

queries, we get Hﬁa — W ||2 < ¢, forall j € [k]. The time-complexity required to estimate all
these means is of order O(kdm). Furthermore, using Lemma [7} using O(logn/n) membership-
oracle queries, Algorithm 1| outputs membership estimates such that holds. This requires a
time-complexity of order O(logn/n). We note, however, that the membership {U” };?:1, for any
i € [n], may not sum up to unity, which is an invalid solution. To fix that in step 7 of Algorithm

- 1— ]?_ 01 .. . .
we add to each U;; a factor of %, and then it is clear that the new estimated membership

weights sum up to unity. Furthermore, these updated membership weights satisfy |U” —U;;| <, for
alli € [n] and j € [k]. Therefore, we have shown that Algorithm/[1]is (e, 7, Q)-solver with probability
at least 1 — §, which concludes the proof.

D Proof of Theorem

In this section, we prove Theorem [2|using induction.

Base Case: As can be seen from Algorithm 4] in the first step of this algorithm we sample m indices
uniformly at random and obtain the multiset S C X'. Subsequently, we we query U;; foralli € S
and j € [k], and then in the third step of the algorithm we choose the cluster ¢; with the highest
membership value, namely,

t1 = argmax Z Ug;. (49)
J€R]l jes

Then, in the fourth step of this algorithm we estimate the mean of this cluster by

t1 T a
! ZieS Uij
We have the following lemma, which is similar to Lemma@

Lemma 9 (Guarantees on the largest cluster). Let (X, P) be a consistent center-based clustering
instance, and let § € (0,1). With probability at least 1 — ¢ /k, the estimator in (50) satisfies

. 1/4
2R (£ log 2F)

A — = (51)
B~V 2m 98
where ¢ > 0 is an absolute constant.
Proof of Lemmal[9] Recall that Lemma 6] tells us that with probability at least 1 — &§/(2k),
- 2R [/ ¢ 2K\ M4
- < Lpg 52
Hlit1 Ht1H2 > <m 0og 5 > ) (52)

where Y = (1/n) 3 ;¢ () Ui, - Now, since ¢; is chosen as the cluster with the maximum membership
in the subset S, we will first bound Y £ (1/m) > ics US, . Notice that ), ¢ 25:1 U;; = m, and
therefore, using Holder’s inequality we have that for o > 1,

1/ (a—1)/«

k k k
Y g 3% pe/enn >3 "> Ui =m, (53)

i€S j=1 i€S j=1 i€S j=1
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which implies that

k
m m
SSug | = = , (54)
9 a—1)/a a—1)/a
£y (km)(@=D/a ~ la—1/

and therefore,

ZZU” > = (55)

€S j=1

Uit, > z& which in turn implies that v > k% Next, using

Accordingly, we must have .
Hoeffding’s inequality in Lemm:H we obtain that |[Y — Y| < 7= log 2, with probability at least

[ 0

1 —6/(2k), and therefore Y > Y - 5o log 27}“, which concludes the proof. O

Using the above result and Lemma([7] we obtain the following corollaries.

Corollary 4. Let (X, P) be a consistent center-based clustering instance, and let § € (0,1).
Then, with probability at least 1 — §/k, the estimator in (30) satisfies ||ﬁt1 — g, H2 < ¢ if

R4k4a+l

474
m > CRiff log %. Also, this estimate requires O ( log ) membership-oracle queries,

and a time-complexity of O (dR k1o log %)

)

Proof of Corollary[] The proof follows from rearranging terms of Lemmal9] The query complexity
follows from the fact that we query the membership values U;; for all the i € S, j € [k] and the
time-complexity follows from the fact that we take the mean of m d-dimensional vectors in order to
return the estimator i, . O

Corollary 5. Let (X, P) be a consistent center-based clustering instance, and recall the definition
of v € Ry in (B). Assume that there exists an estimator fi,, such that ||, — fi,, H2 <ewithe <.

Then, Algorithmoutputs Use,, for i € [n), such that
0 < Uity = Ui, <y Uiy €{0,m 2,00, 1}, Vi€ [n], (56)
Sor some n € Ry, using Q = O (logn/n1) queries to the membership-oracle.

Proof of Corollary[3] The proof of this lemma follows the same steps as in the proof of Lemma[7} [J

Corollaries 4] and 3] show that the base case of our induction is correct.

Induction Hypothesis: We condition on the event that we have been able to estimate
g, s Mg, - - - g, Dy their corresponding estimators i, , [y, . . - , [, respectively, such that

<e

— )

2

Hﬁtj — Ky vjeld, (57)

J

and further, we have been able to recover Uy, for all i € [n] and j € [£], in the sense that

0< Ui, = Ui, <m1, Uy, € {0,m1,2m,...,1} ,Vie[n],je [l (58)

The induction hypothesis states that we have been able to estimate the means of ¢ clusters up to an
error of € and subsequently also estimated the memberships of every element in X" to those ¢ clusters
such that the estimated memberships are an integral multiple of 7; and also have a precision error of
at most 7;. Given the induction hypothesis, we characterize next the sufficient query complexity and
time-complexity required in order to estimate the mean of the (¢ 4 1)t cluster and its membership
weights.

Inductive Step: Let Z, = > iefn) 2ojelq Yit;» and define Xy = £ {ien]: el Uitj = sy }, for
s €{0,1,...,1/m}. In step 10 of Algorithm l we sub-sample r indices uniformly at random
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with replacement from each of the sets X, for s € {0,1,2,...,1/n1} . Let us denote the multi-
set of indices chosen from X, by ). Subsequently, in the step 12 of Algorithm [4] for every

s €40,1,2,...,1/m} and for every element in )5, we query the memberships to all the clusters
except t1,to,...,t, from the oracle, and set
X
toy1 = argmax Z || Z Us (59)
JERIN\{t1,t2,....te} ey,

Step 13 of Algorithm ] computes
[Xs | ,
~toy1 A Zs T Zieys U%e+1m1
o | X | ’
Es T ZiEys Ugﬁul

The following analysis the performance of the estimator in (60). We relegate the proof of this result
to the end of this section.

(60)

Lemma 10 (Performance of (60). Let (X, P) be a consistent center-based clustering instance, and
let 6 € (0,1). With probability at least 1 — §/k, the estimator in (60) satisfies

2R (5 log ﬂ)l/4 (n —Z;+ntn )
r n10 1

2 (n Zo—nln1 /< log %)a

R T —(n—2Zy—nln),/5- log & n15
where ¢ > 0 is an absolute constant. The query and time-complexity required for evaluating this
estimator are of order O(kr/n1) and O(rd/n1), respectively.

, (6D

HHQH — My,

Using the above result and Lemma([7] we obtain the following corollaries.

Corollary 6. Let (X, P) be a consistent center-based clustering instance, recall the definition of B €
(0,1)in (??), and let 6 € (0,1). Then with probability at least 1 — § /k, the estimator in (60) satisfies

4ka

H,utHl “tz+1H2 <e¢ifr > 454a T log and m < (1 — 7) Also, this estimate requires

0] (544[3:;’1 10g ) membership-oracle queries, and a time-complexity of O ( T 54“* 1 log " 6)

Proof of Corollary[6] Using (??) and the fact that n — Z, = Zie[n] Zje[k]\[e] Uit;» we have the
following upper and lower bound

n—2Z; _ Bn Bn
> —7Z,<n-—— 2
7 2k and n e <n o (62)

which follows from the fact that the average membership size of the any k — ¢ clusters must be

larger than the membership size of the smallest cluster. Thus, if 77 < % (1 — %) as claimed in the

statement of the lemma, we have ném < n — Z,. With the chosen values of n; and r, and the fact

that ¢ < k, we get nfn log = o(n — Z;). Therefore,
IR (2105 ) (02
| < tws) 2 63)
Brppy =P, = —Zy)e
2 nogibl(iz,)g)a —2 QLT log :Tkg(n - Zf)
4R (10 %)1/4
U A PN s (¢4
noe—1(k—0)> o Ogﬁ
4R (2 log i)w
s i
— (65)

we ot — 2\ 3 log 2%

Again, for the chosen value of r, it is clear that , / log ( kf ; 15 ) and thus we get that
< ¢, with probability at least 1 — §/k. O
2

Hl‘l’tg+1 - I‘Ltg+1
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Corollary 7. Let (X, P) be a consistent center-based clustering instance, and recall the definition

of v € Ry in (). Assume that there exists an estimator ﬁt£+1 such that H“tul - ﬁt£+1 < e with
2
€ < . Then, Algorithmoutputs Uity ., for i € [n), such that
0 S Uit“_l - Uit({+1 S m, Uit1z+1 S {07 m, 27717 sy 1}7 VZ S [’I’L], (66)

for some n € Ry, using Q = O (logn/ny1) queries to the membership-oracle.
Proof of Corollary[7} The proof of this lemma follows the same steps as in the proof of Lemma[7} [J

Proof of Theorem[2l We are now in a position to proof Theorem [2} To that end, we use our
induction mechanism. Specifically, Corollaries 4] and [5| prove the base case for the first cluster ¢;.
Subsequently, Corollaries E] and[7]prove the induction step after taking a union bound over all clusters

and using n; = +(1 — % ). Finally, we can use Lemmaln order to estimate the memberships
Uj; Vie [n], J € [k} up to a precision of 77y using an addition query and time-complexity of
Olklogn/1s).

It is left to prove Lemma[I0]

Proof of Lemmal[I0} Let X £ {0,1,...,1/n:}. We have

u _ Z Eln ]U%Ml i ZseE ZiEXS Uioffulmi N Zsez As 67)
tor1 - o - 9
o Zie[n] Uit/{+1 ZSEZ Eie?(s Uit15+1 ZSEZ Y

and that
ﬁtz = ZseE V;l Zzeye 1tz+1 Ly Z é‘ (68)
' Zeez ! Zzeys ﬁful Z Y
Now, note that we can write A, as an average of r i.i.d random variables Ts, 2 X US4, iy
where 7, is sampled uniformly at random from [n], and included to the set ) in the step 9 of

Al gorlthml as the p*" sample. Similarly, Y, can also be written as the average of 7 i.i.d random
variables Y, ; = | Xs | UZ tor1: Therefore, it is evident that Ex,;, = As; and EY,; = Y, for all

p € [r]. This implies that the numerator and denominator of (68) are both unbiased. Now, note that

ﬁ _ Zsez 5\5 _ Zsez As + Esez 5‘5 —As + Zsez 5‘ Zsez Ys — YS (69)
= _° = — .
e ZSGZ YS ZSEE YS ZSEE YS Z Y ZSEZ YS
Thus, using the triangle inequality we get
~ 5\5 - )\s Ys - Ys
[ R S e I S R (70)
o iz SEZZ >sex Yslly s Dsex Yslly
where the last inequality follows from the fact that Hﬁf |l = H Zeende <R.
:.EE Ys 2

Next, we note that for i € )., we have

U, <0=> Uu)*<(1- Z Ui, )* = (1 — sm)*, (71)

J€Ele]

where we have used the induction hypothesis in (58). Also, using Lemmas [3]and 4] for all s € X,
with probability at least 1 — §/2k,

< ofc ak\ Y
| As = As]|, < RIA|(1 — sm) (T10g7715>

1/4
< RJAL|(1— smy) (C log ‘”“) , 72)
n
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and

- c 4k
Yo = Y| <11 = smp)® ;logm
4k
<|X|(1—s — 10 : 73)
| X[ (1= sm1) g5 (

Using the induction hypothesis in (38) once again, we have
Y S UL <Y (4 U)X s b, ()
SEXIEX; jE[I] SEX IEX JE] sEX

and thus

D 1| (1 = sm) < n—Zy+ b, (75)
SEX

Next, we lower bound > . Y. To that end, in light of (70), it is suffice to bound __ . Y. Using

Holder’s inequality we have

( > > U%)l/a( 5 5 1a/(a71)>(a—1)/a

1€V FEKI\{t1,t2, .. te} 1€Ys je[k]\{t1,t2,...,te }

> > Uij, (76)

1€Ys jE[R]\{t1,t2,...,te}

which implies that

9 F T Gk-h)eva

1€Ys jE[R\{t1,t2,..ste}

and therefore,

o Zz V. Z [KI\{t1,ta,...,te} Uij i
o U (= (r(jl:—f))<a—1) 2%) ' (78)

1€Ys JE[R\{t1,t2,0ste}

To further lower bound the r.h.s. of (78], we use the power means inequality and ger

| Xs | A\ X, a
2sex T(Zieys 2 ElN (b b2t} Uw) N (Zsez 2 S ey, Cetih it tarte} Uij)
X/ - Xg/
Py X P ey

(79)

Thus, the fact that ez - S = 2, combined with (78)) and (79), imply that

Xs
(Zsez | . ‘ Zieys Zie[k]\{tl,tz,...,n} Uij>
80
(n(k — £))(e=1) (80)

v

Y Y

SET 1€Ys je[kI\{t1,t2,....te}

| Xs |
<n - ZSEZ r Zieys Zje{tl,tz,...,n} Uij)
(81)

(n(k =)~V

We next upper bound the term inside the brackets at the r.h.s. of (§1)). To that end, for a given s, we
define the random variables

Hyi, 2 || S Uii—sm |, (82)

GE{t1 taete}
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where where 7, is sampled uniformly at random from [n], and included to the set Vs in the step 9 of Al-
. . . L. L. . X

gorlthmas the pth sample. With this definition, it is evident that | - | 2iey, (Cjetintan ey Vid —

sm1) can be written as the average of these r i.i.d random variables, namely,

@ 3 > Uy—sm| = % > Haa (83)

1€Ys ]‘E{thtz,..wtg} 1E€EYs

Note that EH,; = Zz‘e/\g Zje{tl,tz,...,t@} U;; — |Xs|sm and |H57ip| < {fm for all i, € [r].
For simplicity of notation we define Zy = 3,y e 1, 1a....1,) Uij- Then, using Hoeffding’s
inequality in Lemma we have with probability at least 1 — 6 /4k,

X,
LIS SN D DU I SR,

1€Ys \JjE{t1,ta,....tr}

c 4k
< |Xs|f771\/§10g%, (84)

| c 4k
<
" E E U;; < max <|XS| s Lo + | Xs| b o log ) ) (85)

1€Ys jE{t1,t2,....t¢e}
4k
= Zy + max <|xs| — Zo, | X b1y o log ) . (86
2r 6

Summing (86) over s € ¥ and using the fact that

and thus,

sex Lse = Zy, we obtain

| X . 4k

n—ZTZ Z Uijj >n—2Z;—min [ n — Zp,nly 1g171§ 87)
sEX i€Vs jE{tr,ta,te}

Substituting the last inequality in (8T)), we finally get

Z @ Z Z U (n— Zy —nlmy/ 5= log ,715) . 88)

92T (k) D

sex T iey, jelk\{tn tarte)
Next, recall that the index of the (¢ + 1)t cluster is chosen as
o LA
+1 = argmax Z Z U”, (89)
JERI\{t1,t2,-te} sox =
and therefore,

YINAED DL DTN (90)
sEX

seEX 1€YVs

(n —Zy—nlm m) 1)

no=1(k — £)«
Combining (73), (75), and (©T)), we get a lower bound on }_ . Y as follows

ZYS . (n—Zz—nEm,/ log mg) | -7 ) c 4l<:' ©92)

noe—l(k — £)

Y]

sEX
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Algorithm 7 MEMBERSHIP2(X, fi, , ) Estimate the memberships U;;, for all i € [n] given an
estimated mean i,

Input: Ofyyyy . 14: Query Ofuzzy(ﬂ'ﬂtl (min(0, py,_,
1: Sort the elements @1, 2, . . . s T in ascend- logn — 1)), ) and obtain the mem-
ing order according to sz — By H2 Denote berShiP UTI'A (min(0,p, —logn—1)),t1-
the resultant permutation of [n] correspond- 15: Ht1 fa—1

X Setn, = U, ; _ _
ing to the sorted elements by 77, . la gy (MIn(0:pn,_y —logn—1)),t2

and p,,, = min(0,p,, , — 1 —logn).

A A
2 Setm =1—Ur, @y, and pyp =n. g fori = p,,,py, +1,-..,py, , — 1do
3: Query  Ofuzzy(mp, (n),t1) to  obtain 17: Query Ofuzzy(ﬂ'ﬁtl (i),t1) to obtain
U"’ﬁtl (n)t1- Set Uﬂ'ﬁtl (n),t2 = I - Uﬂ'ﬁtl (i)t1+
Uﬂﬁtl (n)t1- 18: Set Uﬂ'ﬁ (8),ta — 1-— Uﬂ'ﬂ (4)t1 and
4: Tnitiali _ tq )0 ) tq
 Initialize Py, Py = ¢ set X = X U, (i)
5. forq=2,3,...,3logn do 19: df 1
6:  Initialize X, = ¢ and set , = 14+ ' o tor
7. Find p/, = argmin, ;U Nt > 20: endif
: e Pn, EMNign) Y, ()2 = "la 51 end for
using BINARYSEARCH2(X, T, 7g)- 22: fori=0,1,...,M310gn — 1 do
8 if[p), —py, .| = logn then 23:  Set Owﬁf ()ts = 0and set Py = Py U
9: Set py, = P}, ma (i) 1
10: fori=p, ,py, +1,...,pp,_, —1do 24 endfolr
11: Set X; = Xy U g, (i) and set  p5. gerp, — Ug X,
U“ﬁtl (i)te = 1 — UTl'ﬁ,tl (Png)t1 26: Return Py, Py, X1, Ao, ..., & and Um for
12: end for all i € [n].
13:  else
Finally, combining (70), (72), and (92), we get
~ Xs - As Ys - Ys
e, = 1|, <D +RY S 93)
e41 ety = Zsez Y, 5 =, Zsez Y 5
c Ak 1/4 _
2R ( & log e n—2Zy+nlm
< 4 ;o (94
(nfzgfnfnl,/ilog %) - T
ne—1(k—£)> —(n—2Zy—nlm),/ 5 log e
with probability at least 1 — ¢ /k, which concludes the proof. O

E Proof of Theorem

To prove Theorem 3] we will establish some preliminary results.

E.1 Auxiliary Lemmata

We start with the following result which shows that given a good estimate for the larger cluster among
the two, we can approximate the membership weights of the smaller cluster reliably. This is done in
Procedure[7]

Lemma 11. Let (X, P) be a consistent center-based clustering instance, recall the definition of
v € Ry in @), and let k = 2. Assume that there exists an estimator fi,, such that ||, — Fiy, ||2 <e

with € < . Then, Procedurelé]outputs Gitz, fori € [n], such that

Ui, € AC {Uy, :i € [n]}, (95)
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Algorithm 8 BINARYSEARCH2(X', , x): Search for the minimum index ¢ such that 1 — U5y, > @

Input: Ofyyzy.
1: Set low = 1 and high = n.
2: while low # high do
3:  Set mid = | (low + high)/2].

4 Query Ofyzzy (m(mid)t1) to obtain U (mia)e, -
5: if Uﬂ-(mid)tl Z 1 — z then

6: Set low = mid + 1

7:  else

8 Set high = mid

9: endif

10: end while
11: Return low.

with | A| = O(log® n), and

Mmax;en] Uit2
max U, <max | ————

i€[n]:Uir, =2

3 s mjn 2U7;t2> 5 (96)
n i€[n]:Uir, =2

forall x € A, and for some 1 € Ry, using Q = O(log2 n) queries to the membership-oracle, and
time-complexity O(log? n).

Proof of Lemma First, note that since P is a consistent center-based clustering, we have
U(,Ml(ﬁ),g2 < U(,Ml(rz)t2 if 1 <ry 11,72 € [n]. 97)
Indeed, when the elements of X’ are sorted in ascending order according to their distance from
My, > if x; is closer to p, than it is to x;, then Uy, > Uy, and thus U;, < Ujg,. Also, since
||ut T ||2 < e <+, using (), this ordering remains the same. Therefore, sorting the elements in

X in ascending order from fi, as in the first step of Procedure|7|gives the same ordering with respect
to the true mean. Now, given € R, we search for the index

p% £ argmin i, 1 [U”ﬁf,l G)ta = 77} , (98)
which can be done by using the binary search routine in Procedure which ask for at most O(logn)
membership-oracle queries. We will do this step for 71,72, . .., 1310g n, as described in Algorithmm
The values of {7);} are chosen as follows. We initialize ; = Urs, (n)t, and py, £ 1, and update the

t1
other values of 7;’s recursively as follows. Let V = {1,2,...,3logn}. Foreach ¢ € V' \ 1, we first
set 1g = 1)q—1/2 and subsequently, if |p; — py,_,| > logn, then 7, remains unchanged and we set
P, = p’nq. Otherwise, if | p;]q — Pn,_,| < logn, then we update both 7, and p, as follows:

Pp, = min(0,p,,_, —1 —logn) (99)
(100)

nq = Uﬂ'ﬁtl (pnq)tQ
For each value of ¢ € V, we initialize two sets A, X; = ¢. If |p;7q — Pyy_:1| > logn, then we
update Xy = {mg, (i) : py, <@ < py,_, —1,i € [n]} andif [p], — py,_,| < logn, we update
X, = {ﬂ'ﬁtl (@) : py, <0 < py,_, — 1,1 € [n]}. Itis clear that n, < n,_1/2 and therefore, we must
have 1310 n < nl/n3. We now define the following sets:

Pr2{i€[n]: Ui, < n310gn}s (101)
P2 A (102)
q
For each i € Py, we estimate Gitz = 0 and since Uy, < Ur, (n)to/n> and Urs, (n)ts =
' "

max;e[n] Uit,, we must have

max;e(n) Uit,

‘Gitg — Ui, foralli € P;. (103)

n3
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For each 7 € P,, we query U;;, and estimate Gitz = Ujz,. Notice that we have

P\ {P1UP:} = UXq, (104)

and therefore for each X, such that X, # ¢, we estimate Uztz = U, 1, (ng)t2 for all 7 € X,. Now,

since
Tlg—1

Uﬂ-ﬁtl (p77q—1_1)t2 é anl and Uﬂ—ﬁtl (pnq)t‘z Z nq = 2 s (105)
we must have that for all ¢ € &} such that X, # ¢,
max Uy, < 2min Uy, (106)
i€X, i€X,

which proves the lemma. Note that each binary search step in Procedurerequires O(logn) queries,
and may require an additional O(logn) queries if X, # ¢. Similarly the time-complexity of each
binary step is O(logn) as well. Since we are making at most 3 log n binary search steps, we get the
desired query and time-complexity results. O

Lemma [TT]implies the following corollary.
Corollary 8. Consider the setting of Lemma Then,

~ max;e(, U
> [0 — Ui, ZUm ;e (107)
i1€[n]

Proof. Recall that V £ {1,2,...,3logn}. Then, note that

> ‘Ditg —Uit,| = Uity — Uity Z ‘Uztg Ui [+ > ‘Uitg — Uity | -
i€[n] €P1 qEV i€Xy:| Xy |F# P
(108)
Next, we bound each of the terms on the r.h.s. of the above inequality. We have,
> Ui = Viea| =0, (109)
1€EP2
Po| max; U, max;cr, U;
> |0 - V| < < PPl maicin Uy 1mXietog i (110)
n n
1€Py

Finally, for each ¢ € V such that X, # ¢, recall that Um, = minjeyx, Uis,, for all i € X, and
therefore,

max;ex, Ui, _ Diex, Yits

< Ui, — U, ' :
ErElaXf Uztg = 2 Ig}gl U’Ltz ‘Ultg U1t2 = 9 = |Xq| ) V'L S Xq
Thus,

>3 O~ Uu, I

qeEVicX,
which proves the desired result. O

It is left to estimate the center of the smaller cluster among the two. This is done in Steps 7-13 of
Procedure|5| Specifically, for each ¢ € V, we randomly sample with replacement r elements from X,
where X, # ¢. We denote this sampled multi-set by ), and query Uy, , for each i € ),. We also
sample 7 elements from P;, and denote this sampled multi-set by Q, and query U;;, for each ¢ € Q.
Note that we have already queried U;,, for every i € Py in Step 19 of Procedure[7] Subsequently, we
propose the following estimate for the center of the smaller cluster,

|Xq | |P1]
quleq¢¢ Tq ZiGy Uszwi + Zi€P2 U%‘zwi + ZiGQ rl U'?;’Q 4

1] [Py
ZqGV:Xq;éd) Tq Ziqu ita + ZZGPQ U + ZZGQ Tl U%2

The following result gives guarantees on the estimation error associated with the smaller cluster
among the two.

i, = (111)
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Lemma 12. Let (X, P) be a consistent center-based clustering instance, and let § € (0,1). Then,

~ . /R4
with probability at least 1 — 6 /2, the estimator in (I11)) satisfies Hth — Iy, H2 <eifr> “’ﬁ log %,
where ¢’ > 0 is an absolute constant. Also, this estimate requires O (rlogn) membership-oracle

queries, and a time-complexity of O (drlogn).

Proof of Lemmal[I2] First, note that [n] = Ug.x, 24Xq U P1 U P,. Therefore,
gty 2o N T 2iep, Ui, @i T

Eq;xq;éqs Yo+ 2iep, UG, +B 7
where A, £ Zyzexq Us, i, p £ Zz‘ePl Us, i, Yy £ Ziqu Ug,,and B £ Zz‘ePl Ug;,- Similarly,
using (TTT)), we have

[y, = (112)

Doqevix, 2o M T 2iep, Ui, i TP

By, = a F (113)
Dogevixg,to Ya T 2iep, Ui, +B

N 2 14Xl 5 L [P VARSI B 2

where Ay = 52500y Ul @i, p = Yico 7 URmi, Yo = 55 ) ey U, and B =

ZiE o |Prl‘ 32. Notice that for each ¢ € V), the random variable 5\q can be written as a sum

of r i.i.d. random variables Xy ;, = |X,| US, ;. where i, is sampled uniformly over [n]. Similarly,

Y, written as a sum of 7 i.i.d random variables Yy ;, = |X,|Uf, , where again 4, is sampled

uniformly over [n]. Finally, both p and B can also be written as a sum of 7 i.i.d random variables
pi, 2 |Py| Ui i, @i, and B;, 2 Py U ., respectively, where i, is sampled uniformly over [n].

Thus, it is evident that EA,; = >icx, Ui, i and EYqi, = >icx, Uity forall p € [r]. Similarly,
Ep;, = > icp, Ui, ®: and EB;, = > icp, Ui, forall p € [r]. Next, we note that

ito?
~ Xq — A p—p
Ky, = Hy, + o + o
: : qezv Dqevix, 2 Ya T 2ier, Ui, ¥ B Dievin, 20 Yo+ 2iep, Ut +B
+ iy, - 2qevidy#o V1~ Digevix 2o Yo+ B—B (114)
: D qevix,ze Ya T 2iep, Ui, +B
Therefore, using the triangle inequality and the fact that Hﬁw H2 <R, we get
~ Xq — >‘q pP—p
Hi, — K < o + o
|72 & H2 ;, D oqe0x, 20 Ya T 2iep, U, +B ) Dogevixgto Ya T 2iep, Ul +B )
Y, Y, B-—B
+ R q q — + R —
q;, quvzxﬂe(ﬁ Yo+ iep, U, +B ) EqGV:Xq;é(b Yo+ Xiep, U, +B )
(115)
Now, for any ¢ € ), we have by definition,
(o7
P IR (116)
and for any i € Py,
max ¢, U
us, < 7J2[3] ita (117)
Next, using Lemmas [3|and[d] we have for all ¢ € V, with probability at least 1 — 4,
1/4
- afc 2
[Ag = Aqlf, < R|Xq|(2U,rﬁt1 (P )12) (rlog n5> ) (118)

S o | C 2
Yy = Y| < \Xq|(2u,mtl(pnq)t2) 1/§log%7 (119)

B R|Py|max;crm U2 /¢, 2\Y4

1o~ pll, < e (H‘)gms) , (120)
_ P11l max;cr, U¥ 2

B-B| < Prlmaxjem Uie, fe) 2 (121)
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for some ¢ > 0. Substituting the above results in (TT3)), we get

2) 1/4 ZQEV:Xq;té(j) |Xq\(2Umtl (pr,,q)tl)a
g Dogevixgto Ya T 2iep, Ui, +B

[, =l < 2R (S 1o

1/4 "Pll max;en] U?tl
1 92R (Clog 2) n (122)
r nd quv:xq;é¢ Yo+ Zie% U%Q +B’
Noting to the facts that
Yo Ya= D UL ZIX|(Uny n)” (123)
qEV: Xy E b IEX, Xy
and
ST Yot Do UL, +B=D" UL, > UG, > maxUs, (124)
GEV:Xy £ i€Ps i€ln] i€ el
and finally that |P;| < n, we obtain
|7 I, <20MR (1 2\ (125)
Hi, = Hiy |l = rOgn§ -

. 4 . o~ .
Therefore, for any € > 0, with r > % log %, we obtain Hy,t2 — Uy, ||2 < ¢, which proves the
lemma. O

E.2 Proof of Theorem[3
First, Corollary {4| implies that a query complexity of O (E—f log %), and time-complexity of

0] (de—'f log %), suffice to approximate the center of the first cluster ¢; with probability at least

1 — §/2. Then, Lemma allows us to estimate U;;, for all ¢ € [n] using a query complexity of
O(log? n) and time-complexity of O(log? n). Also, Lemma|12|shows that a query complexity of

4 4 R
(0] (Ri# log 7716)’ and time-complexity of O (W log % , suffice to approximate fi,, up to

an error of e. Finally, we can use Lemma [/|to approximate U;; up to an error of 1 using query
complexity of O(logn/n), and a time-complexity of O(nlogn + logn/n), for all i € [n] and
je{1,2}.

F Experiments

Synthetic Datasets: We conduct in-depth simulations of the proposed techniques over the following
synthetic dataset. Specifically, we generate the dataset X' by choosing k& = 4 centers with dimension
d = 10, such that p; is significantly separated from the other centers; the distance from each
coordinate of p; to the coordinates of the other means is at least 1000. Subsequently, for each
i € {1,2,3,4} we randomly generate L; vectors from a spherical Gaussian distribution, with mean
u;, and a standard deviation of 20 per coordinate. We then run the Fuzzy C-means algorithrrﬂ and
obtain a target solution P to be used by the oracle for responses. In order to understand the effect of
B, we fix Ly = 5000, and vary Ly, L3, Ly € 5000 - ¢, where ¢ € {1,2,...,24}. It can be checked
that 3 = 4/(1 4 3¢). We run Algorithms [[|and[4] For the two-phase algorithm we take o = 2,
m=v,andn =0.1,and a« = 2, m = v/2.5, 71 = 0.1, and 72 = 0.1, for the sequential algorithm,
where v € {2000, 6000}. Setting the parameters in this way keeps the same query complexity for
both algorithms, so as to keep a fair comparison. We run each algorithm 20 times. For each algorithm,
we evaluate the maximal error in estimating the centers. The results are shown in Fig.|l| Specifically,
Fig.[Ta|presents the estimation error as a function of /3. It can be seen that for small /3’s, the sequential
algorithm is significantly better compared to the two-phase algorithm, whereas for larger 3’s, they
are comparable. Then, for § = 0.25,0.1, Fig. shows the estimation error as a function of the
number of queries. Finally, to understand the effect of the number of clusters, we generate k clusters

*https://github.com/omadson/fuzzy-c-means
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in recovery of means is plotted with [TJandf]with increasing queries keep- error in recovery of means is plotted
varying (. ing [ fixed. with varying number of clusters (k).

Figure 1: Testing algorithms over synthetic datasets.
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Figure 2: Classification accuracy of algorithms for the Iris, Wine and Breast Cancer datasets.

using a similar method as above. We take L; = 1000, and L; = 12000, for all 2 < ¢ < k. We vary
k € {2,3,...,11}. For the two-phase algorithm, we take « = 2, m = v, and n = 0.1, and o = 2,
m = /2.5, = 0.1, and 12 = 0.1, for the sequential algorithm, where v = {2000, 6000}. Fig.[Ic]
shows the estimation error as a function of k. We can clearly observe that the two-phase algorithm
performs significantly better as k increases but the sequential algorithm works better for small k.

Real-World Datasets: In our experiments, we use three well-known real-world datasets available
in scikit-learn [41]]: the Iris dataset (150 elements, 4 features, and 3 classes), the Wine dataset (178
elements, 13 features, and 3 classes), and the Breast Cancer dataset (569 elements, 30 features, and
2 classes). For the Iris and Wine datasets, we run the two-phase and sequential algorithms. We
take « = 2, m = v, and np = 0.1, for the two-phase algorithm, and @ = 2, m = 2v/3, r = m/m,
m = 0.1, and n, = 0.1, for the sequential algorithm, where v € {10, 20,...,410}, keeping the
same query complexity for both algorithms. These values do not necessarily satisfy what is needed
by our theoretical results. We run both algorithms with each set of parameters 500 times to account
for the randomness. In our experiments, we use a hard cluster assignment as ground truth (or rather
the target clustering P to be used by the oracle for responses), and use our algorithms to return a
fuzzy assignment. We must point out over here that our fuzzy algorithms can be used to solve hard
clustering problems as well and therefore, it is not unreasonable to have hard clusters as the target
solution.

Subsequently, we estimate the membership weights for all elements, and for each element, we predict
the class the element belongs to as the one to which the element has the highest membership weight
(.e., argmax; U;;, for element i Once we have classified all the data-points using our algorithms,
we can check the classification accuracy since we possess the ground-truth labels. Note that the
ground truth labels can be inconsistent with the best clustering or P*, the solution that minimizes the

3This is similar to rounding in Linear Programming
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Figure 3: Classification accuracy as a function of the fuzzifier o and the number of queries for the
Iris dataset.

objective in the Fuzzy k-means problems (Defintion [I)) but we assume that the “ground truth” labels
that are given by humans are a good proxy for the best clustering.

We then plot the classification accuracy as a function of the number of queries. Fig. 2] shows the
average classification accuracy for the above three data-sets by comparing the predicted classes and
the ground truth. For the Breast Cancer dataset, since the number of clusters is two, we additionally
compare the two-phase and sequential algorithms to Algorithmwith a=2,m=2v/3,r=m/n,
and n = 0.1. It turns out that for these real-world datasets, the performance of all algorithms are
comparable. It can be seen that the accuracy increases as a function of the number of queries, as
expected. Further, by using the well-known Lloyd’s style iterative Fuzzy C-means algorithm
with random initialization [21]], we get an average classification accuracy (over 20 trials) of
only 31.33%, 35.96% and 14.58% on the Iris, Wine, and Breast Cancer datasets, respectively.
This experiment shows that using a few membership queries increases the accuracy of a poly-time
algorithm drastically, corroborating the results of our paper.

Accuracy as a function of o:: As discussed in right after Theorem [2} the “fuzzifier" « is not subject
to an optimization. Nonetheless, if we assume the existence of a ground truth, we can compare the
clustering accuracy for different values of «. Accordingly, in Fig.[3]we test the performance of our
algorithms on the Iris dataset for a few values of c. We calculate the average accuracy over 500
trials for each set of parameters. We conclude this section by discussing the issue of comparing
our semi-supervised fuzzy approach to the semi-supervised hard objective [4]. Generally speaking,
in the absence of a ground truth, comparing both approaches is meaningless. When the ground
truth represents a disjoint clustering, then it is reasonable that following a hard approach (essentially
a = 1) will capture this ground truth better. However, the whole point of using fuzzy clustering in
the first place is when the clusters, in some sense, overlap. Indeed, the initial main motivation for
studying fuzzy clustering is that it is applicable to datasets where datapoints show affinity to multiple
labels, the clustering criteria are vague and data features are unavailable. Nonetheless, in Fig. 3]
we compare the performance of both the fuzzy and hard approaches (essentially « = 1) on the Iris
dataset.

G Discussion on noisy oracle responses

In this section, we briefly discuss the effect of a noisy membership-oracle, defined as follows.

Definition 5 (Noisy Membership-Oracle). A fuzzy query asks the membership weight of an instance

x; to a cluster j and obtains in response a noisy answer Onpeisy (1, 7) = Uij + Cij where (5 is a zero

mean random variable with variance o>.

To present our main result, let p € R, be defined as

jrr‘glﬁl] 2 ]U?j = pn. (126)

The result below handles the situation where the oracle responses are noisy.
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Theorem 9. @Let k > 0, and assume that there exists an (€1, €2, Q)-solver for a clustering instance
(X, P) using the membership-oracle responses O#z,y. Then, there exist a

2R 8Qa?1
<a(62 + ) , €2 + K, 8Qo” logn 20gn> — solver,
K

for (X, P) using the noisy oracle Oypgisy.

Proof. Assume that algorithm A peiseless 18 an (€1, €2, Q)-solver for a clustering instance (X, P) using
queries to a noiseless oracle Of,,,y. In order to handle noisy responses we propose the following
algorithm Aqisy: apply algorithm Angiseless for T steps using noisy queries to Opoisy. We will show
that this algorithm obtains the guarantees in Theorem . To that end, in each such step, we obtain
noisy estimates for the memberships and the centers. Then, we use these local estimates to obtain a
clean final estimate for the memberships and the centers. Specifically, consider T independent and
noisy clustering instances {P* = (ut, Vt)}[_,, such that
Di1 VT

1) J g J /‘l’ ] 2?21 V% ) ( )
for t € [T]. Note that the randomness in the definition of the aforementioned clustering instances
lies in the realization of the independent random variables ilj, fj, ceey ZTJ For each such instance
we apply one of the algorithms we developed for the noiseless oracle. Accordingly, for all ¢ € [T],
suppose we have a (€1, €2, Q)-solver that makes @) queries to the P?-oracle to compute ij Then,
we know that,

Ut t
V-V

< €, (128)

for all ¢ < [T]. Now, all we have to do is to use these local estimates to calculate our final estimates
for the underlying memberships and centers. Specifically, for T < T, we must have

T’ T’
1 Ut 1 t
5O Vi Uy St |5 dl. (129)
j=1 t=1
By Chebychev’s inequality, for any « > 0, we get

T
1 o?
t=1

Next, we partition the T responses from the oracle into B batches of size T’ each. For batch b € [B],
. 2
define the random variable Y® £ 1 [|47 3, cpuans €| = #]. Clearly, Pr(Y® = 1) < 94 and

further, Y, Y2, ..., YB are independent random variables. Therefore, Chernoff bound implies that
B 1 0_2 2
b
Pr (bg_lY > B/2> < exp l—2B (2 — K:QT’) (131)

Our final membership estimate is evaluated as follows:
Ui; 2 medi ! vt 1 Vi ! Vi 132
i = median T Z i T Z I o7 Z ij | (132)
tEBatch 1 tEBatch 2 tEBatch B
namely, Gij is the median of the mean of \A/f] in each batch. Therefore, for B = 6logn and

T = 40%/k? (hence T = 802 log n/k?), we must have that

~ 2
Pr(’Uij—Uj,j ZGQ—FH) < E (133)

Therefore, by taking a union bound over all ¢ € [n], j € [k], we can compute Oij, an estimate of U;;,
such that

|05 - Uy| <2+, (134)
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foralli € [n],j € [k] with probability at least 1 — 1/n. Finally, we estimate the means p;’s using
the already computed Gij’s as follows. Note that,

Zi G?wl Am
py="—— 5= (135)
AU
and
y = e V5T 5 Ae (136)
Therefore, we get
_ Az — Aa Ao Y —Y Ao — As Y-v
||“j‘“j“z < -V I Y - - 2 R —~ (137)
Using (I34) it is evident that
‘\?—Y‘ < an(es + 1) (1 +o(1)), (138)
‘ Az — Aw \ < Ran(ez + k)(1 4 o(1)). (139)
Combining (T37)-(139) together with (126)), we finally obtain that
N 2Ra(es + K
172 = my], < (; ! (140)
for all j € [k], which concludes the proof. O

H Membership queries from similarity queries

Recall that X C R? |X| = n is the set of points provided as input along with their correspond-
ing d-dimensional vector assignments denoted by {z;}? ;. Recall that the membership-oracle
Oruzay (3, j) = U;; returns the membership weight of the instance x; to a cluster j. However, such
oracle queries are often impractical in real-world settings since it requires knowledge of the relevant
clusters. Instead, a popular query model that takes a few elements (two or three) as input and is
easy to implement in practice is the following similarity query "How similar are these elements?"
[4]] showed that for the hard clustering setting, a membership query can be simulated by k pairwise
similarity queries since a pairwise similarity query reveals whether two items belong to the same
cluster or not in the hard clustering setting. In the fuzzy problem we model the oracle response to the
similarity query by the inner product of their membership weight vectors. More formally, we have

Definition 6 (Restatement of Definition[3). A fuzzy pairwise similarity query asks the similarity of
two distinct instances x; and ; i.e., Ogim (1, j) = (U;, U;). A fuzzy triplet similarity query asks the
similarity of three distinct instances ., 4, €, i.e. Ogiplet (D, ¢, 7) = Zte[k] UptUgtUpe.

Now, we show that fuzzy pairwise similarity queries can often be used to simulate Ofy,y (7, j). Note
that if we possess the membership weight vectors of k£ elements that are linearly independent, then,
for a new element, responses to fuzzy pairwise similarity queries with the aforementioned % elements
reveals all the membership weights of the new element. Now, the question becomes ‘“How can we
obtain the membership weights of the k elements in the first place?". Suppose we sub-sample a set of
elements ) C X such that || = m > k and we make all fuzzy pairwise similarity queries among
the elements present in ). Let us denote by V the membership weight matrix U constrained to the
rows corresponding to the elements in ). Clearly, the fuzzy pairwise similarity queries between all
pairs of elements in ) reveals VVT | the gram matrix of V. If we can recover V uniquely from \YAVESS
and V is full rank, then we are done. If we assume almost any continuous distribution according to
which the membership weight vectors are generated, then with probability 1, the matrix V is full rank.
On the other hand, the question of uniquely recovering V from VV7 is trickier. In general it is not
possible to recover V uniquely from VV7 since VR, for any orthonormal matrix R, also has the gram
matrix VVT. However, recall that in our case, the entries of V are non-negative and furthermore, the
rows of V add up-to 1 leading to additional constraints. This leads to the problem
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Find M such that MM = VV7 subject to M € RZ;*, Z M;; =1Vi€ [m].
j€lk]

As a matter of fact, this is a relatively well-studied problem known as the Symmetric Non-Negative
matrix factorization or SNMF. We will say that the solution to the SNMF problem is unique if VP
is the only solution to the problem for any permutation matrix P. Below, we state the following
sufficient condition that guarantees the uniqueness of the solution to the SNMF problem.

Lemma 13 (Lemma 4 in [26]). If rank(V) = k, then the solution to the SNMF problem is unique
if and only if the non- negative orthant is the only self-dual simplicial cone A with k extreme rays
that satisfies cone(VT) C A = A* where A* is the dual cone of A, defined as A* = {y | xTy >
0V € A}.

More recently, Lemma [I3| was used in [34] to show the following result that is directly applicable to
our setting:

Lemma 14. [If'V contains any permutation matrix of dimensions k X k, then the solution of the
SNMF problem is unique.

Suppose we have the guarantee that for each cluster j € [k], there exists a set Z; of at least pn
elements belonging purely to the 5% clusteri.e. U;; = 1 forall i € Z;. Then, for m > p~1log(nk),
the matrix V will contain a permutation matrix with probability at least 1 — n~!. As a results, this
will lead to an overhead of O(m?) = O(p~2 log®(nk)) queries.

If it is possible to make more complex similarity queries such as the fuzzy triplet similarity query, we
can significantly generalize and improve the previous guarantees. Before proceeding further, let us
provide some background on tensors beginning with the following definition:

Definition 7 (Kruskal rank). The Kruskal rank of a matrix A is defined as the maximum number r
such that any r columns of A are linearly independent.

Consider a tensor A of order w € N for w > 2 on R”, denoted by 4 € R" @ R" ® --- ®
R™ (w times). Let A;, ,, .. i, Where i1,ia,...,%, € {0,1,...,n — 1}, denote the element in A
whose location along the jth dimension is ; + 1, i.e., there are 7; elements along the jth dimension
before A;, ;, ..., . Notice that this indexing protocol uniquely determines the element within the
tensor. For a detailed review of tensors, we defer the reader to [29]]. In this work, we are interested
in low-rank decomposition of tensors. A tensor .4 can be described as a rank-1 tensor if it can be
expressed af]

A=2Q2z280---Qz
N————

w times

for some z € R", i.e., A, is,.. = H;):1 z;,. For a given tensor A, we are concerned with the
problem of uniquely decomposing A into a sum of R rank-1 tensors. A tensor .A that can be expressed
in this form is denoted as a rank- R tensor, and such a decomposition is also known as the Canonical
Polyadic (CP) decomposition. Below, we state a result due to [45]] describing the sufficient conditions

for the unique CP decomposition of a rank-R tensor .A.

N 71’11)

Lemma 15 (Unique CP decomposition [45]]). Suppose A is the sum of R rank-1 tensors, i.e.,

R
A:er®zr®...®zr’

r=1 w  times

and further, the Kruskal rank of the n x R matrix whose columns are formed by z*, 22, ..., 2% is J.
Then, if wJ > 2R + (w — 1), then the CP decomposition is unique and we can recover the vectors

zb, 22, ..., 2" up to permutations.

Notice that for the special case of w = 3, the underlying vectors 2!, 22, ..., 2 can be recovered

uniquely if they are linearly independent. Now, we are ready to show that k fuzzy triplet similarity

“In this work, we focus on the special case of rank-1 tensors where every component is identical. In general,
rank-1 tensors can be describedas A = 2' ® 22 ® --- ® z¥ for 2%, ... 2 € R".
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Algorithm 9 JENNRICH’S ALGORITHM(A)

Input: A symmetric rank-R tensor A € R™ @ R™ ® R™ of order 3.

1: Choose a, b € R™ uniformly at random such that it satisfies ||a||, = ||b]|, = 1.
Compute T( JE S e @A T 2 biA
if rank(T!) < R then

Return Error

end if
Solve the general eigenvalue problem TWy =\, TPv.
Return the eigen-vectors v corresponding to the non-zero eigen-values.

A A S

queries can be used to recover the memberships weights of k elements uniquely. As before, we can
sub-sample a set of elements ) C X such that || = k and we make all possible (’;) fuzzy triplet
similarity queries among the elements present in ). Again, let us denote by V the membership weight
matrix U constrained to the rows corresponding to the elements in ). Let us denote by v',v2, ..., v*
the k columns of the matrix V. Notice that the responses to all the fuzzy triplet similarity queries

reveals the following symmetric tensor

k
E vV v v
r=1

Suppose the matrix V is full rank. This will happen with probability 1 if the membership weights
are assumed to be generated according to any continuous distributions. Algorithmically, Jennrich’s
algorithm (see Section 3.3, [39]) can be used to efficiently recover the unique CP decomposition of a
third order low rank tensor whose underlying vectors are full rank. We have provided the algorithm
(see, Algorithm [9) for the sake of completeness.

I Conclusion and outlook

In this paper, we studied the fuzzy k-means problem, and proposed a semi-supervised active clus-
tering framework, where the learner is allowed to interact with a membership-oracle, asking for
the memberships of a certain set of chosen items. We studied both the query and computational
complexities of clustering in this framework. In particular, we provided two probabilistic algorithms
(two-phase and sequential) for fuzzy clustering that ask O(poly(k) log n) membership queries and
run with polynomial-time-complexity. The main difference between these two algorithms is the
dependency of their query complexities on the size of the smallest cluster 5. The sequential algorithm
exhibits more graceful dependency on . Finally, for k = 2 we were able to remove completely the
dependency on 3 (see, Appendix [E). We hope our work has opened more doors than it closes. Apart
from tightening the obtained query complexities, there are several exciting directions for future work:

e It is important to understand completely the dependency of the query complexity on f.
Indeed, we showed that for £k = 2 there exists an algorithm whose query complexity is
independent of (3, but what happens for k > 2?7

e It would be interesting to understand to what extent the algorithms and analysis in this paper,
can be applied to other clustering problems which depend on different metrics other than
the Euclidean one.

e Our paper presents upper bounds (sufficient conditions) on the query complexity. It is
interesting and challenging to derive algorithm-independent information-theoretic lower
bounds on the query complexity.

e As mentioned in the introduction it is not known yet whether the fuzzy k-means problem lies
in NP like the hard k-means problem. Answering this question will give a solid motivation
to the semi-supervised setting considered in this paper. Furthermore, just as the information-
theoretic lower bounds, it would be interesting to derive computational lower bounds as
well.

o In this paper we focused on the simplest form of oracle responses. However, there are
many other interesting and important settings, e.g., the noisy setting (Appendix [G). Another
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interesting problem would be to consider adversarial oracles who intentionally provide
corrupted responses.
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