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A Analysis

In this section, we present the analysis of all the theorems.

A.1 Proof of Theorem[T]
Recall that x; is the minimizer of f;(-), which is a-polyhedral. When ¢ > 2, we have
fe(xe) + [1xe — x|
<fe(xe) + [lxe —ug|| + [lug — wp_a || + [Jug—1 — x|
() 1 1
< fe(xe) + a(ft(ut) - ft(xt)) + a(ftfl(utfl) - ftfl(xtfl)) + [Juy — wq .
For t = 1, we have
fi(x1) + [lx1 — xol|
<fi(x1) + [[x1 —w || + [[ur —uol| + [[uo — xo|
=f1(x1) + [[x¢ — wi]| + [[ur — uo|

a6+ ()~ A Ge) + s — vl

Summing over all the iterations, we have

T
Z (fe(xe) + lIxe — x4

T 1 T 1 T T
<D Al + =D (filw) = filxe)) + =3 (froa(n) = froa (i) + 3 llu =
t;l ) t;l Tf_2 t=1
<D filx) =D (Filw) = filxe)) + D llue =
=1 t=1 =1
; . fT t
PR SIS 1||+Z(1)ff<xf>
t=1 t=1 t=1

(23)

where the second inequality follows from the fact that fr(x7) < fr(ur).
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Thus, if o > 2, we have

(fe(xe) + 1% = x1])

M=

t

2 T T T 9
Bg - Z (W) + > w =+ (1 - a) fi(uy) (24)
t=1 t=1 t=1

T
Z fe(ug) +[lug — )

t=1
which implies the naive algorithm is 1-competitive. Otherwise, we have

Z fr(xe) + 1% — xi— 1H)
t=1

2 T T _ 2 T
=2 ; fe(ug) + ; [u; — w1 < > ; (fe(ae) + [Juy —ug_1]]).

We complete the proof by combining (24) and (23).

1

(25)

B

A.2  Proof of Theorem

We will make use of the following basic inequality of squared ¢2-norm [Goel et al., 2019, Lemma
12].

1
I+ yl2 < (14 Dl + ( p) Iyl ¥p > 0. 26)
When ¢ > 2, we have
1
ft(Xt) + QHXt - Xt71||2

(26) 1+ 1
< fil) + —5 e = ? 4 5

1
5 <1 + > Ix¢ — x¢—1 —ue + lltlez
P

(26) 1+ 1
< fulxe) + TpHut —ue |+ (1 + p> (lhae = % )” + flug—1 — x4]%)

Lm0+ = w2 (14 2) () = o) + fisms) = fisGma)).

For t = 1, we have

I@b 1+p
2

Ak + 3l =l T2 )+ ol + S (14 5) () = ).

Summing over all the iterations, we have

> (ft(Xt) + %th - Xt1||2>
t=1
T T
SZ pZHut—ut * + < >Z (fe(ue) = fi(x0))
=1 =1
t ) 1 . t
+ X (1 + p> Z (ft—l(ut—1) - ft—l(Xt—l)) (27)
t=2
T 1+p T 2 T
<3 A+ 152 S = el 4 5 (14 2) 3 ()~ filx)
t= t=1 t=1

1
(1+3) S stwy + =5 S e — e+ (1-5(1+3)) éfm).
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First, we consider the case that
1 A 1
1—<1+>§0<:><1+ (28)

and have

9. @3 4 1 1+p < )
2 (1+> th(ut)+T;||ut —uq|

4 1 d 1
< max ()\ <1 + p> ,14 p) Z <ft(ut) + §||ut — uf-1||2> .
t=1

To minimize the competitive ratio, we set

G FITIL I RPN
A Tp) T TPTPTN

and obtain
T

S (o) + gl =) < (14 )i(ffut Jluac—unl?). @)

t=1 t=1

Next, we study the case that

A
which only happens when A > 4. Then, we have

1 @ & 1+ p—
Z (ft Xt) iHXt - Xt—1||2> < th(ut) + Tp tz_; [y — w2

4 1 A 1
l——(1+=-)>0&>14 =
p 4 p

= t=1
To minimize the competitive ratio, we set p = %, and obtain
T N 1
’ 2
; (ft(Xt) *||Xt — x| ) =54 tz; (ft(ut) + §Hut — | )

which is worse than (29). So, we keep (Z9) as the final result.

A.3  Proof of Theorem

Since fi(-) is convex, the objective function of is y-strongly convex. From the quadratic growth
property of strongly convex functions [Hazan and Kale, 2011], we have

Jolxe) + S 1% = xema |24 Sl = xe]2 < filw) + Sl xia 2, Vue X (30)
Similar to previous studies [Bansal et al., [2015]], the analysis uses an amortized local competitiveness

argument, using the potential function c[|x; — u;||?. We proceed to bound f;(x;) + 5 [|x¢ — x¢—1[|> +
c|lx¢ —ug? 2, and have

1
fe(xe) + §||Xt = x|+ ellxe = we? = ellxe1 — |
1
2ft(xt) + 5 llxe — X1 4 e(2lxe = vel? + 2/lve = wel®) = eflxe—1 — wa|?

9 4c
§O+A)ﬁ@0 Slixe = x| +

4 A 4
_ (1 ; ;) (ft<xt> el xt_1|2) 2 f) — el —
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Suppose

<7, (31)
we have

1
fe(xe) + §\|Xt — x|+ ellxe — wel]? — eflxe—1 — wq|?

4c 4c
< (1 + ) (£6x0) + S llxe = x1-1]12) + - folwe) = et — e
4e 4e¢
< ( )\> fi(ay) *||11t — X 1||2 - *||11t — x| ) + Tft(ut) —cf|x4—1 — 11:5—1||2
8c YA+ 4e A+ 4c
= (14 57) e+ T a2 = D 2 el =

Summing over all the iterations and assuming xy = ug, we have

T

1
5 () + 3l = xial?) +elier — el

t=1

T T
< (1 + 8}\6) th(ut) + w D e =% ?

t=1

(A +4c
%Zu t—xth—cant -

g(1+8;)zft<ut>+WZ||ut—xt1||2—( At )ZIXt L=
t=1

1

8c T )\—|—4c £l
z (1+A)§ft<ut) g T

T
A+4c 1
- (0 ) S (s = il = L u )

t=1

<(1+§C)t§:ft<ut>+<“+4c re)s Znut—ut 1
<ma (145, (10519 4.0) 2) Y_; (w0 + b = v ?)

where in the penultimate inequality we assume

YA+ 4c) < (’y()\—i-élc) +c) 1 - YA +4c) ¢

< 32
2\ 2 1+p 2% o (32)

Next, we minimize the competitive ratio under the constraints in (31) and (32), which can be
summarized as

A 2
T oSS —.
A+ 4e A+dcp
We first set c = & and v = ¢ J;\4C, and obtain
d 1 d 1
Z (ft(xt) + §||Xt - Xt—1||2> < max (1 ) Z (ft uy) §||11t - llt—1||2> .
t=1 t=1
Then, we set
4p VA
1+ —=14+4-=p=—.
+ h + p p 5



As a result, the competitive ratio is

and the parameter is
A A A

Atde A+20 At Un

’y:

A.4 Proof of Theoremd

The analysis is similar to the proof of Theorem 3 of [Zhang et al.| [2018af]. In the analysis, we
need to specify the behavior of the meta-algorithm and expert-algorithm at £ = 0. To simplify the
presentation, we set

x0 =0, and x] =0, Vn € H. (33)

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

Lemma 1 Under Assumptionsand and setting 3 we have

— 2 2
= @G+1)D\ 5T

T
3 <st (xe)+||¢e — Xz 1||) Z (st X))+ || —xI_ 1\|) < (2G+1)D,/% (hl@j" + 1) (34)
1

t=1 t=1

foreachn € H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
up,u,...,ur € X.

Lemma 2 Under Assumptions2land[3] we have
T T T
D? D G?
D (seGe) ! =xall) = D selm) < 5t 3 lhue = e T (2 - G) L (39)
t=1 t=1 t=1
Then, we show that for any sequence of comparators ug, uy,...,ur € X there exists ann; € H

such that the R.H.S. of (33)) is almost minimal. If we minimize the R.H.S. of (33)) exactly, the optimal
step size is

D2 +2DPr
(Pr) =\ ==—~. 36
n"(Pr) T(G? + 2G) (36)
From Assumption[3] we have the following bound of the path-length
T
0< Pp= Z lu, — || < TD. (37)
t=1
Thus
D2 +2TD?
2 <n"(Pr) 2
T(G +2G) (G +2G)’
From our construction of H in (I7), it is easy to verify that

/ 2 2
minH = , and maxH > D( G—g -2-TQZ)

As a result, for any possible value of Py, there exists a step size 7, € H with k defined in (I9), such

that
Mk (G2 120) <n"(Pr) < 2ny. (38)
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Plugging 7, into (33), the dynamic regret with switching cost of expert E"* is given by

5™ (sef) + I = x 1) - Zstut

t=1

D2 G
< — 4 = — T|—+d
ST ;;Hut w1 + 7k (2 + )

D2 2D & G2
g Dol el ot (G +6)

(39)

INE

n*(Pr)  n*(Pr

%\/T(GQ +2G) (D2 + 2DPr).

From (T3), we know the initial weight of expert E"* is

wi* = ¢ > 1 > 1
V7 k(k+1) T k(E+1) T (B+1)2

Combining with (34), we obtain the relative performance of the meta-algorithm w.r.t. expert £+

§Tj (st<xt>+xt—xt1|)—i(st<xt I = ) < <2G+1>D\/? [1+2In(k +1)].

t=1 t=1
(40)
From (39) and (@0), we derive the following upper bound for dynamic regret with switching cost
T T
> (selx) + lxe = xiall) = si(w)
t=1 t=1 (41)

3 5T
gi\/T(GQ +2G)(D? +2DPr) + (2G + 1)D/ = [L+2m(k+1)].
Finally, from Assumption[I] we have

116)
fe(xe) = fr(ue) <AV fi(xe), % —uy) s¢(xt) — s¢(uy). (42)
We complete the proof by combining (1)) and @2).

A.5 Proof of Theorem

The analysis is similar to that of Theorem[d] The difference is that we need to take into account the
lookahead property of the meta-algorithm and the expert-algorithm.

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

Lemma 3 Under Assumption and setting 3 = % %, we have

T T
sox) + lxe = xi ) = 3 (se) + k0 = x0, 1) < Dy (1) @)
2 w,

t=1 t=1 0

foreachn € H.
Combining Lemma [3| with Assumption[I} we have

T T ,
S (5000 + =) = 30 (060 + - xal) P Dy T (1) e

t=1 t=1 0
for eachn € H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
up,u,...,ur € X.

20



Lemma 4 Under Assumptions[I|and[3] we have

T D2 D T rr]T
n n n
2 (e + 1! =i 1) - IEOES RS DI EL R S

The rest of the proof is almost identical to that of Theorem[d] We will show that for any sequence
of comparators ug, uy, ..., ur € X there exists an 7, € H such that the R.H.S. of is almost
minimal. If we minimize the R.H.S. of (#3)) exactly, the optimal step size is

. D?2 +2DP

W (Pr) =\ = (46)
D2 [ D2 4+ 2T D2
— < p"(Pp) <\ —MMM.
T = n ( T) > T

From our construction of H in (22)), it is easy to verify that

| D? | D2+ 2T D?
minH = ?,andmax?[z %

As a result, for any possible value of Py, there exists a step size 7, € H with k defined in (I9), such

that
k—1 L 2
e =2 - <n*(Pr) < 2n. “n

Plugging 7, into {@3)), the dynamic regret with switching cost of expert E”* is given by

From (37)), we know that

T T
> (Al + Ik = x4 ) = 3 fulw)
t=1 t=1
D> D mT
k
<o+ 3w+
U 2 (48)

T

D? 2D w* (Pr)T
+ g — wpy | + TEDT
) (e 2 e el T

= ; VT(D?+2DPr).

From Step 2 of Algorithm 3] we know the initial weight of expert E"* is

wo C oo 1 1
O T R(k4+1) T k(k+1) T (k+1)2

Combining with (44), we obtain the relative performance of the meta-algorithm w.r.t. expert E":

RE|

5 (£6x0) + l1xe = x1-a])) = 5 (68 + I =) < Dﬂ [1+2In(k+1)]. (49)

t=1 t=1

We complete the proof by summing @8] and together.

A.6 Proof of Theorem

The proof is built upon a lower bound of competitive ratio [Argue et al.,2020a]. By setting v = %

in Lemma 12 of [Argue et al| [2020a]], we can guarantee that Assumption [3[is satisfied. Then, we
choose x = 0, A = 1/~ in that lemma, and obtain the conclusion below.

Lemma 5 For any online algorithm A and any fixed value of d, there exists a sequence of convex

Sunctions f1(-),..., fa(-) over the domain [—%, %]d in the lookahead setting such that
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1. the sum of the hitting cost and the switching cost of A is at least 37d = BDS‘/E;
2. there exist a fixed point u whose hitting cost is Q.

We consider two cases: 7 < D and 7 > D. When 7 < D, from Lemma[5| with d = T', we know that
the dynamic regret with switching cost w.r.t. a fixed point u is at least Q(D\F ).

Next, we consider the case 7 > D. Without loss of generality, we assume |7/D] divides T'. Then,
we partition T into | 7/D| successive stages, each of which contains 7'/|7/D| rounds. Applying
Lemma [3]to each stage, we conclude that there exists a sequence of convex functions fi(-),..., fr(-)

over the domain [— 2Df 5 f] where d = T'/|7/D] in the lookahead setting such that

1. the sum of the hitting cost and the switching cost of any online algorithm is at least

L7/D] - 35\/%: Sé)m:m TD7);

2. there exists a sequence of points uy, . .., ur whose hitting cost is 0 and switching cost (i.e.,
path-length) is at most

l)<-

since they switch at most |7/D] — 1 times.

Thus, the dynamic regret with switching cost w.r.t. uy, ..., ur is at least

% T|5| -7 =WTDr).

We complete the proof by combining the results of the above two cases.

B Proof of supporting lemmas
We provide the proof of all the supporting lemmas.

B.1 Proof of Lemmalll

Based on the prediction rule of the meta-algorithm, we upper bound the switching cost when ¢ > 2
as follows:

% = x¢—1 = Z wixy — Z WXy || = Z wi (x} —x) — Z wi_q (x{_ —x)
neH neH neH neH
< Zw?(xg_x)_zw?(ngl_x) + ngxtl Zwt (%1 — %)
neH neH neH neH
= Z wi (% —x{_1)|| + Z(w;’ —w ) (x{_ —x)
neH neH
<D wl Ixf = x|+ D e = wiy X, — x|
neH neH
2 n N ||5e" n
< Z Wy th —x;_ 1” +D Z lwy —wi| = Z Wy th _Xt—lH + Dllwe — wi_1]h1
neH neH neH

(50
where x is an arbitrary point in X, and w; = (wy)pen € RY. When ¢ = 1, from , we have

I = xoll = x| = || D wixf|| < > wi x]] = Y w||x] — 3] (51

neH neH neH
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Then, the relative loss of the meta-algorithm w.r.t. expert £ can be decomposed as

T T
D (se6x) + I =3 = D (se6) + 1 =, 1)

t=1 t=1

(). 60, G .
< Z Z wi ||x7 = x| = ((Vfr(xe), x7 = x4) + [Ix] — x4 ]])
t=1 \neH
T (52)
+DY flwi—wii|s
t=2
) T T
= | D wltx) = 6x]) | +D D lwi = wiah-
t=1 neH t=2

=A
We proceed to bound A and ||w; — w;_1 |1 in (52). Notice that A is the regret of the meta-algorithm
w.r.t. expert E. From Assumptions[2]and[3] we have

.2
[V fi(xe), xi —x)| < IV Fi(xo)llIx} — x| — < GD.

Thus, we have

—GD < l4(x{) < (G+1)D, Vn e H. (53)
According to the standard analysis of Hedge [Zhang et al., [2018a, Lemma 1] and (53)), we have
T
, 1. 1 T(2G + 1)2D?
S S wpnid) - e | < Sty FHEE DT (54
- B w 8
t=1 \neH

Next, we bound ||w; — w;_1]|1, which measures the stability of the meta-algorithm, i.e., the change
of coefficients between successive rounds. Because the Hedge algorithm is translation invariant, we
can subtract D /2 from £;(x}) such that

l6.(x})) = D/2| < (G +1/2)D, ¥y € H. (55)
It is well-known that Hedge can be treated as a special case of “Follow-the-Regularized-Leader” with
entropic regularization [Shalev-Shwartz, [2011]]

R(w) = Z w; log w;

over the probability simplex, and R(-) is 1-strongly convex w.r.t. the ¢;-norm. In other words, we
have

¢
1 1
W1 = argmin ( —— log(wy) + Zgi,w +=R(w), Vt>1

weA B i—1 ﬁ
where A C RY is the probability simplex, and g; = [¢;(x]) — D/2],e3 € RY. From the stability
property of Follow-the-Regularized-Leader [Duchi et al., 2012, Lemma 2], we have

[we —wialli < Bllgi-1llc < B(G+1/2)D, Vt > 2.

Then

d T -1)(2G +1)D
> lwe - wi |y < AEZDEEEDD (56)
t=2

Substituting (54) and (56) into (52), we have

5™ (s + I = xecall) = 32 (o) + 1 = <)
t=1

t=1
<llni +
R

2

We complete the proof by setting 8 = m =

2792 _ 2 2792
BTG+ 1)PD* BT -HRGHHD? 1, 1 587G +1)°D*
8 2 g wy 8
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B.2 Proof of Lemma[2]
First, we bound the dynamic regret of the expert-algorithm. Define
i?—i—l = X? — NV fr(x¢).

Following the analysis of Ader [Zhang et al.,[2018al, Theorems 1 and 6], we have

(o) 1 _
s (<)) — s(ur) @ (T (x0), %) — wy) = R
1 _ _
=g (17 = w3 = sty — wl + 1 = <7, )

- n
(Ixf = well3 =[xy — wel3) + gllvft(xt)\lg
w2 — 1% — wli2) + T a2
l[xf = wells = (1% —well3) + 9
n
I — el — Iy — wel) + 262

n
(I = aell3 = Ity — weall3 + X7y — well3 — [1x7 — well3) + §G2
(I — a3 = Ity g — wes I3+ (X7 y = Wwegn + %74 — ) " (wg — wg)) + gGQ

n
< [l — wel|3 = [1x7y — wegall3 4 (%7 — wepa || + lIxfy — well) lue — uega ) + §G2
D n
< — (% —well3 = 1%y — e ]l3) + ;Hut — | + §G2-

Summing the above inequality over all iterations, we have

L 1 D& nT
Z (se(xf) = se(uy)) <o=[x] — w5+ = Z w1 — ael| + 702
t=1 N = 57)
1 D& nT
7D2 nd _ i 2.
=9 + 7 ;Hlltﬂ w | + 5 G
Since (57) holds when uy; = ur, we have
T T
1 D T
Z (s¢(x}) — se(uy)) < %Dz + o Z lug — wiq || + %GQ. (58)
t=1 t=1

Next, we bound the switching cost of the expert-algorithm. To this end, we have
T—1

= n n = n n = ayl n
SOl = xP =D kg = xP < DR = %P =) VA& < 9TG. (59)
t=1

t=0 t=0 t=0
We complete the proof by combining (38) with (39).

B.3 Proof of Lemma[3l

We reuse the first part of the proof of Lemma [T} and start from (52)). To bound A, we need to analyze
the behavior of the lookahead Hedge. To this end, we prove the following lemma.

Lemma 6 The meta-algorithm in Algorithm[3]satisfies

T
1 1 1
Y " wit(x]) — L(x]) | < Elﬂ Wl " 258 > llwe —wiall} (60)
t=1

Wy

foranyn € H.
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Substituting (60) into (52), we have

T T
> (selxe) + e = xeal) = D (selocd) + lx? = x4
t=1 t=1
1.1 1« d
<oln— — =Y wi—wiaf+ DY [wi—wialh
Bwy 28 t=1 t=2
(61)
T T
1, 1 1 , BD?
< iy - 25Z||wt wi. 1||1+Z(26||wt—w“|1+ .
1. 1 BTD? T/ 1
< ln— =Dy/= (ln— +1
- nwg T 2 nwg *
where we set = 5/ 2.
B.4 Proof of Lemmal6]
To simplify the notation, we define
WO—ZwO—lL”—Zé x]), and Wy = > wie P4 vi > 1.
neH neH
From the updating rule in (20), it is easy to verify that
BLY
I | 62
Wy W, = L (62)

First, we have

1 1
InWpr =In Zw" —BLy >In <maxw e Plr ) = —fmin <L + = lnn>. (63)
= neH neH 8wy

Next, we bound the related quantity In(W;/W,_1) as follows. For any ) € H, we have
W\ @, (whetH_wily el

= <vm1> - ( W] wle Pl ) T I = — Blu(x)). (64)

Then, we have
Wy > < ) W,
In < Z wy Z wy In
Wt—l Wt 1 ne neH Wt 1
3w (4

) B Wit < —5lwe — wer | — 8 wlt(x)
neH

neH neH

(65)

where the last inequality is due to Pinsker’s inequality [[Cover and Thomas} 2006, Lemma 11.6.1].
Thus

T
1
1nWT1nWo+Zln( ).Z —gllwe=wia i =8 Y wit(]) | . (66)
t=1

W,
t—1 =l

Combining (63) with (66), we obtain

T
i 1 1
—6;2173 (LT+ > E _iHWt_Wtle%_ﬁ E wy by (x)

t=1 neH

We complete the proof by rearranging the above inequality.
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B.5 Proof of Lemmal]

The analysis is similar to that of Theorem 10 of |Chen et al.|[2018]], which relies on a strong condition
x{ =x{_; =V fu(x{).

Note that the above equation is essentially the vanishing gradient condition of x; when @ is
unconstrained. In contrast, we only make use of the first-order optimality criterion of x; [Boyd and
'Vandenberghel, 2004], i.e.,

1
<Vft(><?) 4 —x?1>,y—xt> >0, vy ex 67)

which is much weaker.
From the convexity of f;(-), we have

fe(x)) — ft(ut)
UV Si(x)), x{ — )

717<X? —x) u—x)) = % (”X?—l —wl]? = Ix7 —wel]? — (%] - X?_lHQ)
=%wﬂ4—md?ﬂw—mW+hLemW—h&—mﬁﬁﬁﬁ—ﬂﬂﬁ
:% (I1x7q — e ]]® = [Ix7 —we]l® + (x) —we +x7 ) —weg,wemy —wy) — [|Ix7 — x,[1%)
s%wﬁ4fWAWfh%«#+mﬁ4fmwwﬂ47mqufm4m

- o I = x|
2177 (ki — wee||? — [|x7 — wel|?) + %Hut —uy | - %uxg —x_ 2

Summing the above inequality over all iterations, we have

1 D < 1
Z fe(xt) = fi(w)) anng —upll3 + n Z g — | - %Z Ixf = x4 2
t=1

<*D2+ ZHut_ut 1||_7Z”Xt_xt 12

Then, the dynamic regret with switching cost can be upper bounded as follows

(68)

T
Z fe(x)) + = = x4 || _ft(ut>)

t=1

()
<

z\u

us — g 1||_7Z||Xt —x_ 1||2+Z||Xt —x¢_q|

T
Z
;
Znut—ut 1||——Z||x?—xt 1||2+Z(|xt -2+ 3)
T
Z

2

T
s — w | +’77.
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