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A APPENDIX

A.1 NOTATION

We use bold small letters to denote vectors, and capital bold letters for matrices. We denote the
expected value of a random variableX by E [X]. We denote l2-norm by ∥.∥2 and the Frobenius norm
by ∥.∥F . Also ⟨., .⟩ denotes the inner product space. The cardinality of a any set B is represented by
|B|. We use the standard notation O(n) to denote the order of n. For a vector valued function Φ(w),
the gradient is denoted by ∇Φ(w), and the Hessian is denoted by ∇2Φ(w). We use 1 to represent
a column vector with all ones.

A.2 CONCLUSION

In this work, we performed a theoretical analysis of the well known FedAvg algorithm for the class
of smooth non-convex overparameterized systems in the interpolation regime. We considered two
settings, namely (i) Server setting where the central server coordinates the exchange of informa-
tion, and (ii) Decentralized setting where nodes communicate over an undirected graph. In this
regime, it is well know that neural networks with non-convex loss functions typically satisfy an
inequality called Polyak-Lojasiewicz (PL) condition. Assuming PL condition, we showed that in
both the settings, the FedAvg algorithm achieves linear convergence rates of O(T 3/2 log(1/ϵ)) and
O(T 2 log(1/ϵ)), respectively, where ϵ is the desired solution accuracy, and T is the number of local
SGD updates at each node. As opposed to standard analysis of FedAvg algorithm, we showed that
our approach does not require bounded heterogeneity, variance, and gradient assumptions. We cap-
tured the heterogeneity in FL training through sample-wise and local smoothness of loss functions.
Finally, we carried out experiments on multiple real datasets to confirm our theoretical observations.

A.3 RELATED WORK

After the introduction of the FedAvg (McMahan et al., 2017), multiple works have analyzed the
convergence of FedAvg in the server setting and with homogeneous data, i.e., when the data is i.i.d
across clients (see Stich (2018); Wang & Joshi (2018); Khaled et al. (2019); Yu et al. (2019b); Wang
et al. (2019); Yang et al. (2021)). The authors in (Stich, 2018) were the first to obtain a rate of
O(1/Nϵ) for strongly convex and smooth problems. Later (Haddadpour et al., 2019; Haddadpour
& Mahdavi, 2019) proved a similar result but for non-convex functions satisfying PL inequality.
The analysis of FedAvg for the general non-convex settings was first performed in Yu et al. (2019b)
where the authors establish a rate of O(1/Nϵ2). In (Woodworth et al., 2020a), the authors ana-
lyzed the trade-off between Minibatch and Local SGD in the homogeneous settings and established
O(1/Nϵ2) convergence rates for minimizing smooth non-convex objectives. Recently, many works
have adapted the analyses of FedAvg for minimizing the non-convex losses in the heterogeneous data
settings. For example, Yu et al. (2019a) extended the results of Yu et al. (2019b) for the heteroge-
neous data setting. Specifically, the authors in (Yu et al., 2019a) utilized a Momentum SGD updates
and established the convergence rate of O(1/Nϵ2) under bounded heterogeneity setting. Similarly,
the authors in (Woodworth et al., 2020b) extended their analyses of (Woodworth et al., 2020a) to the
heterogeneous data settings. The work (Karimireddy et al., 2020b) also provided a tight analysis for
FedAvg and established linear speed-up with the number of clients. Recently, (Yang et al., 2021)
analyzed the linear speed-up effect of FedAvg while (Khanduri et al., 2021) analyzed the trade-off
between the batch sizes and the local updates. We note that all these works establish a convergence
rate of O(1/Nϵ2) for minimizing non-convex smooth losses in the bounded heterogeneity setting.
It is also worth noting that numerous works have proposed variants of FedAvg with different lo-
cal update rules (e.g., variance reduction, momentum SGD, adaptive updates, etc.) with the goal
of improving the performance of FedAvg (Karimireddy et al., 2020b; Sharma et al., 2019; Liang
et al., 2019; Khanduri et al., 2021; Karimireddy et al., 2020a; Das et al., 2022). However, in practice
FedAvg remains the algorithm of choice for training large FL systems.

There are a few works that have analyzed the performance of Fedvg in the decentralized settings
as well. One of the initial works, (Lian et al., 2017) considered a decentralized parallel SGD (D-
PSGD) and provided convergence rate of O(1/Nϵ2) for minimizing smooth non-convex functions.
Later, (Haddadpour & Mahdavi, 2019) analyzed the convergence of FedAvg under both server and
decentralized setting with bounded gradient dissimilarity assumption. The authors showed a conver-
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gence rate of O(1/Nϵ2) for minimizing non-convex functions in both the server and decentralized
settings. The authors in Yu et al. (2019a) also extended the analysis of Momentum SGD to decentral-
ized networks and established a convergence of O(1/Nϵ2) for minimizing non-convex functions.
All the above works provide a sublinear rate of convergence for FedAvg, however, as illustrated in
Fig. 1, FedAvg converges at a much faster rate in practice. To understand this behavior of FedAvg,
in this work we analyze the performance of FedAvg under both server and decentralized settings for
minimizing a special class of non-convex functions satisfying PL inequality under the interpolation
regime. We note that overparameterized neural networks/systems usually operate in the interpolation
regime while their loss functions have been shown to satisfy the PL inequality.

The linear convergence of centralized SGD in the interpolation regime for minimizing PL objectives
was first established in Bassily et al. (2018). Recently, (Qu et al., 2020) showed linear convergence
rate of FedAvg in the server setting for minimizing strongly-convex objectives in the overparame-
terized regime. Similarly, the authors in (Koloskova et al., 2020) have also established the linear
convergence of FedAvg in the decentralized setting for minimizing strongly-convex losses in an
overparameterized setting. The above works only focus on analysis of FedAvg for the strongly-
convex objectives in the overparameterized regime while we focus on the more general class of
non-convex functions satisfying the PL inequality.

Moreover, compared to other works that assume restrictive bounded gradient, heterogeneity, and
variance assumptions, we show that such assumptions can be avoided by using a sample-wise
smoothness assumption.

Table 1 presents a summary of the above discussion.

In a separate line of work, the linear convergence of SGD (and GD) for optimizing overparameter-
ized neural networks/systems with specific activation functions, network widths, and assumptions
on data and loss functions has been established (Zou et al., 2020; Li & Liang, 2018; Allen-Zhu et al.,
2019; Jacot et al., 2018; Du et al., 2018; Chizat et al., 2019; Nguyen & Mondelli, 2020). Recently,
the works in (Huang et al., 2021; Deng et al., 2022) have extended some of these specific neural net-
work architectures to FL settings. However, we note that these works are orthogonal to our setting
as we consider a general setting without assuming a specific model to be learned.

A.4 USEFUL LEMMAS

In this section, we state two Lemmas that will be used in proving our main results.

Lemma 1. For any matrices A ∈ CN×N and B ∈ CN×d, we have ∥AB∥2F ≤ N ∥A∥2op ∥B∥2F .

Lemma 2. (See Lemma 1 in Sun et al. (2021)) For any m ∈ N, the mixing matrix P satisfies
∥Pm −Q∥op ≤ λm2 , where λ2 is the second largest eigenvalue of the mixing matrix P , and Q :=
1
N 11T .

A.5 PROOF OF THEOREM 1

In this section, we present the proofs for the convergence of Algorithm 1.

A.5.1 USEFUL LEMMAS TO PROVE 1

To start with, we briefly discuss some Lemmas to prove the main result. Using the following Lem-
mas, theorem 1 will be proved in Sec. A.5.2. The local model drift is bounded in terms of local loss.
The local model drifts away from the global averaged model during the local updates which is the
essence of the following lemma.

Lemma 1. The local drift 1
N

∑N
k=1 E

∥∥wr,t
k −wr,t

∥∥2 is bounded in terms of local weight i.e.,
Φk (w

r,τ
k ) as follows

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] .
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where lmax := maxk,j lk,j and Lmax := maxk Lk

Proof: Using the step 7 of Algorithm 1, we have

wr,t
k = wr,t−1

k − η

b

∑
j∈Br,t

k

∇Φk,j

(
wr,t−1
k

)
.

Performing the telescopic sum over w, we get

wr,t
k = wr,0

k − η

t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) . (4)

Averaging over k ∈ [N ] results in

wr,t = wr,0 − η

N

N∑
k=1

t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) . (5)

Using equation 4 and equation 5 in 1
N

∑N
k−1

∥∥wr,t
k −wr,t

∥∥2 and noting the fact that wr,0 = wr,0
k ,

we get

1

N

N∑
k−1

∥∥wr,t
k −wr,t

∥∥2 ≤ 1

N

N∑
k=1

∥η
t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k )− η

N

N∑
k′=1

t−1∑
τ=0

∑
j′∈Br,τ

k′

∇Φk′,j′ (w
r,τ
k′ ) ∥

2.

For a sequence Xk for k ∈ [N ], we have
∑N
k=1 ∥Xk −X∥2 ≤

∑N
k=1 ∥Xk∥2. Applying this in the

above results in

1

N

N∑
k−1

∥∥wr,t
k −wr,t

∥∥2 ≤ 1

N

N∑
k=1

∥η
t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) ∥2 (6)

≤η
2t

N

N∑
k=1

t−1∑
τ=0

 1

b2

∑
j∈Br,τ

k

∥∇Φk,j (w
r,τ
k )∥2 + 1

b2

∑
j ̸=j′

Fr,τ
k

 .
where Fr,τ

k := ⟨∇Φk,j (w
r,τ
k ) ,∇Φk,j′ (w

r,τ
k )⟩. Taking expectation, we get

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

N∑
k=1

t−1∑
t=0

[
1

b
E ∥∇Φk,j (w

r,τ
k )∥2 + b(b− 1)

b2
E ∥∇Φk (w

r,τ
k )∥2

]
.

Further, using smoothness assumption (see assumption 3), we have

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

N∑
k=1

t−1∑
τ=0

[2lk,j
b

E [Φk,j (w
r,τ
k )] +

2Lkb(b− 1)

b2
Φk (w

r,τ
k )

]

≤ η2t

N

N,t−1∑
k,τ=1,0

[2maxk,j lk,j
b

E [Φk,j (w
r,τ
k )] +

2maxk Lkb(b− 1)

b2
Φk (w

r,τ
k )

]
(a)
≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] . (7)

where (a) follows from the fact that lmax := maxk,j lk,j and Lmax := maxk Lk.

Next, we show that the local loss is bounded in terms of global average weight. This is necessary to
obtain linear convergence of Algorithm 1.

Lemma 2. The local average loss E [Φk (w
r,τ
k )] is bounded in terms of global average weight

i.e., Φk (wr) as follows

E [Φk (w
r,τ
k )] ≤

(
1− ηµk

2

)τ
Φk (w

r) . (8)
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Proof: Applying the smoothness assumption (see 3) for Φk (u), we have

Φk (w
r,τ
k ) ≤ Φk

(
wr,τ−1
k

)
+
〈
∇Φk

(
wr,τ−1
k

)
,wr,τ

k −wr,τ−1
k

〉
+
Lk
2

∥∥∥wr,τ
k −wr,τ−1

k

∥∥∥2
= Φk

(
wr,τ−1
k

)
+

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
wr,τ−1
k

)〉
+
η2Lk
2b2

∥∥∥Gr,τ−1
k

∥∥∥2 .
where Gr,τ−1

k :=
∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. The last equality follows from step 7 of Algorithm

1, i.e., wr,τ
k −wr,τ−1

k = −η
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. Taking expectation on both sides in the

above, we get

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 + Lkη
2

2b2

∥∥∥Gr,τ−1
k

∥∥∥2]
≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 + Lmaxη
2

2b2

∥∥∥Gr,τ−1
k

∥∥∥2] , (9)

where Lmax := maxk Lk. The last term on the right side in equation 9 can be bounded as

1

b2
E

∥∥∥∥∥∥
∑

j∈Br,τ−1
k

∇Φkj

(
wr,τ−1
k

)∥∥∥∥∥∥
2

≤ E

 1

b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2 + 1

b2

∑
j ̸=j′

Fr,τ−1
k


(a)
≤

[
2lmax
b

E
[
Φk

(
wr,τ−1
k

)]
+

2Lmaxb(b− 1)

b2
E
[
Φk

(
wr,τ−1
k

)]]
,

where Fr,τ−1
k :=

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j′

(
wr,τ−1
k

)〉
, and (a) follows from smoothness as-

sumption and the fact that lmax := maxk,j lk,j and Lmax := maxk Lk. Now, plugging the above in
equation 9, we get

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 + η2
(
lmaxLmax

b
+
L2
maxb(b− 1)

b2

)
Lr,τ−1
k

]
.

where Lr,τ−1
k := Φk

(
wr,τ−1
k

)
. Using the local PL inequality i.e.,

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 ≥

µminΦk

(
wr,τ−1
k

)
, where µmin := mink∈[N ]{µk}. (see definition 2), the above can be further

bounded as

E [Φk (w
r,τ
k )] ≤

[
1− ηµmin + η2

(
lmaxLmax

b
+
L2
maxb(b− 1)

b2

)]
E
[
Φk

(
wr,τ−1
k

)]
.

Choosing η ≤ µmin

2

(
lmaxLmax

b +
L2
maxb(b−1)

b2

) results in the following

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)
E
[
Φk
(
wr,τ−1

)]
.

It is easy to see that the above implies

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ
Φk (w

r) .

In the next subsection, we provide the proof of 1 using Lemmas proved above.

A.5.2 COMPLETING THE PROOF OF THEOREM 1

From the Assumption 1, Φ (w) can be written as

Φ
(
wr,t+1

)
≤ Φ

(
wr,t

)
+ ⟨∇Φ(wr,t),wr,t+1 −wr,t⟩+ L

2

∥∥wr,t+1 −wr,t
∥∥2 .
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Now, using the stochastic gradient descent update wr,t+1 − wr,t =

− η
bN

(∑N
k=1

∑
j∈Br,t ∇Φk,j

(
wr,t
k

))
in the above and using Assumption 4, we get

Φ
(
wr,t+1

)
≤Φ

(
wr,t

)
− η

〈
∇Φ(wr,t),

1

bN

N∑
k=1

∑
j∈Br,t

∇Φk,j
(
wr,t
k

)〉
+
η2L

2

∥∥Gr,t∥∥2 .
where Gr,t := 1

bN

∑N
k=1

∑
j∈Br,t ∇Φk,j

(
wr,t
k

)
. Taking the expectation conditioning on wr,t

k , we
get2

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)]
− η

〈
∇Φ(wr,t),

1

N

N∑
k=1

∇Φk
(
wr,t
k

)〉
︸ ︷︷ ︸

A1

+

η2L

2

(
1

b2N2

N∑
k=1

∥∥∥∥∥∥
∑
j∈Br,t

∇Φk,j
(
wr,t
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
A2

+
1

b2N2

∑
k ̸=k′

〈 ∑
j∈Br,t

∇Φk,j
(
wr,t
k

)
,
∑
i∈Br,t

∇Φk′,i
(
wr,t
k′

)〉
︸ ︷︷ ︸

A3

)
.

(10)

The term A2 in equation 10 can be bounded as

A2 =
1

b2N2

N∑
k=1

∑
j∈Br,t

∥∥∇Φk,j
(
wr,t
k

)∥∥2 + 1

b2N2

N∑
k=1

∑
j ̸=j′

〈
∇Φk,j

(
wr,t
k

)
,∇Φk,j′

(
wr,t
k

) 〉
.

Now taking the expectation conditioning on wr,t
k , we get

E[A2] =
1

bN2

N∑
k=1

∥∇Φk,j
(
wr,t
k

)
∥2 + b(b− 1)

b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2. (11)

Taking the expectation of A3 in equation 10, we get

E[A3] =
1

N2

∑
k ̸=k′

〈
∇Φk

(
wr,t
k

)
,∇Φk′

(
wr,t
k′

)〉
(a)
≤ 1

2N2

∑
k ̸=k′

[
∥∇Φk

(
wr,t
k

)
∥2 + ∥∇Φk′

(
wr,t
k′

)
∥2
]

=
2(N − 1)

2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2

≤ 1

N

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (12)

where (a) follows from the fact that ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2. Next, the inner product term A1 in

equation 10 can be written as

A1 =
1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 + 1

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
−∇Φ

(
wr,t

)∥∥∥∥∥
2

(a)
≥ 1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − L2

2N

N∑
k=1

∥wr,t
k −wr,t∥2, (13)

2The conditional term is not explicitly written. However, it be clear from the context.
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where (a) follows from smoothness assumption (see 1). Substituting equation 11, equation 12 and
equation 13 in equation 10, we get the following

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+
ηL2

2N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + η2L

2bN2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)∥∥2
︸ ︷︷ ︸

:=A4

+

(
η2Lb(b− 1)

2b2N2
+
η2L

2N

) N∑
k=1

∥∥∇Φk
(
wr,t
k

)∥∥2
︸ ︷︷ ︸

:=A5

]
. (14)

The term A4 in equation 14 can be upper bounded as follows

A4

(a)
≤ 2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)
−∇Φk,j

(
wr,t

)∥∥2 + 2

N∑
k=1

∥∥∇Φk,j
(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

l2k,j
∥∥wr,t

k −wr,t
∥∥2 + 4

N∑
k=1

lk,jΦk,j
(
wr,t

)
(c)
≤ 2l2max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4lmax

N∑
k=1

Φk,j
(
wr,t

)
,

where (a) follows by adding and subtracting ∇Φk,j (w
r,t) and using the fact that, ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2, (b) follows from Assumption 3, and (c) follows from the fact that lmax :=
maxk,j lk,j . Taking the expectation of A4, we get the following bound

E [A4] ≤ 2l2max

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 + 4lmax

N∑
k=1

Φk
(
wr,t

)
. (15)

Now, let us upper bound the term A5 in equation 14 as

A5

(a)
≤ 2

N∑
k=1

∥∥∇Φk
(
wr,t
k

)
−∇Φk

(
wr,t

)∥∥2 + 2

N∑
k=1

∥∥∇Φk
(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

L2
k

∥∥wr,t
k −wr,t

∥∥2 + 4

N∑
k=1

LkΦk
(
wr,t

)
(c)
≤ 2L2

max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4Lmax

N∑
k=1

Φk
(
wr,t

)
. (16)

In the above, (a) follows by adding and subtracting ∇Φk (w
r,t) and using the fact that, ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2, and (b) follows from Assumption 3 and (c) follows from the fact that Lmax :=
maxk Lk. Substituting upper bounds from equation 15 and equation 16 in equation 14, we get

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+

(
ηL2

2N
+
η2Ll2max
bN2

+
η2LL2

max

N2
+
η2LL2

max

N

) N∑
k=1

∥∥wr,t
k −wr,t

∥∥2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

)
Φ
(
wr,t

) ]
. (17)
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Now, using PL inequality, i.e., ∥∇Φ (w)∥2 ≥ µΦ (w) , ∀w ∈ Rd and rearranging the terms, we get

E
[
Φ
(
wr,t+1

)]
≤ E

[(
1− ηµ

2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

))
Φ
(
wr,t

)
+

(
ηL2

2
+
η2Ll2max
bN

+
η2LL2

max

N
+ η2LL2

max

)
1

N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 ].
Choosing η ≤ min

{
µ

4( 2Llmax
bN + 2LLmax

N +2LLmax)
, L2

2

(
Ll2max

bN +
LL2

max
N +LL2

max

)
}

, the above can be

further bounded as

E
[
Φ
(
wr,t+1

)]
≤ E

(
1− ηµ

4

)
Φ
(
wr,t

)
+
ηL2

N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 . (18)

In order to prove linear convergence, it suffices to show that the second term above, i.e.,
1
N

∑N
k=1

∥∥wr,t
k −wr,t

∥∥2 is exponential in Φ (w). From Lemma 1, it follows that the second term
on the right hand side in equation 18, becomes

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] . (19)

Substituting equation 8 of Lemma 2, i.e. E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ E [Φk (w
r)], in the above

results in

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

] N∑
k=1

t−1∑
τ=0

(
1− ηµmin

2

)τ
EΦk (wr)

(a)
≤ η2t2

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

] N∑
k=1

Φk (w
r)

(b)
= η2t2

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
Φ (wr) , (20)

where (a) follows by choosing η ≤ 2
µmin

and (b) follows from the fact that 1
N

∑N
k=1 Φk (w

r) =

Φ (wr). Using recursion on equation 18, we get

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

4

)T
Φ (wr) +

ηL2

N

T−1∑
τ=0

(
1− ηµ

4

)τ N∑
k=1

∥∥∥wr,T−1−τ
k −wr,T−1−τ

∥∥∥2 .
It follows from the update step that 1

N

∑N
k=1

∥∥∥wr,T−1−τ
k −wr,T−1−τ

∥∥∥2 = 0 for τ = T − 1. Using
1
N

∑N
k=1 E

∥∥wr,t
k −wr,t

∥∥ ≤ η2t2
[
2lmax

b + 2b(b−1)Lmax

b2

]
Φ (wr) in the above results in

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

4

)T
Φ (wr)

+ ηL2
T−2∑
τ=0

(
1− ηµ

4

)τ
η2(T − 1)2

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
Φ (wr) .

Setting η ≤ 4
µ gives

E
[
Φ
(
wr+1

)]
≤
[(

1− ηµ

4

)T
+ η3L2 (T − 1)

3

(
2lmax
b

+
2b(b− 1)Lmax

b2

)]
Φ (wr) . (21)

Using the fact
(
1− ηµ

4

)T ≤
(
1− ηµ

4

)
, and choosing η ≤

[
µ

8L2T 3( 2lmax
b +

2b(b−1)Lmax
b2

)

] 1
2

results in

the following exponential bound

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

8

)
E [Φ (wr)] .
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A.6 PROOF OF THEOREM 2

In this section, we first present the overview of the proof. Then, we will state and prove Lem-
mas required to prove the Theorem. The proof mainly consists of three intermediate steps, namely
bounding i) the local loss, ii) the loss in terms of future iterates, and iii) the global drift. In the
Lemma 6, we bound the local loss. We use Lk smoothness (see definition 1) and local PL inequality
to show loss at local weight is bounded in terms loss at global average weight and the drift.

A.6.1 PROOF OF THEOREM 2

We simplify the presentation of the proof by using the following matrix notations. Let the local
average weights be denoted by W r

l := [wr
1,w

r
2, . . . ,w

r
N ]
T ∈ RN×d, where wr

k ∈ Rd. The
Aggregation step of Algorithm 2 can be compactly written in matrix form as

wr+1
k =

∑
i∈Nk

pk,iw
r,T
k ≡ W r+1

l = PW r, (22)

where Nk := {i : pk,i > 0}. Further, we define the global average as

wr :=
1

N

N∑
k=1

wr
k ≡ W r = QW r

l , (23)

where the average matrix Q := 1
N 11T . Now, let us represent the gradients compactly in the matrix

form as

∂Φ̂
(
W r,t

)
=

1
b

∑
j∈Br,t

1

G
(r,t)
1,j ,

1

b

∑
j∈Br,t

2

G
(r,t)
2,j , . . . ,

1

b

∑
j∈Br,t

N

G
(r,t)
N,j

 , (24)

where G(r,t)
l,j := ∇Φl,j

(
wr,t
l

)
. The mixing matrix P also preserves the average, and hence QP =

P .

We start by proving an upper bound on the average loss E
[
Φ
(
wr+1

)]
in terms of the loss Φ (wr)

in the r-th communication round, and the drift Dr,0, as shown in the following Lemma.

Lemma 3. The average loss is bounded in terms of the drift as follows

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

8

)
Φ (wr) +

6η2L

N
Dr,0, (25)

where the drift Dr,0 :=
∥∥∥W r,0

l −W r,0
∥∥∥2
F

, and η is chosen according to equation 2.

Proof: The proof is provided in Appendix A.7.

It is easy to see from Lemma 3 that we can obtain the convergence result provided in theorem 2
provided the drift term on the right hand side of equation 25 is bounded in terms of loss. More
specifically, if Dr,0 ≤ constant × Φ (wr), then the linear convergence stated in Theorem 2 can
be easily proved by substitution. Before proving this, in the following lemma, we provide a recursion
of the drift in terms of the average loss and the past drift.

Lemma 4. The drift is bounded in terms of Φ
(
wτ,0

)
as follows

Dr,0 ≤ η2βT 2NLm

(
r−1∑
τ=0

λr+1−τDτ,0 +

r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ+1,0

)])
, (26)

where Lm := max
{
L2
max, 2LmaxN

}
, β := 4lmaxψ

2N
(1+ψ)µmin

, λ ≜
(
1 + 1

ψ

)
λ22.

Proof: The proof is provided in Appendix A.7.

Next, our task is to show that the recursion in equation 26 satisfies a bound of the form Dr,0 ≤
constantr × Φ

(
w0
)
, which is the desired result. Here, the constant is less than one. We use

induction along with carefully choosing η to achieve this goal. The following lemma provides the
desired result.
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Lemma 5. Using equation 26 and equation 25 and by induction on Dr+1,0 we get

Dr+1,0 ≤ (2r + 3)η2βT 2LmNλ
2Λr+1Φ

(
w0
)
, (27)

where Lm := max
{
L2
max, 2LmaxN

}
and β := 4lmaxψ

2N
(1+ψ)µmin

.

Proof: The proof is provided in Appendix A.7.1.

First, note that if the network is fully connected or centralized, i.e., λ2 = 0, then the drift term
becomes zero, as expected. Further, the drift increases with the number of clients N and the number
of local rounds T . Nevertheless, it goes down with Λ exponentially provided Λ < 1. This ensures
that the exponential bound in our main result holds good. Finally, the proof of Theorem 2 is complete
by using equation 26 and equation 27 in equation 25. In the next subsection, we state and prove some
useful Lemmas that are required to prove the main result.

A.6.2 USEFUL LEMMAS TO PROVE THEOREM 2
Lemma 6. The function Φk (w

r,τ
k ) satisfies local PL inequality and can be bounded in terms

of global average weight i.e., Φk (wr) as follows

E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
2

µmin
E ∥∇Φk (w

r)∥2 , (28)

where µmin := mink∈[N ]{µk}.

Proof: From assumption 1, the function Φk (w
r,τ
k ) is written as

Φk (w
r,τ
k ) ≤ Φk

(
wr,τ−1
k

)
+
〈
∇Φk

(
wr,τ−1
k

)
,wr,τ

k −wr,τ−1
k

〉
+
Lk
2

∥∥∥wr,τ
k −wr,τ−1

k

∥∥∥2
2
. (29)

We know from step 7 of Algorithm 2, wr,τ
k −wr,τ−1

k = −η
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. Using

this in equation 29, we get

Φk (w
r,τ
k ) ≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
wr,τ−1
k

)〉
+
η2Lk
2

Gk(r, τ).

≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
w
r,τ−1)
k

)〉

+
η2Lk
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lk
2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j

(
wr,τ−1
k

)〉
.

≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
w
r,τ−1)
k

)〉

+
η2Lmax
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lmax
2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j′

(
wr,τ−1
k

)〉
.

where Gk(r, τ) :=
∥∥∥ 1
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2
, and Lmax := maxk Lk. Taking expectation

with respect to wr,τ−1
k in the above, gives us

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,∇Φk

(
wr,τ−1
k

)〉
+
η2Lmax

2b

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2

+
η2Lmaxb(b− 1)

2b2

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2

]
.
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Applying smoothness assumption of each sample, i.e.,
∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2

≤

2lk,jΦk,j

(
wr,τ−1
k

)
, we have

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lmaxlk,j

b
Φk,j

(
wr,τ−1
k

)
+

η2Lmaxb(b− 1)Lk
b2

[
Φk

(
wr,τ−1
k

)]]
.

≤ Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lmaxlmax

b
E
[
Φk,j

(
wr,τ−1
k

)]
+

η2Lmaxb(b− 1)Lmax
b2

[
Φk

(
wr,τ−1
k

)]
. (30)

where lmax := maxk Lk. From the local PL inequality (see definition 2), it follows that∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2
≥ µminΦk

(
wr,τ−1
k

)
for k = {1, 2, . . . , N}, where µmin := mink∈[N ]{µk}.

Using this in equation 30 results in

E [Φk (w
r,τ
k )] ≤

[
1− ηµmin + η2

(
lmaxLmax

b
+
L2
maxb(b− 1)

b2

)]
E
[
Φk

(
wr,τ−1
k

)]
.

By setting η ≤ µmin

2

[
lmaxLmax

b +
L2
maxb(b−1)

b2

] , the above can be further bounded as

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)
E
[
Φk

(
wr,τ−1
k

)]
.

Since wr,0
k = wr

k, the above can be written as

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ
E [Φk (w

r
k)] . (31)

Using the local PL inequality, i.e., Φk (wr
k) ≤ 1

µmin
∥∇Φk (w

r
k)∥

2
2 in equation 31, we have

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ 1

µmin
E ∥∇Φk (w

r
k)∥2 . (32)

Now, adding and subtracting the term ∇Φk (w
r) in the above, and using the fact that ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2, we get

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ 2

µmin
E
(
∥∇Φk (w

r
k)−∇Φk (w

r)∥22 + ∥∇Φk (w
r)∥22

)
.

Using Lk smoothness assumption (see Assumption 3), we have

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ
E
(

2L2
k

µmin
∥wr

k −wr∥22 +
2

µmin
∥∇Φk (w

r)∥22

)
.

Choosing η ≤ 2
µmin

and using the fact that Lmax = maxk Lk, we get

E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
2

µmin
E ∥∇Φk (w

r)∥2 . (33)

Corollary 3. The function Φk (w
r,τ
k ) satisfies local PL inequality and can be bounded in terms

of global average weight i.e., Φk (wr) as follows

E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
4Lmax
µmin

E [Φk (w
r)] , (34)

where µmin := mink∈[N ]{µk} and Lmax := maxk Lk.

Proof: The proof directly follows from Lemma 6 by using the smoothness assumption, i.e.,
∥∇Φk (w

r)∥2 ≤ 2LmaxΦk (w
r). This completes the proof.

Next, we show that the loss can be bounded in terms of the future iterates as follows.
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Lemma 7. The function Φ
(
wr−1,0

)
is bounded in terms of the future value of the function as

given below

E
[
Φ
(
wr−1,0

)]
≤2E

[
Φ
(
wr,0

)
+

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
.

Proof: It follows from the smoothness assumption that

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
+
〈
∇Φ

(
wr−1,0

)
,wr,0 −wr−1,0

〉
− L

2

∥∥wr,0 −wr−1,0
∥∥2 . (35)

Telescoping the update in step 7 of Algorithm 2, we get
wr−1,T
i = wr−1,0

i − η
b

∑T−1
τ=0

∑
j∈Br−1,τ

k
∇Φi,j

(
wr−1,τ
i

)
. Averaging over all neighboring nodes

i ∈ Nk, we get

wr,0
k =

∑
i∈Nk

pk,iw
r−1,T
i =

∑
i∈Nk

pk,iw
r−1,0
i − η

b

T−1∑
τ=0

∑
i∈Nk

pk,i
∑

j∈Br−1,τ
k

∇Φi,j

(
wr−1,τ
i

)
.

Averaging over k ∈ [N ] leads to

wr,0 = wr−1,0 − η

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)
.

Using the above update in equation 35, we get

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
− η

〈
∇Φ

(
wr−1,0

)
,
1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)〉
︸ ︷︷ ︸

:=A1

−

η2L

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

. (36)

The term A1 in equation 36 can be bounded as

A1
(a)
=

1

2

∥∥∇Φ
(
wr−1,0

)∥∥2 + 1

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

− 1

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)
−∇Φ

(
wr−1,0

)∥∥∥∥∥∥
2

(b)
≤ 1

2

∥∥∇Φ
(
wr−1,0

)∥∥2 + 1

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

. (37)

where (a) follows from the inequality ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2 − 1

2 ∥a− b∥2, and (b) follows from

the fact that the term
∥∥∥ 1
bN

∑N
k=1

∑T−1
τ=0

∑
j∈Br−1,τ

k
∇Φk,j

(
wr−1,τ
k

)
−∇Φ

(
wr−1

)∥∥∥2 > 0 . Next,
using equation 37 in equation 36, we get

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
− η

2

∥∥∇Φ
(
wr−1,0

)∥∥2 − η

2
(1 + Lη)

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

.
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Using the smoothness assumption in the above, we get

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
− ηLΦ

(
wr−1,0

)
− η

2
(1 + Lη)

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=A2

.

(38)

A part of the third term in the above can be bounded as follows

A2

(a)
≤ T

N

N∑
K=1

T−1∑
τ=0

1

b

∑
j∈Br−1,τ

k

∥∥∥∇Φk,j

(
wr−1,τ
k

)∥∥∥2
(b)
≤ T

N

N∑
k=1

T−1∑
τ=0

1

b

∑
j∈Br−1,τ

k

2lk,jΦk,j

(
wr−1,τ
k

)
,

(c)
≤ T lmax

Nb

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

2Φk,j

(
wr−1,τ
k

)
,

where (a) follows from the fact that for any vector z = (z1, z2, . . . , zN ),
(∑N

i=1 zi

)2
≤

N
∑N
i=1(zi)

2 , (b) follows from smoothness assumption, and (c) follows from the fact that
lmax := maxk,j lk,j . Next, taking the expectation

E [A2] ≤
2lmaxT

N

N∑
k=1

T−1∑
τ=0

E
[
Φk

(
wr−1,τ
k

)]
.

Using E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥2k +
4Lmax

µmin
E
[
Φk
(
wr,0

)]
from Corollary 3, the above

can be further bounded as

E [A2] ≤
2lmaxT

2

N

N∑
k=1

(
2L2

max

µmin
E
∥∥wr−1

k −wr−1
∥∥2
2
+

4Lmax
µmin

E
[
Φk
(
wr−1,0

)])
.

Using the above result in equation 38 and rearranging, we obtain

E
[
Φ
(
wr,0

)]
≥ E

[
Φ
(
wr−1,0

)
− η (1 + ηL) 2lmaxL

2
maxT

2

Nµmin

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

−η
(
(1 + ηL) 4lmaxT

2Lmax
µmin

+ L

)
Φ
(
wr−1,0

)]
.

Choosing η ≤ 1
L and rearranging the terms, we get

E
[
Φ
(
wr−1,0

)]
≤ 1(

1− η
(

8lmaxT 2Lmax

µmin
+ L

))E[Φ (wr,0
)
+
η4lmaxL

2
maxT

2

Nµmin

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
.

Further, choosing η ≤ 1

2
(

8lmaxT2Lmax
µmin

+L
) , the above can be bounded as

E
[
Φ
(
wr−1,0

)]
≤2E

[
Φ
(
wr,0

)
+
η4lmaxL

2
maxT

2

Nµmin

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
. (39)

The following bound can be obtained by using η ≤ Nµmin

4lmaxL2
maxT

2 in equation 39:

E
[
Φ
(
wr−1,0

)]
≤2E

[
Φ
(
wr,0

)
+

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
.

Now, it suffices to bound the drift term in terms of the loss to obtain the linear convergence.
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Lemma 8. The consensus term, i.e., Dr,0 :=
∥∥∥W r,0

l −W r,0
∥∥∥2
F

satisfies the following bound

Dr,0 ≤ η2βLmT
2N

(
r−1∑
τ=0

λr+1−τDτ,0 +
r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ,0

)])
. (40)

where β := 4lψ2N
(1+ψ)µmin

, λ :=
(
1 + 1

ψ

)
λ22, Lm := max

{
L2
max, 2LmaxN

}
, and ψ > 1

1

λ2
2
−1

.

Here, λ2 is the second largest eigenvalue of the mixing matrix P .

Proof: Let, Dr,0 = E
∥∥∥W r,0

l −W r,0
∥∥∥2
F
=
∑N
k=1 E

∥∥∥wr,0
k −wr,0

∥∥∥2 . Using equation 22 and equa-
tion 23, the consensus term can be written as

Dr,0 = E
∥∥QPW r,0 − PW r,0

∥∥2
F

= E
∥∥(Q− P )W r,0

∥∥2
F
. (41)

Recall that Q = 1
N 11T is the average matrix, P is the mixing matrix and QP = Q. Using W r,0

l =

PW r−1,T (see equation 22), substituting for the update in W r−1,T and taking the telescopic sum,
we get

W r,0 =W r,0
l = P

(
W r−1,0 − η

T−1∑
τ=0

∂Φ̂
(
W r−1,τ

))
.

Plugging the above in equation 41, and using the generalized Cauchy’s inequality, i.e., ∥a+ b∥2 ≤(
1 + 1

ψ

)
∥a∥2 + (1 + ψ) ∥b∥2 for any ψ ≥ 0, the consensus term can be upper bounded as

E
∥∥(Q− P )W r,0

∥∥2
F

≤
(
1 +

1

ψ

)
Ξ + (1 + ψ)η2E

∥∥∥∥∥(Q− P 2
) T−1∑
τ=0

∂Φ̂
(
W r−1,τ

)∥∥∥∥∥
2

F

(a)
≤

(
1 +

1

ψ

)
Ξ + (1 + ψ)η2N

∥∥(Q− P 2
)∥∥2
op

E

∥∥∥∥∥
T−1∑
τ=0

∂Φ̂
(
W r−1,τ

)∥∥∥∥∥
2

F

(b)
≤

(
1 +

1

ψ

)
Ξ + (1 + ψ)η2λ42NT

T−1∑
τ=0

E
∥∥∥∂Φ̂ (W r−1,τ

)∥∥∥2
F
, (42)

where Ξ := E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F

, and (a) follows from Lemma 1 and (b) follows from Lemma
2. Next, consider bounding the following

E
∥∥∥∂Φ̂ (W r−1,τ

)∥∥∥2
F

= E
N∑
k=1

∥∥∥∥∥∥1b
∑

j∈Br−1,τ
k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

2

≤ E
N∑
k=1

1

b

∑
j∈Br−1,τ

k

∥∥∥∇Φk,j

(
wr−1,τ
k

)∥∥∥2
2

(a)
≤ 2lmax

N∑
k=1

E
[
Φk

(
wr−1,τ
k

)]
, (43)

where (a) follows from the smoothness assumption and lmax := maxk,j lk,j . Substituting

the bound in equation 28 of Lemma 7, i.e., E
[
Φk

(
wr−1,τ
k

)]
≤ 2L2

max

µmin
E
∥∥wr−1

k −wr−1
∥∥2
2
+

2
µmin

E
∥∥∇Φk

(
wr−1

)∥∥2 in the above, and writing it in the matrix form, we get

E
∥∥∥∂Φ̂ (W r−1,τ

)∥∥∥2
F

=
4lmaxL

2
max

µmin
E
∥∥∥W r−1,0

l −W r−1,0
∥∥∥2
F
+

4lmax
µmin

E
∥∥∂Φ (W r−1,0

)∥∥2
F
.
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Using the above in equation 42

E
∥∥(Q− P )W r,0

∥∥2
F

≤
(
1 +

1

ψ

)
E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F
+ η2λ42αNT

2L2
maxDr−1,0

+η2λ42αNT
2E
∥∥∂Φ (W r−1,0

)∥∥2
F
, (44)

where α := 4lmax(1+ψ)
µmin

. First, let us consider bounding E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F

. Using the update

stepW r−1,0 =W r−1,0
l = P

(
W r−2,0 − η

∑T−1
τ=0 ∂Φ̂

(
W r−2,τ

))
and following a similar approach

as used in steps equation 42 to equation 44, we get the following bound

E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F

≤
(
1 +

1

ψ

)
E
∥∥(Q− P 3

)
W r−2,0

∥∥2
F
+ η2λ62αL

2
maxNT

2Dr−2,0

+η2λ62αNT
2E
∥∥∂Φ (W r−2,0

)∥∥ .
Using the above result in equation 44

Dr,0 ≤
(
1 +

1

ψ

)2

E
∥∥(Q− P 3

)
W r−2,0

∥∥2
F
+

(
1 +

1

ψ

)
η2λ62αL

2
maxNT

2Dr−2,0 +(
1 +

1

ψ

)
η2λ62αNT

2E
∥∥∂Φ (W r−2,0

)∥∥+ η2λ42αNT
2L2

maxDr−1,0 +

η2λ42αNT
2E
∥∥∂Φ (W r−1,0

)∥∥2
F
.

Proceeding further in a similar manner as above, we get

Dr,0 ≤
(
1 +

1

ψ

)r
E
∥∥(Q− P r+1

)
W 0,0

∥∥2
F
+ η2αL2

maxNT
2
r−1∑
τ=0

λ
2(r+1−τ)
2

(
1 +

1

ψ

)(r−1−τ)

Dτ,0

+ η2αNT 2
r−1∑
τ=0

λ
2(r+1−τ)
2

(
1 +

1

ψ

)(r−1−τ)

E
∥∥∂Φ (W τ,0

)∥∥2
F
.

We initialize W 0,0 = 0. Further, multiplying and dividing by
(
1 + 1

ψ

)
to the second and the third

term in the above, we get

Dr,0 ≤ η2ψ2αL2
maxNT

2

(1 + ψ)
2

r−1∑
τ=0

λ(r+1−τ)Dτ,0 +
η2ψ2αNT 2

(1 + ψ)
2

r−1∑
τ=0

λ(r+1−τ)δr,0. (45)

where δr,0 := E
∥∥∂Φ (W τ,0

)∥∥2
F

and λ :=
(
1 + 1

ψ

)
λ22. Using α = 4lmax(1+ψ)

µmin
in equation 45, we

have

Dr,0 ≤ η24lmaxψ
2L2

maxNT
2

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)Dτ,0 +
η24lmaxψ

2NT 2

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)δr,0.(46)

The term, E
∥∥∂Φ (W τ,0

)∥∥2
F

in the above, is bounded as follows

E
∥∥∂Φ (W τ,0

)∥∥2
F

= E
N∑
k=1

∥∥∇Φk
(
wτ,0

)∥∥2
2

(a)
≤ 2LmaxNE

[
Φ
(
wτ,0

)]
, (47)

where (a) follows from smoothness assumption and using the fact that Φ
(
wτ,0

)
=

1
N

∑N
k=1 Φk

(
wτ,0

)
, and Lmax = maxk Lk. Using equation 65 in equation 46, we get

Dr,0 ≤ η24lmaxψ
2NL2

maxT
2

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)Dτ,0 +
η24lmaxψ

2T 2N2LmaxN

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)E [Φ (wτ )] .

Let Lm := max
{
L2
max, 2LmaxN

}
and β := 4lmaxψ

2N
(1+ψ)µmin

. Therefore, the drift term results in

Dr,0 ≤ η2βLmT
2N

(
r−1∑
τ=0

λr+1−τDτ,0 +
r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ,0

)])
.
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A.7 COMPLETING THE PROOF OF THEOREM 2

From L-smoothness assumption (see 1) of Φ (w), we have

Φ
(
wr,t+1

)
≤ Φ

(
wr,t

)
+ ⟨∇Φ(wr,t),wr,t+1 −wr,t⟩+ L

2

∥∥wr,t+1 −wr,t
∥∥2 . (48)

Using step 7 of Algorithm 2 we have, wr,t+1
i = wr,t

i − η
b

∑
j∈Br,t

i
∇Φi,j

(
wr,t
i

)
. Multiplying both

sides by pk,i and summing over i ∈ Nk, we get

wr,t+1
k = wr,t

k − η

b

∑
i∈Nk

pk,i
∑
j∈Br,t

i

∇Φi,j
(
wr,t
i

)
. (49)

Averaging on both sides over k ∈ [N ], we get

wr,t+1 = wr,t − η

bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
.

Using the above update, i.e., wr,t+1 −wr,t in equation 48, we get

Φ
(
wr,t+1

)
≤ Φ

(
wr,t

)
− η

〈
∇Φ

(
wr,t

)
,
1

bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)〉
+

η2L

2b2N2

∥∥Gr,t∥∥2 .
where Gr,t :=

∑N
k=1

∑
j∈Br,t

k
∇Φk,j

(
wr,t
k

)
. Taking expectation conditioning on wr,t

k and past, we
get

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

〈
∇Φ(wr,t),

1

N

N∑
k=1

∇Φk
(
wr,t
k

)〉
︸ ︷︷ ︸

:=A1

+
η2LA2

2

+
1

b2N2

∑
k ̸=k′

〈 ∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
,
∑
i∈Br,t

k

∇Φk′,i
(
wr,t
k′

)〉
︸ ︷︷ ︸

:=A3

)]
, (50)

where A2 := 1
b2N2

∑N
k=1

∥∥∥∑j∈Br,t
k

∇Φk,j
(
wr,t
k

)∥∥∥2. This term can be bounded as follows

A2 =
1

b2N2

N∑
k=1

∑
j∈Br,t

k

∥∥∇Φk,j
(
wr,t
k

)∥∥2 + 1

b2N2

N∑
k=1

∑
j ̸=j′

〈
∇Φk,j

(
wr,t
k

)
,∇Φk,j′

(
wr,t
k

) 〉
.

Taking expectation, we get

E[A2] =
1

bN2

N∑
k=1

E∥∇Φk,j
(
wr,t
k

)
∥2 + b(b− 1)

b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (51)

Similarly the term A3 in equation 50 can be bounded by taking expectation as follows

E[A3] =
1

b2N2

∑
k ̸=k′

〈
∇Φk

(
wr,t
k

)
,∇Φk′

(
wr,t
k′

)〉
(a)
≤ 1

2b2N2

∑
k ̸=k′

[
∥∇Φk

(
wr,t
k

)
∥2 + ∥∇Φk′

(
wr,t
k′

)
∥2
]

=
2(N − 1)

2b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2

≤ 1

b2N

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (52)
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where (a) follows from ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2. Next, we lower bound the term A1 in equation 50

as

A1 =
1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
−∇Φ

(
wr,t

)
∥2

≥ 1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − L2

2N

N∑
k=1

∥wr,t
k −wr,t∥2. (53)

Substituting equation 51, equation 52 and equation 53 in equation 48, we get the following

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+
ηL2

2N

N∑
k=1

∥∥∆r,t
k

∥∥2
+

η2L

2bN2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)∥∥2
︸ ︷︷ ︸

:=A4

+

(
η2Lb(b− 1)

2b2N2
+
η2L

2N

)
A5

]
, (54)

where ∆r,t
k := wr,t

k − wr,t and A5 :=
∑N
k=1

∥∥∇Φk
(
wr,t
k

)∥∥2. The term A4 in equation 54 is
bounded as follows

A4

(a)
≤

N∑
k=1

2
∥∥∇Φk,j

(
wr,t
k

)
−∇Φk,j

(
wr,t

)∥∥2 + N∑
k=1

2
∥∥∇Φk,j

(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

l2k,j
∥∥wr,t

k −wr,t
∥∥2 + 4

N∑
k=1

lk,jΦk,j
(
wr,t

)
(c)
≤ 2l2max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4lmax

N∑
k=1

Φk,j
(
wr,t

)
,

where (a) follows by adding and subtracting the term ∇Φk,j (w
r,t) and using the fact that,

∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (b) follows from Assumption 3, and (c) follows from the fact that
lmax := maxk,j lk,j . Taking expectation, we get

E [A4] ≤ 2l2max

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 + 4lmax

N∑
k=1

E
[
Φk
(
wr,t

)]
. (55)

The term A5 in equation 54 is bounded as

A5

(a)
≤ 2

N∑
k=1

∥∥∇Φk
(
wr,t
k

)
−∇Φk

(
wr,t

)∥∥2 + 2

N∑
k=1

∥∥∇Φk
(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

L2
k

∥∥wr,t
k −wr,t

∥∥2 + 4

N∑
k=1

LkΦk
(
wr,t

)
(c)
≤ 2L2

max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4Lmax

N∑
k=1

Φk
(
wr,t

)
, (56)

where (a) follows by adding and subtracting ∇Φk (w
r,t), and (b) follows from assumption 3 and

(c) follows from Lmax := maxk Lk. Substituting upper bounds from equation 55 and equation 56
in equation 68, we get

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+

(
ηL2

2N
+
η2Ll2max
bN2

+
η2LL2

max

N2
+
η2LL2

max

N

) N∑
k=1

∥∥wr,t
k −wr,t

∥∥2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

)
Φ
(
wr,t

) ]
. (57)
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Now, using PL inequality (see definition 2), i.e., ∥∇Φ (w)∥2 ≥ µΦ (w) , ∀w ∈ Rd and rearranging,
we get

E
[
Φ
(
wr,t+1

)]
≤ E

[(
1− ηµ

2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

))
Φ
(
wr,t

)
+

(
ηL2

2N
+
η2Ll2max
bN2

+
η2LL2

max

N2
+
η2LL2

max

N

)
1

N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 ].
Choosing η ≤ min

{
µ

4( 2Llmax
bN + 2LLmax

N +2LLmax)
, L2

2

(
Ll2max

bN +
LL2

max
N +LL2

max

)
}

, the above can be

further bounded as

E
[
Φ
(
wr,t+1

)]
≤

(
1− ηµ

4

)
E
[
Φ
(
wr,t

)]
+
ηL2

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 (58)

(a)
≤

(
1− ηµ

4

)
E
[
Φ
(
wr,t

)]
+

2ηL2

N

N∑
k=1

E
(∥∥∆r,t

k

∥∥2 + ∥∥∆̄r,t
k

∥∥2) , (59)

where ∆r,t
k := wr,t

k − wr,t
k and ∆̄r,t

k := wr,t
k − wr,t. In the above, (a) follows by adding and

subtracting the term wr,t
k and using the fact that, ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2. First, let us consider

the local drift term i.e.,
∑N
k=1

∥∥wr,t
k −wr,t

k

∥∥ in equation 59. Telescoping the update from step 7 of
Algorithm 2 we have,

wr,t
k = wr,0

k − η

b

t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) . (60)

Further, consider the local average at node k, i.e., wr,t
k

wr,t
k =

∑
i∈Nk

pk,iw
r,t
i = wr,0

k − η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (w
r,τ
i ) . (61)

Now noting the fact that wr,0
k = wr,0

k and using equation 60 and equation 61, we can bound the drift
term as

N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 =

N∑
k=1

E

∥∥∥∥∥∥ηb
t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k )− η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (w
r,τ
i )

∥∥∥∥∥∥
2

(a)
≤ 2

N∑
k=1

E

∥∥∥∥∥ηb
t−1∑
τ=0

Gkj(r, τ)

∥∥∥∥∥
2

+

∥∥∥∥∥ηb
t−1∑
τ=0

∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2


(b)
≤ 2

N∑
k=1

E

η2t
b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 +
η2t

b2

t−1∑
τ=0

∥∥∥∥∥∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2
 ,

where Gij(r, τ) :=
∑
j∈Br,τ

i
∇Φi,j (w

r,τ
i ). In the above, (a) follows from the fact that, ∥a+ b∥2 ≤

∥a∥2 + ∥b∥2, and (b) follows from the fact that for any vector zi,
(∑N

i=1 zi

)2
≤ N

∑N
i=1(zi)

2.
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The second term in (b) can be further bounded using Jensen’s inequality as follows
N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 2

N∑
k=1

E

[
η2t

b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 +
η2t

b2

t−1∑
τ=0

∑
i∈Nk

pk,i ∥Gij(r, τ)∥2
]

≤ 2

N∑
k=1

E

η2t
b

t−1∑
τ=0

∑
j∈Br,τ

k

∥∥∥gr,τkj ∥∥∥2 + η2t

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∥∥gr,τij ∥∥2


(a)
≤ 2

N∑
k=1

E

η2t
b

t−1∑
τ=0

∑
j∈Br,τ

k

2lk,jLr,τkj +
η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2li,jLr,τij


(b)
= E

2η2t
b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

2lmaxLr,τkj +
2η2t

b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2lmaxLr,τij

 ,
where gr,τkj := ∇Φk,j (w

r,τ
k ), Lr,τkj := Φk,j (w

r,τ
k ) and (a) follows from smoothness assumption

and (b) follows from the fact that mixing matrix P preserves the average and lmax := maxk,j lk,j .
Simplifying the above results in

N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ E

8η2tlmax
b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

Φk,j (w
r,τ
k )

 .
Taking expectation, we get

N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] . (62)

According to equation 34 of Corollary 3 we have, E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
4Lmax

µmin
E [Φk (w

r)]. Using this in equation 62, we get
N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

(
2L2

max

µmin
E ∥wr

k −wr∥22 +
4LN
µmin

E [Φk (w
r)]

)
.

Simplifying the above results in
N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 16η2t2lmaxL
2
max

N∑
k=1

∆̄r

µmin
+ 32η2t2lmaxLmax

N∑
k=1

E [Φk (w
r)]

µmin
.

(63)

where ∆̄r := E ∥wr
k −wr∥22. Next, let us consider the global drift term i.e.,

∑N
k=1

∥∥wr,t
k −wr,t

∥∥2
2

in equation 59, which can be rewritten in matrix notation as Dr,t :=
∥∥W r,t

l −W r,t
∥∥2
F

. This term is
bounded as

Dr,t
(a)
= E

∥∥QPW r,t − PW r,t
∥∥2
F

(b)
= E

∥∥(Q− P )W r,t
∥∥2
F

(c)
= E

∥∥∥∥∥(Q− P )

(
W r,0 − η

t−1∑
τ=0

∂Φ̂ (W r,τ )

)∥∥∥∥∥
2

F

,

where (a) follows since QPW r,t = W r,t and PW r,t = W r,t
l , (b) follows from QP = Q, and

(c) follows from the update W r,t = W r,0 − η
∑t−1
τ=0 ∂Φ̂ (W r,τ ). Using the fact that ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2 in the above, we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0

∥∥2
F
+ 2η2t

t−1∑
τ=0

E
∥∥∥(Q− P )∂Φ̂ (W r,τ )

∥∥∥2
F

≤ 2E
∥∥(Q− P )W r,0

∥∥+ 2η2t

t−1∑
τ=0

Nλ22E∥∂Φ̂ (W r,τ ) ∥2F , (64)
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The term E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F

in the above can be bounded as

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F

= E
N∑
k=1

∥∥∥∥∥∥1b
∑
j∈Br,t

k

∇Φk,j (w
r,τ
k )

∥∥∥∥∥∥
2

2

≤ E
N∑
k=1

1

b

∑
j∈Br,t

k

∥∇Φk,j (w
r,τ
k )∥2

2

(a)
≤ 2lmax

N∑
k=1

E [Φk (w
r,τ
k )] , (65)

where (a) follows from the smoothness assumption and the fact that lmax := maxk,j lk,j . Using

equation 28 of Lemma 6, i.e., E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥2k+
2

µmin
E ∥∇Φk (w

r)∥2 in the
above, we get

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F

≤ 4L2
maxlmax
µmin

N∑
k=1

E ∥wr
k −wr∥22 +

4lmax
µmin

N∑
k=1

E ∥∇Φk (w
r)∥2 .

The result above can be written in matrix form as,

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F
=

4L2
maxlmax
µmin

Dr,0 +
4lmax
µmin

E
∥∥∂Φ (W r,0

)∥∥2
F
,

Substituting the above result in equation 64, we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0

∥∥2
F
+ 4η2L2

maxλ
2
2γt

2Dr,0 + 4η2λ22γt
2E
∥∥∂Φ (W r,0

)∥∥2
F
, (66)

where γ := 2lmaxN
µmin

.

E
[
Φ
(
wr+1

)]
≤

(
1− ηµ

4

)T
E [Φ (wr)] +

2ηL2

N

T−1∑
τ=0

(
1− ηµ

4

)τ N∑
k=1

E
(∥∥∥∆r,T−1−τ

k

∥∥∥2 + ∥∥∥∆̄r,T−1−τ
k

∥∥∥2)
(a)
≤

(
1− ηµ

4

)
E [Φ (wr)] +

2ηL2

N

T−2∑
τ=0

(
1− ηµ

4

)τ N∑
k=1

E
(∥∥∥∆r,T−1−τ

k

∥∥∥2 + ∥∥∥∆̄r,T−1−τ
k

∥∥∥2)(67)

where (a) follows from the fact that
(
1− ηµ

4

)T ≤
(
1− ηµ

4

)
,
∥∥∥∆r,T−1−τ

k

∥∥∥2 = 0 and∥∥∥∆̄r,T−1−τ
k

∥∥∥2 = 0 for τ = T − 1. Now choosing η < 4
µ and substituting equation 63 and

equation 66 in equation 67, we get

E
[
Φ
(
wr+1

)]
≤E

[(
1− ηµ

4
+

64η4T 3lLLmax
µmin

)
Φ (wr) +

2η2TL

N

[(
16lmaxη

2T 2L2
max

µmin
+ 4λ22η

2γL2
maxT

2

)
Dr,0

+ 2
∥∥(Q− P )W r,0

∥∥2
F
+ 4η2γT 2λ22

∥∥∂Φ (W r,0
)∥∥2
F

]]
. (68)

The term E
∥∥∂Φ (W r,0

)∥∥2
F

can be bounded as

E
∥∥∥∂Φ̂ (W r,0

)∥∥∥2
F
=

N∑
k=1

E ∥∇Φk (w
r)∥2

(a)
≤

N∑
k=1

2LmaxE [Φk (w
r)] = 2LmaxNE [Φ (wr)] ,
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where (a) follows from smoothness assumption and (b) follows from the fact that Φ (wr) =
1
N

∑N
k=1 Φk (w

r). Using the above result in equation 68, we get

E
[
Φ
(
wr+1

)]
≤ E

[(
1− ηµ

4
+

64η4T 3lmaxLLmax
µmin

)
Φ (wr) +

2η2TL

N

[
2
∥∥(Q− P )W r,0

∥∥2
F
+

(
16lmaxη

2T 2L2
max

µmin
+ 4λ22η

2γL2T 2

)
Dr,0 + 8η2λ22γT

2LmaxNΦ (wr)

]]

≤ E
[(

1− ηµ

4
+

64η4T 3lmaxLLmax
µmin

+ 16η4γT 3λ22LLmax

)
Φ (wr)+

2η2TL

N

([
16lmaxη

2T 2L2
max

µmin
+ 4λ22η

2γL2T 2

]
Dr,0 + 2

∥∥(Q− P )W r,0
∥∥2
F

)]
.

Choosing η ≤ 1
8

(
µ

64T3lmaxLLmax
µmin

+16γT 3Lλ2
2Lmax

)1/3

in the above result in

E
[
Φ
(
wr+1

)]
≤ E

[(
1− ηµ

8

)
Φ (wr) +

2η4TL

N

[
16T 2L2

maxlmax
µmin

+ 4λ22γL
2T 2

]
Dr,0

+
4η2L

N

∥∥(Q− P )W r,0
∥∥2
F

]
.

Again choosing η ≤

[(
1

16T2lmaxL2
max

µmin
+4λ2

2γT
2L2

)] 1
2

, the above results in

E
[
Φ
(
wr+1

)]
≤

(
1− ηµ

8

)
E [Φ (wr)] +

2η2TL

N
Dr,0 +

4η2TL

N
E
∥∥(Q− P )W r,0

∥∥2
F
.

It is easy to see that E
∥∥(Q− P )W r,0

∥∥2
F
= E

∥∥∥W r,0
l −W r,0

∥∥∥2
F
= Dr,0. Using this above, gives us

E
[
Φ
(
wr+1

)]
≤

(
1− ηµ

8

)
E [Φ (wr)] +

6η2TL

N
Dr,0. (69)

From Lemma 8, we have

Dr,0 ≤ η2βLmT
2N

(
r−1∑
τ=0

λr+1−τDτ,0 +
r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ,0

))]
. (70)

From Lemma 7, we know that

E
[
Φ
(
wτ,0

)]
≤2E

[
Φ
(
wτ+1,0

)
+

N∑
k=1

∥wτ
k −wτ∥22

]
.

Using the above result on Φ
(
wτ,0

)
in equation 70, we get

Dr,0 ≤ 3η2βLmT
2N

r−1∑
τ=0

λr+1−τDτ,0 + 2η2βLmT
2N

r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ+1,0

)]
.

Let Lm = max {2Lm, 3Lm}. The above can be further bounded as

Dr,0 ≤ η2βT 2NLm

(
r−1∑
τ=0

λr−τDτ,0 +

r−1∑
τ=0

λr−τE
[
Φ
(
wτ+1,0

)])
. (71)

This completes the proof.
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A.7.1 PROOF OF PROPOSITION 5

Note that we need to prove the following set of inequalities hold good for all r

Dr,0 ≤ (2r + 3)η2βT 2LmNλ
2ΛrΦ

(
w0
)

(72)

Φ (wr) ≤ Λr−1
(
Λ + 4η4LLmβT

3λ2r2
)
Φ
(
w0
)
, r = {1, 2, . . . , R} (73)

where λ =
(
1 + 1

ψ

)
λ22, Φ

(
w0
)
= Φ

(
w0,0

)
and Λ = max

((
1− ηµ

8

)
, λ
)
. We use induction

method to prove that the above set of inequalities hold good for all r. Since D0,0 = 0, the in-
equalities hold good for r = 0. Next, assuming that the above inequalities hold good for every
communication rounds in {1, 2, . . . , r}, we need to prove that the respective inequalities hold for
Dr+1,0 and Φ

(
wr+1

)
. Towards this, consider the following

Φ
(
wr+1

)
≤

(
1− ηµ

8

)
Φ (wr) +

4η2LT

N
Dr,0

(a)
≤ Λ

[
Λ + 4η4LLmβT

3λ2r2
]
Λr−1Φ

(
w0
)
+ 4η4βT 3LmL(2r + 1)λ2ΛrΦ

(
w0
)

=
[
Λ + 4η4LLmβT

3λ2r2
]
ΛrΦ

(
w0
)
+ 4η4βT 3LmL(2r + 1)λ2ΛrΦ

(
w0
)

=
[
Λr+1 + 4η4LLmβT

3λ2Λr
(
r2 + 2r + 1

)]
Φ
(
w0
)

= Λr
[
Λ + 4η4LLmβT

3λ2 (r + 1)
2
]
Φ
(
w0
)
,

where (a) follows by substituting equation 72, equation 73 and using Λ :=
(
1− ηµ

8

)
. Let us recall

from equation 40 of Lemma 8 that

Dr+1,0 ≤ η2βT 2NLm

( r∑
τ=0

λr+2−τDτ,0 +
r∑

τ=0

λr+2−τΦ
(
wτ+1,0

) )
. (74)

Substituting for Dτ,0 from equation 72 in the first term of equation 74, we get
r∑

τ=0

λr+2−τDτ,0 = η2βT 2LmN

r∑
τ=0

λr+2−τ (2τ + 1)λ2ΛτΦ
(
w0
)
.

≤ η2βT 2LmNλ
2λ

r∑
τ=0

(2τ + 1)λr−τΛτ+1Φ
(
w0
)

(a)
≤ η2βT 2LmNλ

2λΛr+1

(
r∑

τ=0

2τ + 1

)
Φ
(
w0
)

≤ η2βT 2LmNλ
2λΛr+1r(r + 1)Φ

(
w0
)
,

where (a) follows from the fact that λ ≤ Λ. Now picking η2 ≤ 1
βT 2LmNRλ

results in
r∑

τ=0

λr+2−τDτ,0 ≤ (r + 1)λ2Λr+1Φ
(
w0
)
. (75)

Next, substituting for Φ
(
wτ+1

)
from equation 73 in the second term of equation 74, we get

r∑
τ=0

λr+2−τΦ
(
wτ+1

)
=

r∑
τ=0

λr+2−τ [Λ + 4η4LLmβT
3λ2(τ + 1)2

]
ΛτΦ

(
w0
)

≤
r∑

τ=0

λr+2−τΛτ+1 + (r + 1)2
r∑

τ=0

λ2λr+τΛτ4η4LLmβT
3λΦ

(
w0
)
.

The last inequality follows from the fact that τ ≤ r, and λ ≤ Λ. By choosing η4 ≤ 1
4LLmβT 3(r+1)3λ ,

we get
r∑

τ=0

λr+2−τΦ
(
wτ+1

)
≤

[
r∑

τ=0

λ2Λr+1 +

r∑
τ=0

1

(r + 1)
λ2Λr+1

]
Φ
(
w0
)

= (r + 2)λ2Λr+1Φ
(
w0
)
. (76)
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Figure 5: Training loss for server FedAvg (see (a) FMNIST and (b) MNIST) and decentralized
FedAvg (see (c) MNIST) versus communication rounds.

Figure 6: Testing accuracy on different datasets versus the communication rounds for FedAvg in the
Server setting.

Using equation 75 and equation 76 in equation 74, and after some algebraic manipulations, we get
the following desired result

Dr+1,0 ≤ (2r + 3)η2βT 2LmNλ
2Λr+1Φ

(
w0
)
.

Using the above result in the upper bound for Φ
(
wr+1

)
, we get the desired bound on .

A.8 ADDITIONAL EXPERIMENTS

In this section, we provide the details of the experimental setup and some additional results for
experiments carried on different datasets for both Server and Decentralized setting. We have used
NVIDIA DGX A100 to implement all our experiments. The experimental setup consists of the
following model and data set:

Overparameterized regression: We consider a model with 3 linear layers and no activation func-
tion with 231490 trainable parameters. Note that this formulation models a simple regression prob-
lem. We condsider a image classification task on MNIST dataset and evaluate the performance of
FedAvg under different settings.

Deep neural network: In this case, we consider an image classification task on CIFAR–10 dataset.
Each edge device implements a three hidden layer convolutional neural network (CNN) followed by
two linear layers with 1046426 trainable model parameters. In the overparameterized setting, for the

Figure 7: Testing accuracy on different datasets versus the communication rounds for FedAvg in the
Decentralized setting.
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Figure 8: Training loss and Testing accuracy for centralized (λ2 = 0) and decentralized FedAvg
algorithm with ring topology (λ2 = 0.33) on CIFAR-10 dataset versus communication rounds.

CIFAR-10, MNIST and FMNIST, each edge device implements a three hidden layer convolutional
neural network (CNN) with 256, 128 and 64 filters followed by three linear layers having 1642849
trainable parameters for CIFAR-10 and two linear layers for MNIST and FMNIST with 1046426
trainable parameters. For Shakespeare dataset, LSTM models are used at each edge device. We
consider an embedding layer with embedding size of 10 followed by 2 LSTM layers with 256 hidden
neurons and one linear layer. On the other hand, in the underparameterized setting, we consider a
comparatively smaller neural network. For the CIFAR-10, MNIST, FMNIST datasets each device
implements two hidden layer CNN network with 25 and 52 filters followed by two linear layers for
CIFAR-10 and one linear layer for MNIST and FMNIST datasets. For the Shakespeare dataset each
device has embedding layer followed by one LSTM layer with 56 hidden neurons and a linear layer.
For the experiments, we chose T = 10 and tune for the learning rate in the range η ∈ [0.001 : 0.01]
for CIFAR-10, MNIST, FMNIST datasets whereas we choose η = 0.8 for the Shakespeare dataset.
Each device has access to 490 training samples and 90 test samples for CIFAR-10 whereas for
MNIST and FMNIST datasets, 540 samples are used for training and 80 samples are used for testing.

Figure 6 show the testing accuracy for FedAvg in the server setting for four different datasets. As
expected the convergence speed of underparameterized case is slower than the overparameterized
case. Similarly, figure 7 show plots for testing accuracy for FedAvg in the decentralized setting.

Finally, in Figure 8, we compare the training loss and testing accuracy for centralized and decen-
tralized FedAvg algorithm against the communications rounds for classification task on CIFAR-10
dataset. It is clear from the figures that the centralized case achieves a very good performance at a
faster rate as opposed to the decentralized case, i.e., the ring topology.
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