
Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 4

3 The Tangent Residual and Its Properties 6

4 Last-Iterate Convergence Rate for EG and OG 7

4.1 Best-Iterate Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Monotonicity of the Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Monotonicity of Φ(zk, wk) for OG in the Unconstrained Setting . . . 9

4.2.2 Constrained EG and OG . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Last-Iterate Convergence of EG and OG . . . . . . . . . . . . . . . . . . . . . 10

5 Conclusion 10

A Potential Societal Impact 18

B Sum-of-Squares Programming 18

C Additional Related Work – other Computer-Aided Proofs 20

D Additional Preliminaries 20

D.1 Remark about choice of D in Definition 2 . . . . . . . . . . . . . . . . . . . . 21

D.2 Equivalent Definitions of the Tangent Residual . . . . . . . . . . . . . . . . . 21

E Missing Proofs and Details from Section 3 23

E.1 The Natural Residual and Its Relation to the Tangent Residual . . . . . . . . 23

E.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

F Missing Proofs in Section 4 25

F.1 Bounded Iterates of EG and OG . . . . . . . . . . . . . . . . . . . . . . . . . . 25

F.2 Auxiliary Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

G Missing Details for the Analysis of the Extragradient Algorithm 26

G.1 Best-Iterate Convergence of EG . . . . . . . . . . . . . . . . . . . . . . . . . . 27

G.1.1 Bounded Iterates of EG with Constant Step Size . . . . . . . . . . . . 28

G.2 Best-Iterate of Tangent Residual . . . . . . . . . . . . . . . . . . . . . . . . . . 29

G.3 Last-Iterate Convergence of EG with Constant Step Size . . . . . . . . . . . . 30

G.3.1 Warm Up: Unconstrained Case . . . . . . . . . . . . . . . . . . . . . . 30

G.3.2 Last-Iterate Convergence of EG with Arbitrary Convex Constraints . 32

17



H Optimistic Gradient Algorithm 36

H.1 Best-Iterate Convergence of OG with Constant Step Size . . . . . . . . . . . 37

H.1.1 Bounded Iterates of OG with Constant Step Size . . . . . . . . . . . . 39

H.2 Best-Iterate of Φ(zk, wk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

H.3 Monotonicity of Φ(zk, wk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

H.4 Combining Everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

I Last-Iterate Convergence for Variational Inequalities 43

I.1 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

J Non-Monotonicity of Several Standard Performance Measures 44

J.1 Non-Monotonicity of the Natural Residual and its Variants . . . . . . . . . . 45

J.2 Non-Monotonicity of the Gap Functions and its Variant . . . . . . . . . . . . 46

A Potential Societal Impact

This work provides theoretical results for the convergence rate of natural online learning
algorithms in multi-player games. Online learning in multi-player games is a mathematical
model that captures the strategic interaction between agents in multi-agent systems. From
this perspective, our convergence results provide new understandings of the evolution
of the overall behavior of agents in multi-agent systems. More specifically, our results
imply that certain natural dynamics will lead the agents’ joint action profile to a stable
state, i.e., a Nash equilibrium, efficiently. As a direct application, a designer of a multi-
agent system can prescribe the learning algorithms studied in this paper, i.e., optimistic
gradient or extragradient, to agents, so that the system stabilizes quickly. Moreover, practical
applications of min-max optimization (a special case of the games studied in this paper)
include Generative Adversarial Networks (GANs) and adversarial examples. Therefore, our
results might also provide useful insights on the training of GANs and adversarial training.
To our best knowledge, we do not envision any immediate negative societal impacts of our
results, such as security, privacy, and fairness issues.

B Sum-of-Squares Programming

We first formally define SOS polynomials and SOS programs. Then we discuss how to use
SOS programs to construct certificate of non-negativity to prove the monotonicity of the
potential functions of EG and OG.

Sum-of-Squares (SOS) Polynomials. Let x be a set of variables. We denote the set of real
polynomials in x as R[x]. We say that polynomial p(x) ∈ R[x] is an SOS polynomial if there
exist polynomials {qi(x) ∈ R[x]}i∈[M] such that p(x) = ∑i∈[M] qi(x)2. We denote the set of
SOS polynomials in x as SOS[x]. Note that any SOS polynomial is non-negative.

SOS Programs. Suppose we want to prove that a polynomial g(x) ∈ R[x] is non-negative
over a semialgebraic set S = {x : gi(x) ≤ 0, ∀i ∈ [M], hi(x) = 0, ∀i ∈ [N]}, where
each gi(x) (hi(x) resp.) is also a polynomial. One way is to construct a certificate of non-
negativity, for example, by providing a set of nonnegative coefficients {pi}i∈[M] ∈ RM

≥0 and
{qi}i∈[N ] ∈ RN such that g(x) + ∑i∈[M] pi · gi(x) + ∑i∈[N] qi · hi(x) is a SOS polynomial.
Surprisingly, if g(x) is indeed non-negative over S , a certificate of non-negativity always
exists as guaranteed by a foundational result in real algebraic geometry – the Krivine-Stengle
Positivestellensatz [Kri64, Ste74], a generalization of Artin’s resolution of Hilbert’s 17th
problem [Art27]. Note that, it is sometimes necessary to allow more sophisticated forms
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of certificates than in the example above, e.g., replacing each coefficient pi with a SOS
polynomial pi(x), etc. The complexity of a certificate is parametrized by the highest degree
of the polynomial involved. The SOS programming consists of a hierarchy of algorithms,
where the d-th hierarchy is an algorithm that searches for a certificate of non-negativity up
to degree 2d based on semidefinite programming.

In Figure 1 we present a generic formulation of a degree-2d SOS program. The SOS pro-
gram takes three kinds of input, a polynomial g(x), sets of polynomials {gi(x)}i∈[M] and
{hi(x)}i∈[N]. Each polynomial in {g(x)} ∪ {gi(x)}i∈[M] ∪ {hi(x)}i∈[N] has degree of at
most 2d. The SOS program searches for an SOS polynomial in the set of polynomials
Σ = {g(x) + ∑i∈[M] pi(x) · gi(x) + ∑i∈[N] qi(x) · hi(x)}, where {pi(x)}i∈[M] and {qi(x)}i∈[N]

are polynomials in x. More precisely for each i ∈ [M], pi(x) is an SOS polynomial with
degree at most 2d −deg(gi(x)). For each i ∈ [N], qi(x) is a (not necessarily SOS) polynomial
with degree at most 2d − deg(hi(x)). Note that any polynomial in set Σ is at most degree 2d.
In our applications, we choose {gi(x)}i∈[M] to be non-positive polynomials and {hi(x)}i∈[N]

to be polynomials that are equal to 0. Any feasible solution to the program certifies the
non-negativity of g(x). We used SOSTOOLS package in MATLAB to solve any SOS program
encountered in this paper [PAV+13].

Input Fixed Polynomials.

• Polynomial g(x)
• Polynomial gi(x) ∈ R[x] for all i ∈ [M].
• Polynomial hi(x) ∈ R[x] for all i ∈ [N].

Decision Variables of the SOS Program:

• pi(x) ∈ SOS[x] is an SOS polynomial with degree at most 2d − deg (gi), for all i ∈ [M].
• qi(x) ∈ R[x] is a polynomial with degree at most 2d − deg (hi) , for all i ∈ [N].

Constraints of the SOS Program:

g(x) + ∑
i∈[M]

pi(x) · gi(x) + ∑
i∈[N]

qi(x) · hi(x) ∈ SOS[x]

Figure 1: Generic degree 2d SOS program.

SOS-based Analysis of EG and OG We mainly discuss the analysis of EG here, as the
analysis of OG is similar and also based on SOS programming. At the core of our analysis
of the EG algorithm lies the monotonicity of the squared tangent residual, which can be
formulated as the non-negativity of a degree-4 polynomial in the iterates.9 Our original
proof directly applies SOS programming to certify the non-negativity of this degree-4
polynomial. The certificate is rather complex and involves a polynomial identity of a
degree-8 polynomial in 27 variables, which we discover by solving a degree-8 SOS program.
Interested readers can find the proof in version 2 of [COZ22] in arXiv. In this version,
we include a simplified proof. By introducing auxiliary vectors that are not part of the
update rule of EG, we provide an equivalent formulation of the squared tangent residual
(Lemma 13) that is a degree-2 polynomial, which allows us to prove the monotonicity of the
squared tangent residual using a degree-2 SOS program. Detailed proof can be found in
Appendix G.3.

For OG, we are not able to show that the squared tangent residual is monotone. Inspired
by the adaptive potential proof in [GPD20], we suspect that some extra correction term is
needed to construct the potential function. Instead of trying to devise such a correction
term manually, we manage to directly find one by searching over a family of performance
measures using SOS programming. The search we perform is heuristic but might be helpful
to discover potential functions in other problems. See Section 4.2 for a more detailed
discussion.

9The tangent residual is not a polynomial, but the squared tangent residual is a degree-4 polynomial

19



C Additional Related Work – other Computer-Aided Proofs

A powerful computer-aided proof framework – the performance estimation problem (PEP)
technique (e.g., [DT14, THG17b]) is widely applied to analyze first-order iterative methods.
Indeed, the last-iterate convergence rate of EG in the unconstrained setting by [GLG21]
is obtained via the PEP technique. Although the PEP framework can handle projections
[THG17a, RTBG20, GMG+22, DTdB21], the main challenge for applying it to the constrained
setting is that, the PEP framework requires the performance measures to be polynomials
of degree 2 or less (see e.g., [THG17a]).10 In fact, solving the PEP is equivalent to solving
a degree-2 SOS program, which can be viewed as the dual of the PEP [TVT21]. In the
unconstrained setting for EG, the performance measure is a degree-2 polynomial – the
squared norm of the operator, and that is why one can either use the PEP (as in [GLG21])
or a degree-2 SOS to certify its monotonicity (Theorem 4). In the constrained setting for
EG, we use the squared tangent residual to measure the algorithm’s progress, which
in our original formulation is a degree 4 polynomial, making the PEP framework not
directly applicable.11 As the SOS approach can accommodate polynomial objectives and
constraints of any degree, we could directly apply it to certify the monotonicity of the
tangent residual in the constrained setting, although the resulting proof is complex. With
the new formulation of the squared tangent residual (Lemma 13), we manage to simplify
our proof and derive it using a degree-2 SOS program. We believe an interesting future
direction is to understand whether there are natural settings in optimization where degree-2
SOS programs are provably insufficient and higher degree SOS programs are necessary.

[LRP16] analyze first-order iterative algorithms for convex optimization using a technique
inspired by the stability analysis from control theory. They model first-order iterative
algorithms using discrete-time dynamical systems and search over quadratic potential
functions that satisfy a set of Integral Quadratic Constraints (IQC). [ZBLG21] extend the
IQC framework to study smooth and strongly monotone VIs in the unconstrained setting.

SOS programming has been employed in the design and analysis of algorithms in convex
optimization. To the best of our knowledge, these results only concern minimization of
smooth and strongly-convex functions in the unconstrained setting. [FMP18] propose a
framework to search the optimal parameters of the algorithm, e.g., step size. They use SOS
programming to search over quadratic potential functions and parameters of the algorithm
with the goal of optimizing the exponential decay rate of the potential function. [TVT21]
proposes to use SOS programming to study the convergence rates of first-order methods in
unconstrained convex optimization.

D Additional Preliminaries

We use z[i] to denote the i-th coordinate of z ∈ Rn and ei to denote the unit vector such that
ei[j] := 1[i = j], the dimension of ei is going to be clear from context. For z ∈ Rn and D > 0,
we use B(z, D) = {z′ ∈ Rn : ∥z′ − z∥ ≤ D} to denote the ball of radius D, centered at z.

Definition 5 (Variational Inequality). Given a closed convex set Z ⊆ Rn and an operator
F : Z → Rn, a variational inequality problem is defined as follows: find z∗ ∈ Z such that

⟨F(z∗), z∗ − z⟩ ≤ 0 ∀z ∈ Z .

Min-Max Saddle Points. A special case of the variational inequality problem is the con-
strained min-max problem minx∈X maxy∈Y f (x, y), where X and Y are closed convex sets

10More specifically, the PEP framework requires the performance measure as well as the constraints
to be linear in (i) the function values at the iterates and (ii) the Gram matrix of a set of vectors consisting
of the iterates and their gradients.

11The tangent residual is the square root of a rational function and can only be even harder to
handle.
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in Rn, and f (·, ·) is smooth, convex in x, and concave in y. It is well known that if one set

F(x, y) =
(

∇x f (x, y)
−∇y f (x, y)

)
, then F(x, y) is a monotone and Lipschitz operator [FP07].

Definition 6 (Gap Function for monotone VIs). Similar to games, for a monotone VI with operator
F : Z → Rn on closed convex set Z , a standard way to measure the proximity of z ∈ Z to the
solution of the monotone VI, is through the gap function for VIs: maxz′∈Z∩B(z,D) ⟨F(z), z − z′⟩. We
abuse notation and for a monotone operator F and closed convex set Z , we denote by GAPF,Z ,D(z) =
maxz′∈Z∩B(z,D) ⟨F(z), z − z′⟩.

When F,Z and D are clear from context, we omit subscripts and write the gap function for VIs at z
as GAP(z). Moreover, we refer to the gap function for VIs, simply as the gap function, when there is
no ambiguity if we are refer to the gap function for games or the gap function for VIs.
Lemma 4. [Restatement of Lemma 2 for VIs] Let F : Z → Rn be a monotone operator on convex
closed set Z . For z ∈ Z , we have GAPF,Z ,D(z) ≤ D · rtan

(F,Z)
(z).

Proof. The proof follows in the exact same way as the proof of Lemma 2 for the gap function
for monotone games (see Appendix E.2).

D.1 Remark about choice of D in Definition 2

Remark 5. Consider a smooth monotone game G, and let {zEG
k , zEG

k+ 1
2
}k≥0 ({zOG

k , wOG
k }k≥0 resp.)

be the action profile when all players update their actions using the EG (OG resp.) algorithm and let
z∗ be a Nash equilibrium of G. Sometimes the gap function is defined to allow z′ to take value in Z ∩
B(z∗, Θ(∥z∗ − zEG

0 ∥)) for the EG algorithm and Z ∩B(z∗, Θ(∥z∗ − zOG
0 ∥+ ∥zOG

0 − wOG
0 ∥)) for

the OG algorithm.

In Lemma 8, by choosing the step size appropriately, we show that

max
k≥0

(∥∥∥zEG
k − z∗

∥∥∥,
∥∥∥zEG

k+ 1
2
− z∗

∥∥∥) =O
(∥∥∥zEG

0 − z∗
∥∥∥),

max
k≥0

(∥∥∥zOG
k − z∗

∥∥∥,
∥∥∥wOG

k − z∗
∥∥∥) =O

(
max(

∥∥∥zOG
0 − z∗

∥∥∥,
∥∥∥wOG

0 − zOG
0

∥∥∥)).

Thus, the set {zEG
k , zEG

k+ 1
2
}k≥0 is contained in B(z∗, Θ(∥z∗ − zEG

0 ∥)) and set {zOG
k , wOG

k }k≥0 is

contained in B(z∗, Θ(∥z∗ − zOG
0 ∥+ ∥zOG

0 − wOG
0 ∥)).

D.2 Equivalent Definitions of the Tangent Residual

In Lemma 5 we present several equivalent formulations of the tangent residual.
Lemma 5. Let Z be a closed convex set and F : Z → Rn be an operator. Denote NZ (z) the normal
cone of z and JZ (z) := {z}+ TZ (z), where TZ (z) = {z′ ∈ Rn : ⟨z′, a⟩ ≤ 0, ∀a ∈ NZ (z)} is the
tangent cone of z. Then all of the following quantities are equivalent:

1.
√
∥F(z)∥2 − max a∈N̂Z (z),

⟨F(z),a⟩≤0

⟨F(z), a⟩2

2. min a∈N̂Z (z),
⟨F(z),a⟩≤0

∥F(z)− ⟨F(z), a⟩ · a∥

3.
∥∥∥ΠTZ (z)

[
− F(z)

]∥∥∥
4.
∥∥∥ΠJZ (z)

[
z − F(z)

]
− z
∥∥∥

5.
∥∥∥−F(z)− ΠNZ (z)

[
− F(z)

]∥∥∥
6. min

a∈NZ (z)
∥F(z) + a∥
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Proof. (quantity 1 = quantity 2). Observe that

min
a∈N̂Z (z),
⟨F(z),a⟩≤0

∥F(z)− ⟨F(z), a⟩ · a∥2 = ∥F(z)∥2 − max
a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2 ·
(

2 − ∥a∥2
)

.

Therefore, it is enough to show that max a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2 · (2 − ∥a∥2) =

max a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2. If N̂Z (z) = {(0, . . . , 0)}, then the equality holds trivially.

Now we assume that {(0, . . . , 0)} ⊊ N̂Z (z) and consider any a ∈ N̂Z (z)\(0, . . . , 0). Let
c ∈

[
1, 1

∥a∥

]
. By Definition 3, ∥a∥ ≤ 1, which implies that c · a ∈ N̂Z (z). We try to maximize

the following objective

⟨F(z), c · a⟩2 ·
(

2 − c2∥a∥2
)
=

⟨F(z), a⟩2

∥a∥2 · c2∥a∥2 ·
(

2 − c2∥a∥2
)

.

One can easily verify that function c2∥a∥2 · (2 − c2∥a∥2) is maximized when c2∥a∥2 = 1 ⇔
c = 1

∥a∥ . Thus when {(0, . . . , 0)} ⊊ N̂Z (z),

max
a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2 ·
(

2 − ∥a∥2
)
= max

a∈N̂Z (z),
⟨F(z),a⟩≤0,

∥a∥=1

⟨F(z), a⟩2 ·
(

2 − ∥a∥2
)

= max
a∈N̂Z (z),
⟨F(z),a⟩≤0,

∥a∥=1

⟨F(z), a⟩2

= max
a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2,

which concludes the proof.

(quantity 3 = quantity 4). By definition, JZ (z) = {z}+ TZ (z). Thus we have∥∥∥ΠJZ (z)

[
z − F(z)

]
− z
∥∥∥ =

∥∥∥ΠTZ (z)

[
− F(z)

]∥∥∥.

(quantity 4 = quantity 5). By definition, the tangent cone TZ (z) is the polar cone of the
normal cone NZ (z). Since NZ (z) is a closed convex cone, by Moreau’s decomposition
theorem, we have for any vector x ∈ Rn,

x = ΠNZ (z)(x) + ΠTZ (z)(x),
〈

ΠNZ (z)(x), ΠTZ (z)(x)
〉
= 0.

Thus it is clear that we have∥∥∥ΠJZ (z)

[
z − F(z)

]
− z
∥∥∥ =

∥∥∥ΠTZ (z)

[
− F(z)

]∥∥∥
=
∥∥∥−F(z)− ΠNZ (z)

[
− F(z)

]∥∥∥.

(quantity 5 = quantity 6). Denote a∗ := ΠNZ (z)

[
− F(z)

]
. By definition of projection, we

have

a∗ = argmin
a∈NZ (z)

∥F(z) + a∥2.

Thus ∥∥∥−F(z)− ΠNZ (z)

[
− F(z)

]∥∥∥2
= ∥F(z) + a∗∥2 = min

a∈NZ (z)
∥F(z) + a∥2.
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(quantity 6 = quantity 2). Let a ∈ NZ (z) such that ⟨F(z), a⟩ ≤ 0. Observe that for any c ≥ 0,
c · a ∈ NZ (z) and ⟨F(z), c · a⟩ ≤ 0. Consider the following minimization problem,

g(a) = min
c≥0

∥F(z) + c · a∥

By taking first-order optimality conditions, one can easily verify that when a ̸= (0, . . . , 0),
g(a) = ∥F(z) + ⟨F(z), a

∥a∥ ⟩
a

∥a∥∥ and g(0, . . . , 0) = ∥F(z)∥. Since NZ (z) is a cone and for any
a and c ∈ arg minc≥0 ∥F(z) + c · a∥, we have that ∥c · a∥ ≤ 1, we infer that

min
a∈NZ (z)

∥F(z) + a∥ = min
a∈NZ (z)

g(a) = min
a∈N̂Z (z)

∥F(z) + ⟨F(z), a⟩ · a∥

Observe that for any a ∈ N̂Z (z) such that ⟨F(z), a⟩ ≥ 0, then ∥F(z) + ⟨F(z), a⟩ · a∥ ≥ ∥F(z)∥.
Since g(0, . . . , 0) = ∥F(z)∥ we have that,

min
a∈N̂Z (z)

∥F(z) + ⟨F(z), a⟩ · a∥ = min
a∈N̂Z (z),
⟨F(z),a⟩≤0

∥F(z) + ⟨F(z), a⟩ · a∥,

which concludes the proof.

In the following Lemma, we show a useful property of the tangent residual that we use
repeatedly.

Lemma 6. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be an operator. Let η > 0 and
z1, z2, z3 ∈ Z be three points such that z1 = ΠZ [z2 − ηF(z3)], then we have

rtan(z1) ≤
∥∥∥∥ z2 − z1

η
+ F(z1)− F(z3)

∥∥∥∥.

Proof. Since z1 = ΠZ [z2 − ηF(z3)], we have z2−ηF(z3)−z1
η = z2−z1

η − F(z3) ∈ NZ (z1). Then
by item 6 in Lemma 5 we have

rtan(z1) = min
c∈NZ (z1)

∥F(z1) + c∥ ≤
∥∥∥∥ z2 − z1

η
+ F(z1)− F(z3)

∥∥∥∥.

E Missing Proofs and Details from Section 3

E.1 The Natural Residual and Its Relation to the Tangent Residual

We formally define the natural residual for monotone operators over closed convex sets in
Definition 7, and show in Lemma 7 how it is related to the tangent residual.

Definition 7. Let Z be a closed convex set in Rn and consider a monotone operator F : Z → Rn.
The natural residual at z ∈ Z is defined as follows

rnat
(F,Z)(z) = ∥z − ΠZ (z − F(z))∥.

Given a monotone game G, an action profile z∗ is a Nash equilibrium iff rnat
(FG ,ZG )

(z∗) = 0. In
Lemma 7, we show that the tangent residual upper bounds the the natural residual. See
Figure 2 for illustration of how the tangent residual relates to the natural residual.

Lemma 7. Let Z be a closed convex set and consider a monotone operator F : Z → Rn. For any
z ∈ Z , rtan

(F,Z)
(z) ≥ rnat

(F,Z)
(z).
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Proof. Note that for any c ∈ NZ (z), ΠZ (z + c) = z. Thus for any c ∈ NZ (z), we have

rnat
(F,Z)(z) = ∥z − ΠZ (z − F(z))∥

= ∥ΠZ (z + c)− ΠZ (z − F(z))∥
≤ ∥F(z) + c∥,

where the last inequality holds because ΠZ (·) is non-expansive. Thus rnat
(F,Z)

(z) ≤
minc∈NZ (z) ∥F(z) + c∥ = rtan

(F,Z)
(z) by item 6 in Lemma 5.

! + #!(!)

!
! − #(!)

&

Figure 2: Illustration of the tangent residual and the natural residual. The blue line represents
the tangent residual and the red line represents the natural residual. It is clear that the
tangent residual upper bounds the natural residual.

Due to the above lemma, an upper bound of the tangent residual is also an upper bound of
the natural residual.

E.2 Proof of Lemma 2

Proof of Lemma 2: We first show that GAPG,D(z) ≤ D · rtan
G (z).

If ⟨a, F(z)⟩ ≥ 0 for all a ∈ N̂(z), then by item 1 of Lemma 5 we have rtan(z) = ∥F(z)∥. Thus
for any z′ ∈ Z , by Cauchy-Schwarz inequality, we have

⟨F(z), z − z′⟩ ≤ ∥F(z)∥∥z − z′∥ ≤ D · rtan(z).

Otherwise, by item 2 in Lemma 5 there exists a ∈ N̂(z) such that ∥a∥ = 1, ⟨a, F(z)⟩ < 0 and
rtan(z) = ∥F(z)− ⟨a, F(z)⟩a∥. Then for any z′ ∈ Z , we have〈

F(z), z − z′
〉
=
〈

F(z)− ⟨a, F(z)⟩a, z − z′
〉
+ ⟨a, F(z)⟩ ·

〈
a, z − z′

〉
≤
〈

F(z)− ⟨a, F(z)⟩a, z − z′
〉

≤ ∥F(z)− ⟨a, F(z)⟩a∥∥z − z′∥
≤ D · rtan(z),

where we use ⟨a, F(z)⟩ < 0 and ⟨a, z − z′⟩ ≥ 0 in the first inequality and Cauchy-Schwarz
inequality in the second inequality. Thus for all D > 0,

GAPG,D(z) ≤ D · rtan
G (z). (5)

Now we prove that TGAPG,D(z) ≤
√

N · D · rtan
G (z). Let z∗(i) =

minz′(i)∈Z(i)∩B(z(i),D) f (z(i), z(−i)) and z∗ = (z∗(1), . . . , z∗(N)). By monotonicity of F,

we have that for any i ∈ N and z′(i) ∈ Z (i)〈
F(z′(i), z(−i))− F(z), (z′(i), z(−i))− z

〉
=
〈
∇z(i) f (i)(z′(i), z(−i))−∇z(i) f (i)(z), z′(i) − z(i)

〉
≥ 0,

Moreover, since f (i) is a continues differentiable function, then g(z(i)) = f (z′(i), z(−i)) :
Z (i) → R is a convex function, which further implies that

f (i)(z)− f (z∗(i), z(−i)) ≤
〈
∇z(i) f (i)(z), z(i) − z∗(i)

〉
.
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Thus,

TGAPG,D(z) = ∑
i∈N

f (i)(z)− f (z∗(i), z(−i))

≤⟨F(z), z − z∗⟩
≤ max

z′∈Z∩B(z,
√

N·D)

〈
F(z), z − z′

〉
= GAPG,

√
N·D(z).

The second inequality follows because for each i ∈ N , ∥z(i) − z∗(i)∥ ≤ D, which implies

that ∥z − z∗∥ =

√
∑i∈N ∥z(i) − z∗(i)∥2 ≤

√
N · D. The proof follows by Inequality (5). ■

F Missing Proofs in Section 4

In this section, we present the missing proofs in Section 4. Finding a Nash Equilibrium
for a smooth monotone game is a special instance of solving a monotone VI (Definition 5).
Thus, for simplicity and technical convenience, we show the last-iterate convergence rate
of EG (OG resp.) for monotone VIs in Appendix G (Appendix H resp.) with respect to
the tangent residual (Definition 4), the gap function for VIs (Definition 6), and the natural
residual (Definition 7). In this section, we show how to apply the last-iterate convergence
rate of EG (Appendix G) and OG (Appendix H) for smooth monotone games and we also
show last-iterate convergence rates for some additional performance measure.

Proof of Lemma 3: Consider an instance (I) of the monotone VI on operator FG on closed
convex set ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone VI
(I) coincide with the action profile when all players update their actions using EG (OG
resp.) algorithm with step-size η. Thus, the proof follows by Lemma 12 and Corollary 4. ■

Proof of Theorem 2: Consider an instance (I) of the monotone VI on operator FG on closed
convex set ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone VI
(I) coincide with the action profile when all players update their actions using EG (OG
resp.) algorithm with step-size η. Thus, the proof follows by Theorem 5 and Theorem 7. ■

Proof of Theorem 3: Consider an instance (I) of the monotone VI on operator FG on closed
convex set ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone VI
(I) coincide with the action profile when all players update their actions using EG (OG
resp.) algorithm with step-size η.

Thus, when all the players update their strategies using the EG algorithm, by Theorem 6
and Lemma 9 we have that rtan

G (zT) = rtan
(FG,ZG )

(zT) ≤ 1√
T

3D||z0−z∗ ||
η
√

1−(ηL)2
and rtan

G (zT+ 1
2
) =

rtan
(FG,ZG )

(zT+ 1
2
) ≤ 1√

T
(1+ηL)·3D||z0−z∗ ||

η
√

1−(ηL)2
. When all the players update their strategies us-

ing the OG algorithm, by Theorem 8 we have that rtan
G (wT+1) = rtan

FG ,ZG
(wT+1) ≤ 1√

T
·

√
2(2+ηL)·

√
(4+6η4L4)∥z0−z∗∥2+(16η2L2+6η4L4)∥w0−z0∥2

η·
√

1−4·(ηL)2
. The proof concludes by Lemma 2. ■

F.1 Bounded Iterates of EG and OG

Lemma 8. Let G = (N , {Z (i)}i∈N , { f (i)}i∈[N]) be an L-smooth and monotone game where
{Z (i)}i∈N are closed convex sets and let z∗ be a Nash Equilibrium of G. Assume that all the players
update their actions using the EG algorithm with arbitrary starting action profile z0 and step-size
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η ∈ (0, 1
L ). Then for and any k ≥ 0,

∥zk − z∗∥ ≤∥z0 − z∗∥,∥∥∥zk+ 1
2
− z∗

∥∥∥ ≤
(

1 +
1√

1 − η2L2

)
∥z0 − z∗∥.

Assume that all the players update their actions using the OG algorithm with arbitrary starting
action profiles z0,w0 and step-size η ∈ (0, 1

2L ). Then for any k ≥ 1,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2,

∥wk − z∗∥ ≤ 2 ·

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2.

Proof. Consider an instance (I) of the monotone VI on operator FG on closed convex set
ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone
VI (I) coincide with the strategy profiles when all players update their strategies using
EG (OG resp.) algorithm with step-size η. Thus, the proof follows by Corollary 1 and
Corollary 3.

F.2 Auxiliary Lemma

Lemma 9. Let G = (N , {Z (i)}i∈N , { f (i)}i∈[N]) be an L-smooth and monotone game where
{Z (i)}i∈N are closed convex sets. Assume that all the players update their actions using the
EG algorithm with arbitrary starting action profile z0 and step-size η, then for any k ≥ 0,
rtan
(FG ,ZG )

(zk+ 1
2
) ≤ (1 + ηL)rtan

(FG ,ZG )
(zk).

Proof. The proof follows from the following sequence of inequalities,

ηrtan
(FG ,ZG )

(
zk+ 1

2

)
≤
∥∥∥zk − zk+ 1

2
+ ηF(zk+ 1

2
)− ηF(zk)

∥∥∥
≤
∥∥∥zk − zk+ 1

2

∥∥∥+ ∥∥∥ηF(zk+ 1
2
)− ηF(zk)

∥∥∥
≤(1 + ηL)

∥∥∥zk − zk+ 1
2

∥∥∥
=(1 + ηL)rnat

(ηFG ,ZG )
(zk)

≤(1 + ηL)rtan
(ηFG ,ZG )

(zk)

=(1 + ηL)ηrtan
(FG ,ZG )

(zk).

The first inequality follows by Lemma 6, the third inequalit follows by L-lipschitzness of F.
The first equality follows from the fact that zk+ 1

2
= ΠZ (zk − ηF(zk)) and Definition 7. The

fourth inequality follows by Lemma 7. The last equality follows by Definition 4.

G Missing Details for the Analysis of the Extragradient Algorithm

In this section, we provide the last-iterate convergence rate of the EG algorithm for monotone
VIs (Definition 5). We establish last-iterate convergence rate w.r.t. the gap function for VIs
(Definition 6), the natural residual (Definition 7) and the tangent residual (Definition 4).
For the rest of this section, we abuse notation and refer to the gap function for VIs as the
gap function. We show in Appendix F (Appendix I resp.) last-iterate convergence rates for
additional performance measures for smooth monotone games (monotone VIs resp.).
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We prove last-iterate convergence rate for EG w.r.t. the gap function, natural residual and
tangent residual in Theorem 6 at Appendix G.3. The last-iterate convergence rate for the
performance measures we mentioned follow from the last-iterate convergence rate of the
tangent residual rtan(zT).

Let Z ⊆ Rn be a closed convex set and F : Z → R be an operator. Let z0 ∈ Z be an arbitrary
starting point and {zk, zk+ 1

2
}k≥0 be the iterates of the Extragradient algorithm, according to

Expression (2), as follows:

zk+ 1
2
=ΠZ [zk − ηF(zk)] = arg min

z∈Z
∥z − (zk − ηF(zk))∥,

zk+1 =ΠZ
[
zk − ηF(zk+ 1

2
)
]
= arg min

z∈Z

∥∥∥z −
(

zk − ηF(zk+ 1
2
)
)∥∥∥.

This appendix is organized as follows. The best-iterate convergence rate for the EG algorithm
w.r.t. ∥zk − zk+ 1

2
∥ is known [Kor76, FP07]. In Appendix G.1 we include the proof for

completeness. A known corollary of the best-iterate iterate for the EG, is that the EG
algorithm has bounded iterates (e.g. for z∗ be a solution to the monotone VI, then for all
k ≥ 0, ∥zk − z∗∥, ∥zk+ 1

2
− z∗∥ ≤ O(∥z0 − z∗∥). We include the proof in Appendix G.1.1

for completeness. In Appendix G.2 we show how to upper bound the tangent residual
at zk (rtan(zk)) at the best-iterate. In Appendix G.3 we show that the tangent residual in
non-increasing across iterates of the EG algorithm, and we conclude by showing last-iterate
convergence rates of the EG algorithm.

G.1 Best-Iterate Convergence of EG

Lemma 10 ([Kor76, FP07]). Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz
operator mapping from Z to Rn and let z∗ ∈ Z be a solution of the monotone VI (See Definition 5).
For any zk ∈ Z , the EG algorithm with step size η ∈ (0, 1

L ). satisfies,

∥zk − z∗∥2 ≥ ∥zk+1 − z∗∥2 + (1 − η2L2)∥zk − zk+ 1
2
∥2. (6)

Proof. By Pythagorean inequality,

∥zk+1 − z∗∥2 ≤ ∥zk − ηF(zk+ 1
2
)− z∗∥2 − ∥zk − ηF(zk+ 1

2
)− zk+1∥2

= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η⟨F(zk+ 1
2
), z∗ − zk+1⟩

= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η⟨F(zk+ 1
2
), z∗ − zk+ 1

2
⟩+ 2η⟨F(zk+ 1

2
), zk+ 1

2
− zk+1⟩.
(7)

We first use monotonicity of F(·) to argue that ⟨F(zk+ 1
2
), z∗ − zk+ 1

2
⟩ ≤ 0.

Fact 1. For all z ∈ Z , ⟨F(z), z∗ − z⟩ ≤ 0.

Proof.

0 ≤ ⟨F(z∗)− F(z), z∗ − z⟩ (monotonicity of F(·))
= ⟨F(z∗), z∗ − z⟩ − ⟨F(z), z∗ − z⟩
≤ −⟨F(z), z∗ − z⟩ (z∗ is a solution of the monotone VI)
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We can simplify Equation (7) using Fact 1:

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η⟨F(zk+ 1
2
), zk+ 1

2
− zk+1⟩

= ∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 − 2⟨zk − ηF(zk+ 1

2
)− zk+ 1

2
, zk+ 1

2
− zk+1⟩

= ∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2

− 2⟨zk − ηF(zk)− zk+ 1
2
, zk+ 1

2
− zk+1⟩ − 2⟨ηF(zk)− ηF(zk+ 1

2
), zk+ 1

2
− zk+1⟩

≤ ∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 − 2η⟨F(zk)− F(zk+ 1

2
), zk+ 1

2
− zk+1⟩

The last inequality is because ⟨zk − ηF(zk)− zk+ 1
2
, zk+ 1

2
− zk+1⟩ ≥ 0, which follows from

the that fact that zk+ 1
2
= ΠZ [zk − ηF(zk)] and zk+1 ∈ Z .

Finally, since F(·) is L-Lipschitz, we know that

−⟨F(zk)− F(zk+ 1
2
), zk+ 1

2
− zk+1⟩ ≤ ∥F(zk)− F(zk+ 1

2
)∥ · ∥zk+ 1

2
− zk+1∥ ≤ L∥zk − zk+ 1

2
∥ · ∥zk+ 1

2
− zk+1∥.

So we can further simplify the inequality as follows:

∥zk+1 − z∗∥2 ≤∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 − 2η⟨F(zk)− F(zk+ 1

2
), zk+ 1

2
− zk+1⟩

≤∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 + 2ηL∥zk − zk+ 1

2
∥ · ∥zk+ 1

2
− zk+1∥

≤∥zk − z∗∥2 − (1 − η2L2)∥zk − zk+ 1
2
∥2

Hence,

∥zk − z∗∥2 ≥ ∥zk+1 − z∗∥2 + (1 − η2L2)∥zk − zk+ 1
2
∥2.

G.1.1 Bounded Iterates of EG with Constant Step Size

Corollary 1. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz operator
mapping from Z to Rn and let z∗ ∈ Z be a solution of the VI (See Definition 5). Let z0 ∈ Z be
an arbitrary starting point and {zk, zk+ 1

2
}k≥0 be the iterates of the EG algorithm with step size

η ∈ (0, 1
L ). Then for all k ≥ 0,

∥zk − z∗∥ ≤∥z0 − z∗∥,∥∥∥zk+ 1
2
− z∗

∥∥∥ ≤
(

1 +
1√

1 − η2L2

)
∥z0 − z∗∥.

Proof. By Lemma 10 we have that for any k ≥ 0,

∥zk+1 − z∗∥ ≤∥zk − z∗∥,∥∥∥zk+ 1
2
− zk

∥∥∥ ≤ 1√
1 − η2L2

∥zk − z∗∥.

By triangle inequality,

∥∥∥zk+ 1
2
− z∗

∥∥∥ ≤
∥∥∥zk+ 1

2
− zk

∥∥∥+ ∥zk − z∗∥ ≤
(

1 +
1√

1 − η2L2

)
∥zk − z∗∥,

which concludes the proof
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G.2 Best-Iterate of Tangent Residual

Lemma 11. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz opera-
tor mapping from Z to Rn. For any zk ∈ Z , the EG algorithm update satisfies rtan(zk+1) ≤(
1 + ηL + (ηL)2) ||zk−zk+1/2||

η .

Proof. We need the following fact for our proof.

Fact 2. ∥zk+ 1
2
− zk+1∥ ≤ ηL∥zk − zk+ 1

2
∥. Moreover, when ηL < 1, ∥zk+ 1

2
− zk+1∥ ≤ ∥zk−zk+1∥

1−ηL .

Proof. Recall that zk+ 1
2
= ΠZ [zk − ηF(zk)] and zk+1 = ΠZ

[
zk − ηF(zk+ 1

2
)
]
. By the non-

expansiveness of the projection operator and the L-Lipschitzness of operator F, we have
that ∥zk+ 1

2
− zk+1∥ ≤ ∥η(F(zk+ 1

2
)− F(zk))∥ ≤ ηL∥zk − zk+ 1

2
∥.

Finally, by the triangle inequality

∥zk − zk+1∥ ≥
∥∥∥zk − zk+ 1

2

∥∥∥− ∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≥ (1 − ηL)
∥∥∥zk − zk+ 1

2

∥∥∥.

Now we prove Lemma 11. By the L-Lipschitzness of operator F we have

∥F(zk+1)− F(zk+ 1
2
)∥ ≤ L∥zk+1 − zk+ 1

2
∥ ≤ ηL2∥zk − zk+ 1

2
∥. (8)

Recall that zk+1 = ΠZ
[
zk − ηF(zk+ 1

2
)
]
. Using Lemma 6, we have

rtan(zk+1) ≤
∥∥∥∥ zk − zk+1

η
+ F(zk+1)− F(zk+ 1

2
)

∥∥∥∥
≤∥zk − zk+1∥

η
+ ∥F(zk+1)− F(zk+ 1

2
)∥

≤
∥zk − zk+1∥+ (ηL)2∥zk − zk+ 1

2
∥

η

≤
||zk − zk+ 1

2
||+ ||zk+ 1

2
− zk+1||+ (ηL)2||zk − zk+ 1

2
||

η

≤
(

1 + ηL + (ηL)2
) ||zk − zk+ 1

2
||

η
.

The second and the fourth inequality follow from the triangle inequality. The third inequality
follows from Inequality (8). In the final inequality we use ||zk+ 1

2
− zk+1|| ≤ ηL||zk − zk+ 1

2
||

by Fact 2.

Lemma 12. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz operator
mapping from Z to Rn and let z∗ ∈ Z be a solution of the VI. For arbitrary starting point z0 ∈ Z ,
let {zk, zk+ 1

2
}k≥0 be the iterates of the EG algorithm with step size η ∈ (0, 1

L ). For any T > 0, there
exists t∗ ∈ [T] such that:∥∥∥zt∗ − zt∗+ 1

2

∥∥∥2
≤ 1

T
∥z0 − z∗∥2

1 − (ηL)2 , AND rtan(zt∗+1) ≤
1 + ηL + (ηL)2

η

1√
T

∥z0 − z∗∥√
1 − (ηL)2

.

Proof. By Lemma 10 we have

∥z0 − z∗∥2 ≥ ∥zT+1 − z∗∥2 + (1 − η2L2)
T

∑
k=0

∥zk − zk+ 1
2
∥2 ≥ (1 − η2L2)

T

∑
k=0

∥zk − zk+ 1
2
∥2

Thus there exists a t∗ ∈ [T] such that ∥zt∗ − zt∗+ 1
2
∥2 ≤ ∥z0−z∗∥2

T(1−η2L2)
. We conclude the proof by

applying Lemma 11.
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G.3 Last-Iterate Convergence of EG with Constant Step Size

In this section, we show that the last-iterate convergence rate is O( 1√
T
). In particular, we

prove that the tangent residual is non-increasing, which, in combination with Lemma 12,
implies the last-iterate convergence rate of the tangent residual for monotone VIs. To
establish the monotonicity of the tangent residual, we combine SOS programming with the
low-dimensionality of the EG update rule. To better illustrate our approach, we first prove
the result in the unconstrained setting (Appendix G.3.1), then show how to generalize it to
the constrained setting (Appendix G.3.2).

G.3.1 Warm Up: Unconstrained Case

As a warm-up, we consider the unconstrained setting where Z = Rn. Although the last-
iterate convergence rate is known in the unconstrained setting due to [GPDO20, GLG21],
we provide a simpler proof that also permits a larger step size. Our analysis holds for any
step size η ∈ (0, 1

L ), while the previous analysis requires η ≤ 1√
2L

[GLG21].

In Theorem 4, we show that the tangent residual is monotone in the unconstrained setting.12

Our approach is to apply SOS programming to search for a certificate of non-negativity
for ∥F(zk)∥2 − ∥F(zk+1)∥2 for every k, over the semialgebraic set defined by the following
polynomial constraints in variables {zi[ℓ], ηF(zi)[ℓ]}i∈{k,k+ 1

2 ,k+1},ℓ∈[n]:

zk+ 1
2
[ℓ]− zk[ℓ] + ηF(zk)[ℓ] = 0, zk+1[ℓ]− zk[ℓ] + ηF(zk+ 1

2
)[ℓ] = 0, ∀ℓ ∈ [n], (EG Update)∥∥ηF(zi)− ηF(zj)

∥∥2 − (ηL)2∥∥zi − zj
∥∥2 ≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}, (Lipschitzness)〈
ηF(zi)− ηF(zj), zj − zi

〉
≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}. (Monotonicity)

We always multiply F with η in the constraints as it will be convenient later. We use K
to denote the set {k, k + 1

2 , k + 1}. To obtain a certificate of non-negativity, we apply SOS
programming to search for a degree-2 SOS proof. More specifically, we want to find non-
negative coefficients {λ∗

i,j, µ∗
i,j}i>j,i,j∈K and degree-1 polynomials γ

(ℓ)
1 (w) and γ

(ℓ)
2 (w) in

R[w] for each ℓ ∈ [n], where w := {zi[ℓ], ηF(zi)[ℓ]}i∈K,ℓ∈[n], such that the following is
an SOS polynomial:

∥ηF(zk)∥2 − ∥ηF(zk+1)∥2 + ∑
i>j and i,j∈K

λ∗
i,j ·
(∥∥ηF(zi)− ηF(zj)

∥∥2 − (ηL)2∥∥zi − zj
∥∥2
)

+ ∑
i>j and i,j∈K

µ∗
i,j ·
〈
ηF(zi)− ηF(zj)), zj − zi

〉
+ ∑

ℓ∈[n]
γ
(ℓ)
1 (w)(zk+ 1

2
[ℓ]− zk[ℓ] + ηF(zk)[ℓ])

+ ∑
ℓ∈[n]

γ
(ℓ)
2 (w)(zk+1[ℓ]− zk[ℓ] + ηF(zk+ 1

2
)[ℓ]). (9)

Due to constraints satisfied by the EG iterates, the non-negativity of Expression (9) clearly
implies that ∥F(zk)∥2 − ∥F(zk+1)∥2 is non-negative. However, Expression (9) is in fact an
infinite family of polynomials rather than a single one. Expression (9) corresponds to a
different polynomial for every integer n. To directly search for the solution, we would
need to solve an infinitely large SOS program, which is clearly infeasible. By exploring the
symmetry in Expression (9), we show that it suffices to solve a constant size SOS program.

12In the unconstrained setting, the tangent residual is simply the norm of the operator rtan
(F,Rn)

(z) =
∥F(z)∥.
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Let us first expand Expression (9) as follows:

∑
ℓ∈[n]

(
(ηF(zk)[ℓ])

2 − (ηF(zk+1)[ℓ])
2 + ∑

i>j and i,j∈K
λ∗

i,j

((
ηF(zi)[ℓ]− ηF(zj)[ℓ]

)2 − (ηL)2(zi[ℓ]− zj[ℓ]
)2
)

+ ∑
i>j and i,j∈K

µ∗
i,j
(
ηF(zi)[ℓ]− ηF(zj)[ℓ])

)(
zj[ℓ]− zi[ℓ]

)
+ γ

(ℓ)
1 (w)(zk+ 1

2
[ℓ]− zk[ℓ] + ηF(zk)[ℓ])

+ γ
(ℓ)
2 (w)(zk+1[ℓ]− zk[ℓ] + ηF(zk+ 1

2
)[ℓ])

)
. (10)

What we will argue next is that, due to the symmetry across coordinates, it suffices to directly
search for a single SOS proof that shows that each of the n summands in Expression (10)
is an SOS polynomial. More specifically, we make use of the following two key proper-
ties. (i) For any ℓ, ℓ′ ∈ [n], the ℓ-th summand and ℓ′-th summand are identical subject
to a change of variable;13 (ii) the ℓ-th summand only depends on the coordinate ℓ, i.e.,
variables in {zi[ℓ], ηF(zi)[ℓ]}i∈K and does not involve any other coordinates.14 We solve
the following SOS program, whose solution can be used to construct {λ∗

i,j, µ∗
i,j}i>j,i,j∈K

and {γ
(ℓ)
1 (w), γ

(ℓ)
2 (w)}ℓ∈[n] so that each of the summands in Expression (10) is an SOS

polynomial.

Input Fixed Polynomials. We use x to denote (x0, x1, x2) and y to denote (y0, y1, y2). Interpret xi
as zk+ i

2
[ℓ] and yi as ηF(zk+ i

2
)[ℓ] for 0 ≤ i ≤ 2. Observe that h1(x, y) and h2(x, y) come from the EG

update rule on coordinate ℓ. gL
i,j(x, y) and gm

i,j(x, y) come from the ℓ-th coordinate’s contribution in
the Lipschitzness and monotonicity constraints.

• h1(x, y) := x1 − x0 + y0 and h2(x, y) := x2 − x0 + y1.
• gL

i,j(x, y) := (yi − yj)
2 − C · (xi − xj)

2 for any 0 ≤ j < i ≤ 2.a

• gm
i,j(x, y) := (yi − yj)(xj − xi) for any 0 ≤ j < i ≤ 2.

Decision Variables of the SOS Program:

• pL
i,j ≥ 0, and pm

i,j ≥ 0, for all 0 ≤ j < i ≤ 2.

• q1(x, y) and q2(x, y) are two degree 1 polynomials in R[x, y].

Constraints of the SOS Program:

s.t. y2
0 − y2

2 + ∑
2≥i>j≥0

pL
i,j · gL

i,j(x, y) + ∑
2≥i>j≥0

pm
i,j · gm

i,j(x, y)

+q1(x, y) · h1(x, y) + q2(x, y) · h2(x, y) ∈ SOS[x, y].
(11)

aC represents (ηL)2. Larger C corresponds to a larger step size and makes the SOS program harder
to satisfy. Through binary search, we find that the largest possible value of C is 1 while maintaining
the feasibility of the SOS program.

Figure 3: Our SOS program in the unconstrained setting.

The proof of the following theorem is based on a feasible solution to the SOS program in
Figure 3.
Theorem 4. Let F : Rn → Rn be a monotone and L-Lipschitz operator. Then for any k ∈ N, the
EG algorithm with step size η ∈ (0, 1

L ) satisfies ∥F(zk)∥2 ≥ ∥F(zk+1)∥2.

Proof. Since F is monotone and L-Lipschitz, we have

⟨F(zk+1)− F(zk), zk − zk+1⟩ ≤ 0

13Simply replace {zi[ℓ]}i∈K and {ηF(zi)[ℓ]}i∈K with {zi[ℓ
′]}i∈K and {ηF(zi)[ℓ

′]}i∈K .
14We mainly care about the polynomials arise from the constraints. Although γ

(ℓ)
1 (w) and

γ
(ℓ)
2 (w) could depend on other coordinates, we show that it suffices to consider polynomials in

{zi[ℓ], ηF(zi)[ℓ]}i∈K .
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and ∥∥∥F(zk+ 1
2
)− F(zk+1)

∥∥∥2
− L2

∥∥∥zk+ 1
2
− zk+1

∥∥∥2
≤ 0.

We simplify them using the update rule of EG and ηL < 1. In particular, we replace zk − zk+1
with ηF(zk+ 1

2
) and zk+ 1

2
− zk+1 with ηF(zk+ 1

2
)− ηF(zk).

〈
F(zk+1)− F(zk), F(zk+ 1

2
)
〉
≤ 0, (12)∥∥∥F(zk+ 1

2
)− F(zk+1)

∥∥∥2
−
∥∥∥F(zk+ 1

2
)− F(zk)

∥∥∥2
≤ 0. (13)

Note that

∥F(zk)∥2 − ∥F(zk+1)∥2 + 2 · LHS of Inequality(12) + LHS of Inequality(13)

=∥F(zk)∥2 − ∥F(zk+1)∥2 + 2 ·
〈

F(zk+1), F(zk+ 1
2
)
〉
− 2 ·

〈
F(zk), F(zk+ 1

2
)
〉

+
∥∥∥F(zk+ 1

2
)
∥∥∥2

− 2 ·
〈

F(zk+1), F(zk+ 1
2
)
〉
+ ∥F(zk+1)∥2

−
∥∥∥F(zk+ 1

2
)
∥∥∥2

+ 2 ·
〈

F(zk), F(zk+ 1
2
)
〉
− ∥F(zk)∥2 = 0.

Thus, ∥F(zk)∥2 − ∥F(zk+1)∥2 ≥ 0.

Corollary 2 is implied by combing Lemma 4, Lemma 12, Theorem 4 and the fact that
η ∈ (0, 1

L ).

Corollary 2. Let F(·) be a monotone and L-Lipschitz operator mapping from Rn to Rn and
let z∗ ∈ Rn be a solution of the VI. For arbitrary starting point z0 ∈ Z , let {zk, zk+ 1

2
}k≥0

be the iterates of the EG algorithm with step size η ∈ (0, 1
L ). For any T ≥ 1 and D > 0,

GAP(zT) ≤ 1√
T

3D∥z0−z∗∥
η
√

1−(ηL)2
.

G.3.2 Last-Iterate Convergence of EG with Arbitrary Convex Constraints

We establish the last-iterate convergence rate of the EG algorithm in the constrained setting
for monotone VIs in this section. The plan is similar to the one in Appendix G.3.1. First, we
use the assistance of SOS programming to prove the monotonicity of the tangent residual
(Theorem 5), then combine it with the best-iterate convergence guarantee from Lemma 12 to
derive the last-iterate convergence rate (Theorem 6).

Due to the constraints, proving the monotonicity of the tangent residual becomes much more
challenging. The tangent residual in the constrained setting (Definition 4) is significantly
more complex than its counterpart in the unconstrained setting. In Lemma 13, we introduce
an auxiliary point c(z) for every point z that can be used to simplified the tangent residual.
Lemma 13. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be an operator. For any z ∈ Z ,

denote c(z) := ΠN(z)

[
− F(z)

]
the projection of −F(z) on the normal cone N(z). Then we have

• rtan(z) = ∥F(z) + c(z)∥,

• ⟨F(z) + c(z), c(z)⟩ = 0,

• ⟨F(z) + c(z), a⟩ ≥ 0, ∀a ∈ N(z).

Proof. According to the definition of c(z), rtan(z) = ∥F(z) + c(z)∥ follows from Lemma 5.

Since c(z) = ΠN(z)

[
− F(z)

]
, we know that for all a ∈ N(z),

⟨−F(z)− c(z), a − c(z)⟩ ≤ 0. (14)
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Note that c(z) ∈ N(z) and N(z) is a cone. By substituting a = 0 and a = 2 · c(z) in (14), we
get

⟨−F(z)− c(z), c(z)⟩ = 0.
Therefore, for all a ∈ N(z), we have

⟨−F(z)− c(z), a⟩ = ⟨−F(z)− c(z), a − c(z)⟩ ≤ 0.

Next, we need to decide over which semialgebraic set that we want to certify the non-
negativity of rtan(zk)

2 − rtan(zk+1)
2. Naturally, we would like to use all constraints of Z ,

but there might be arbitrarily many of them. In the next paragraph, we argue how to reduce
the number of constraints.

Reducing the Number of Constraints. Suppose we are not given the description of
Z ⊆ Rn, and we only observe one iteration of the EG algorithm. In other words, we know
zk, zk+ 1

2
, and zk+1, as well as F(zk), F(zk+ 1

2
), and F(zk+1). To express the squared tangent

residual at zk and the squared tangent residual at zk+1, let us also assume that the vector

ck = ΠN(zk)

[
− F(zk)

]
and ck+1 = ΠN(zk+1)

[
− F(zk+1)

]
, and according to Lemma 13, we

have rtan(zk)
2 = ∥F(zk) + ck∥2, and rtan(zk+1)

2 = ∥F(zk+1) + ck+1∥2. Our plan is to derive a
set of inequalities that must be satisfied by these vectors. From this limited information, what
can we learn about Z? We can conclude that Z must lie in the intersection of the following
halfspaces: (a) ⟨ck, z⟩ ≤ ⟨ck, zk⟩. This is true because ck ∈ N(zk). (b) ⟨ak+ 1

2
, z⟩ ≥ ⟨ak+ 1

2
, zk+ 1

2
⟩,

where ak+ 1
2
= −(zk − ηF(zk)− zk+ 1

2
). This is true because zk+ 1

2
= ΠZ (zk − ηF(zk)), so

−ak+ 1
2
∈ N(zk+ 1

2
). (c) ⟨ak+1, z⟩ ≥ ⟨ak+1, zk+1⟩, where ak+1 = −(zk − ηF(zk+ 1

2
)− zk+1).

This is true because zk+1 = ΠZ (zk − ηF(zk+ 1
2
)), so −ak+1 ∈ N(zk+1). See Figure 4 for

illustration. Additionally, due to our definition of ck and ck+1 and Lemma 13, we know
that (d) ⟨ηF(zi) + ηci, ηci⟩ = 0 for i ∈ {k, k + 1}, and (e) ⟨ηF(zk+1) + ηck+1, ak+1⟩ ≤ 0 as
−ak+1 ∈ N(zk+1).

〈ck, z〉 = 〈ck, zk〉

〈
ak+ 1

2
, z
〉
=
〈
ak+ 1

2
, zk+ 1

2

〉
−ak+ 1

2

ck

−ak+1

〈ak+1, z〉 = 〈ak+1, zk+1〉

zk

zk − ηF (zk)

zk+1

zk − ηF
(
zk+ 1

2

)

zk+1
2

Z

zk+1 − ηF (zk+1)

N(zk+1)

zk+1 − ηck+1

Figure 4: Reducing the number of constraints.

Clearly, for any Z , the inequalities in (a) to (e) must hold, though there might be other
inequalities that are also true. Our goal is to prove that the tangent residual is non-increasing
even if only inequalities (a) to (e) hold. If we can do so, then we prove that tangent residual
is non-increasing for an arbitrary Z .

Formulation as SOS program. Similar to the unconstrained case, our plan is to search for
a certificate of non-negativity of the following expression

∥F(zk) + ck∥2 − ∥F(zk+1) + ck+1∥2 (15)
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over the semialgebraic set defined by the following polynomial constraints in variables{
{zi[ℓ], ηF(zi)[ℓ]}i∈{k,k+ 1

2 ,k+1} ∪ {ci[ℓ]}i∈k,k+1

}
ℓ∈[n]∥∥ηF(zi)− ηF(zj)

∥∥2 − (ηL)2∥∥zi − zj
∥∥2 ≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}, (Lipschitzness)〈
ηF(zi)− ηF(zj), zj − zi

〉
≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}, (Monotonicity)〈
ai, zi − zj

〉
≤ 0, ∀i ∈ {k +

1
2

, k + 1}, j ∈ {k, k +
1
2

, k + 1}, (−ai ∈ N(zi))〈
ηci, zj − zi

〉
≤ 0, ∀i ∈ {k, k + 1}, j ∈ {k, k +

1
2

, k + 1}, (ci ∈ N(zi))

⟨ηF(zi) + ηci, ηci⟩ = 0, ∀i ∈ {k, k + 1}, (Lemma 13)
⟨ηF(zk+1) + ηck+1, ak+1⟩ ≤ 0, (Lemma 13).

Similar to Section G.3, we multiply the operators, ck, and ck+1 with η for convenience. For-
tunately, the dimensional-dependent Expression (15) and semialgebraic set are symmetric
across coordinates, and more specifically, satisfy the two key properties in the unconstrained
case – Property (i) and (ii). Hence, we can represent all of the coordinates ℓ ≥ 1 with one
coordinate in the SOS program, and we can form a constant size SOS program to search for
a certificate of non-negativity for Expression (15) as shown in Figure 5.

In Theorem 5, we establish the monotonicity of the tangent residual. Our proof is based on
the solution to the degree-2 SOS program concerning polynomials in 8 variables (Figure 5).
Theorem 5. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-
Lipschitz operator. For any step size η ∈ (0, 1

L ) and any zk ∈ Z , the EG algorithm update satisfies
rtan
(F,Z)

(zk) ≥ rtan
(F,Z)

(zk+1).

Proof. Let ck = ΠNZ (zk)
(−F(zk)) and ck+1 = ΠNZ (zk+1)

(−F(zk+1)). By Lemma 13 we have

η2rtan(zk)
2 − η2rtan(zk+1)

2 = ∥ηF(zk) + ηck∥2 − ∥ηF(zk+1) + ηck+1∥2 (17)

Combining the monotonicity and L-Lipschitzness of F with the fact that L ≤ 1
η , we have

(−1) ·
(∥∥∥zk+ 1

2
− zk+1

∥∥∥2
−
∥∥∥ηF(zk+ 1

2
)− ηF(zk+1)

∥∥∥2
)
≤ 0, (18)

(−2) · ⟨ηF(zk+1)− ηF(zk), zk+1 − zk)⟩ ≤ 0, . (19)

Since zk+ 1
2
= ΠZ (zk − ηF(zk)) and zk+1 = ΠZ

(
zk − ηF(zk+ 1

2
)
)

, we can infer that zk −
ηF(zk)− zk+ 1

2
∈ N(zk+ 1

2
) and zk − ηF(zk+ 1

2
)− zk+1 ∈ N(zk+1), which further implies

(−2) ·
〈

zk − ηF(zk)− zk+ 1
2
, zk+ 1

2
− zk+1

〉
≤ 0, (20)

(−2) ·
〈

zk − ηF(zk+ 1
2
)− zk+1, zk+1 − zk

〉
≤ 0, (21)

(−2) ·
〈

ηck, zk − zk+ 1
2

〉
≤ 0, . (22)

Since zk − ηF(zk+ 1
2
)− zk+1 ∈ N(zk+1) and ck+1 = ΠNZ (zk+1)

(−F(zk+1)), by Lemma 13 we
have

(−2) ·
〈

ηck+1 + ηF(zk+1), zk − ηF(zk+ 1
2
)− zk+1

〉
≤ 0, (23)

(−2) · ⟨ηck+1 + ηF(zk+1),−ηck+1⟩ = 0. (24)

MATLAB code for the verification of the following identity is included in the supplementary
material under the name "verify_identity_EG.m".
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Input Fixed Polynomials. We use x to denote (x0, x1, x2), y to denote (y0, y1, y2) and w to denote
(w0, w2). Interpret xi as zk+ i

2
[ℓ] and yi as ηF(zk+ i

2
)[ℓ] for 0 ≤ i ≤ 2, w0 as ηck[ℓ] and w2 as ηck+1[ℓ].

Let b1 = −(x0 − y0 − x1) and b2 = −(x0 − y1 − x2).
Origin of Constraints. gL

i,j(x, y, w) and gm
i,j(x, y, w) come from the ℓ-th coordinate’s contribution in

the Lipschitzness and monotonicity constraints. Similarly, gb
i,j(x, y, w) and gw

i,j(x, y, w) come from the
ℓ-th coordinate contribution of fact that −ai and ci are in the normal cone of zi. Finally, hw

i (x, y, w)
and gr(x, y, w) comes from the ℓ-th coordinate contribution due to the inequalities of Lemma 13.

• gL
i,j(x, y, w) := (yi − yj)

2 − C · (xi − xj)
2 for any 0 ≤ j < i ≤ 2.a

• gm
i,j(x, y, w) := (yi − yj)(xj − xi) for any 0 ≤ j < i ≤ 2.

• gb
i,j(x, y, w) := bi · (xi − xj) for any i ∈ {1, 2}, 0 ≤ j ≤ 2.

• gw
i,j(x, y, w) := wi · (xj − xi) for any i ∈ {0, 2}, 0 ≤ j ≤ 2.

• gr(x, y, w) := (y2 + w2) · b2.
• hw

i (x, y, w) := (yi + wi) · wi for any i ∈ {0, 2}.

Decision Variables of the SOS Program:

• pL
i,j ≥ 0, and pm

i,j ≥ 0, for all 0 ≤ j < i ≤ 2.

• pb
i,j ≥ 0, for any i ∈ {1, 2}, 0 ≤ j ≤ 2.

• pw
i,j ≥ 0, for any i ∈ {0, 2}, 0 ≤ j ≤ 2.

• pr ≥ 0.
• qw

0 , qw
2 ∈ R.

Constraints of the SOS Program:

s.t. (y0 + w0)
2 − (y2 + w2)

2 + ∑
2≥i>j≥0

pL
i,j · gL

i,j(x, y, w) + ∑
2≥i>j≥0

pm
i,j · gm

i,j(x, y, w)

+∑i∈{1,2},2≥j≥0 pb
i,j · gb

i,j(x, y, w) + ∑i∈{0,2},2≥j≥0 pw
i,j · gw

i,j(x, y, w) ∈ SOS[x, y, w]

+pr · gr(x, y, w) + ∑i∈{0,2} qw
i · hw

i (x, y, w)
(16)

aC represents (ηL)2.

Figure 5: Our SOS program in the constrained setting.

Expression (17) + LHS of Inequality (18) + LHS of Inequality (19)
+LHS of Inequality (20) + LHS of Inequality (21) + LHS of Inequality (22)
+LHS of Inequality (23) + LHS of Inequality (24)

=∥ηF(zk) + ηck − zk + zk+ 1
2
∥2 (25)

+∥ηF(zk+ 1
2
) + ηck+1 − zk + zk+1∥2 ≥ 0, (26)

which concludes the proof.

Theorem 6. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz operator
mapping from Z to Rn and let z∗ ∈ Z be a solution of the VI. For arbitrary starting point z0 ∈ Z ,
let {zk, zk+ 1

2
}k≥0 be the iterates of the EG algorithm with step size η ∈ (0, 1

L ). Then for any T ≥ 1
and D > 0,

• GAP(zT) ≤ 1√
T

3D||z0−z∗ ||
η
√

1−(ηL)2
,

• rnat(zT) ≤ rtan(zT) ≤ 1√
T

3||z0−z∗ ||
η
√

1−(ηL)2
.

35



Theorem 6 is implied by combing Lemma 4, Lemma 7, Lemma 12, Theorem 5 and the fact
that η ∈ (0, 1

L ).

H Optimistic Gradient Algorithm

In this section, we provide the last-iterate convergence rate of the OG algorithm. Similar
to Appendix G, we only show the last-iterate convergence rate for monotone VIs w.r.t.
the gap function for VIs (Definition 6), the natural residual (Definition 7) and the tangent
residual (Definition 4) and the potential function Φ(zk, wk). For the rest of this section, we
slightly abuse notation and refer to the gap function for VIs as the gap function. We show in
Appendix F (Appendix I resp.) last-iterate convergence rates for additional performance
measures for smooth monotone games (monotone VIs resp.).

Let Z ⊆ Rn be a closed convex set and F : Z → R be an operator. Let zk and wk be the k-th
iterate of the Optimistic Gradient Descent Ascent algorithm (OG) algorithm. Let z0, w0 be
arbitrary point in Z and {zk, wk}k≥0 be the iterated of the OG algorithm. The update rule
for any k ≥ 0 is as follows:

wk+1 = ΠZ [zk − ηF(wk)] = arg min
z∈Z

∥z − (zk − ηF(wk)) ∥

zk+1 = ΠZ [zk − ηF(wk+1)] = arg min
z∈Z

∥z − (zk − ηF(wk+1))∥
(27)

We prove last-iterate convergence rate for OG w.r.t. the gap function, natural residual and
tangent residual in Theorem 8 at Section H.4. The last-iterate convergence proof for OG is a
simple extension of the proof for EG. The last-iterate convergence rate for the performance
measures we mentioned follow from the last-iterate convergence rate of the following
monotonically decreasing potential function:

Φ(zk, wk) = ∥F(zk)− F(wk)∥2 + rtan(zk)
2 (28)

We can interpret Φ(zk, wk) as an upper bound of ∥wk+1 − zk∥ (Lemma 14).
Lemma 14. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be any operator and z1 =

ΠZ (z2 − ηF(z3)). Then ∥z1 − z2∥2 ≤ 2 · (η2rtan(z2)
2 + ∥ηF(z2)− ηF(z3)∥2).

Proof. Let ẑ2 = ΠZ (z2 − ηF(z2)). Then

∥z1 − z2∥ ≤ ∥z1 − ẑ2∥+ ∥z2 − ẑ2∥. (29)

By non-expansiveness of the projection mapping, we have that

∥z1 − ẑ2∥ ≤ ∥ηF(z2)− ηF(z3)∥ (30)

By Definition 7, Lemma 7 and Definition 4 we have that

∥z2 − ẑ2∥ =rnat
(ηF,Z)(z2)

≤rtan
(ηF,Z)(z2)

=ηrtan
(F,Z)(z2). (31)

By combining Inequality (29), Inequality (30), Inequality (31) and the fact that (a + b)2 ≤
2a2 + 2b2, we conclude

∥z1 − z2∥2 ≤
(
ηrtan(z2) + ∥ηF(z2)− ηF(z3)∥

)2 ≤ 2
(

η2rtan(z2)
2 + ∥ηF(z2)− ηF(z3)∥2

)
.

This appendix is organized as follows. In Section H.1, we derive best-iterate convergence
rate of OG w.r.t. the quantity ∥zk − wk+1∥. The rate of the best-iterate of OG is known
[WLZL21a, HIMM19], but we include the proof for completeness. In Corollary 3, we show
that the OG algorithm has bounded iterates (e.g. let z∗ be a solution to the VI, then for all
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k ≥ 0,∥zk − z∗∥, ∥wk − z∗∥ ≤ O(∥z0 − z∗∥+ ∥z0 − w0∥). In Section H.2, we show how to
derive a best-iterate convergence rate w.r.t. the potential function Φ(zk, wk). In Section H.3
we show that the potential function Φ(zk, wk) is monotonically decreasing across iterates
and finally in Section H.4 we show how to translate the last-iterate convergence rate w.r.t.
the potential function Φ(zk, wk) to the last-iterate convergence rate of the performance
measures of interest.

H.1 Best-Iterate Convergence of OG with Constant Step Size

The best-iterate convergence rate of OG is known [WLZL21a] and can easily be derived by
[HIMM19]. We include the proof here for completeness.
Lemma 15 ([HIMM19, WLZL21a]). Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a
monotone and L-Lipschitz operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z
be arbitrary starting points and {zk, wk}k≥0 be the iterates of the OG algorithm with step size
η ∈ (0, 1

2L ). Then for all T ≥ 0,

∥zT+1 − z∗∥2 +
T

∑
k=0

∥zk − wk+1∥2 ≤ 1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2. (32)

Proof of Lemma 15: In order to upper bound ∑T
k=0 ∥wk − wk+1∥2, we first relate the quantity

∥wk − wk+1∥2 to the weighted sum of {∥zt − wt+1∥2}0≤t≤k.
Lemma 16. For all k ≥ 0,

∥wk − wk+1∥2 ≤ 2(2η2L2)k∥w0 − z0∥2 +
k

∑
t=0

2(2η2L2)t∥zk−t − wk+1−t∥2. (33)

Moreover, for all T ≥ 0,

T

∑
k=0

∥wk − wk+1∥2 ≤ 2
1 − 2η2L2

(
∥w0 − z0∥2 +

T

∑
k=0

∥zk − wk+1∥2

)
. (34)

Proof. We first prove Equation (33) by induction. Note that for all k ≥ 0, we have

∥wk − wk+1∥2 = ∥wk − zk + zk − wk+1∥2

≤ 2∥wk − zk∥2 + 2∥zk − wk+1∥2. (35)

The inequality follows from the fact that (a + b)2 ≤ 2a2 + 2b2. Thus Equation (33) holds for
the base case k = 0. For the sake of induction, we assume that Equation (33) holds for some
k − 1 ≥ 0. Using the update rule of OG, the non-expansiveness of the projection operator,
and the L-Lipschitzness of F, for all k ≥ 1 we have

∥wk − zk∥2 ≤ η2∥F(wk−1)− F(wk)∥2 ≤ η2L2∥wk−1 − wk∥2. (36)

Combining Equation (35), Equation (36), and the induction assumption, we have

∥wk − wk+1∥2 ≤ 2∥wk − zk∥2 + 2∥zk − wk+1∥2

≤ 2η2L2∥wk−1 − wk∥2 + 2∥zk − wk+1∥2

≤ 2η2L2

(
2(2η2L2)k−1∥w0 − z0∥2 +

k−1

∑
t=0

2(2η2L2)t∥zk−1−t − wk−t∥2

)
+ 2∥zk − wk+1∥2

= 2(2η2L2)k∥w0 − z0∥2 +
k

∑
t=1

2(2η2L2)t∥zk−t − wk+1−t∥2 + 2∥zk − wk+1∥2

= 2(2η2L2)k∥w0 − z0∥2 +
k

∑
t=0

2(2η2L2)t∥zk−t − wk+1−t∥2.
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This completes the proof of Equation (33).

Summing Equation (33) with k = 0, 1, · · · , T, we have

T

∑
k=0

∥wk − wk+1∥2 ≤
T

∑
k=0

2(2η2L2)k∥w0 − z0∥2 +
T

∑
k=0

k

∑
t=0

2(2η2L2)t∥zk−t − wk+1−t∥2

=
T

∑
k=0

2(2η2L2)k∥w0 − z0∥2 +
T

∑
k=0

(
T−k

∑
t=0

2(2η2L2)t

)
· ∥zk − wk+1∥2

≤ 2
1 − 2η2L2

(
∥w0 − z0∥2 +

T

∑
k=0

∥zk − wk+1∥2

)
.

This completes the proof of Equation (34).

Back to the proof of Lemma 15. For all k ≥ 0, we have

∥zk+1 − z∗∥2 = ∥zk+1 − zk + zk − z∗∥2

= ∥zk − z∗∥2 + ∥zk+1 − zk∥2 + 2⟨zk+1 − zk, zk − z∗⟩
= ∥zk − z∗∥2 − ∥zk+1 − zk∥2 + 2⟨zk+1 − zk, zk+1 − z∗⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − z∗⟩. (37)

The last inequality follows from ⟨zk+1 − zk + ηF(wk+1), zk+1 − z∗⟩ ≤ 0 as zk+1 =
ΠZ [zk − ηF(wk+1)].

Similarly, for all k ≥ 0, we have

∥zk+1 − wk+1∥2 = ∥zk+1 − zk + zk − wk+1∥2

= ∥zk+1 − zk∥2 + ∥zk − wk+1∥2 + 2⟨zk − wk+1, zk+1 − zk⟩
= ∥zk+1 − zk∥2 − ∥zk − wk+1∥2 + 2⟨zk − wk+1, zk+1 − wk+1⟩
≤ ∥zk+1 − zk∥2 − ∥zk − wk+1∥2 + 2η⟨F(wk), zk+1 − wk+1⟩. (38)

The last inequality follows from ⟨zk − ηF(wk)− wk+1, zk+1 − wk+1⟩ ≤ 0 as wk+1 =
ΠZ [zk − ηF(wk)].

We can further simplify Equation (37) using Fact 1:

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − z∗⟩
= ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − wk+1⟩+ 2η⟨F(wk+1), z∗ − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − wk+1⟩. (39)

Summing Equation (38) and Equation (39), we get

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 − ∥zk+1 − wk+1∥2 + 2η⟨F(wk)− F(wk+1), zk+1 − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 − ∥zk+1 − wk+1∥2 + 2η∥F(wk)− F(wk+1)∥∥zk+1 − wk+1∥
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 − ∥zk+1 − wk+1∥2 + 2ηL∥wk − wk+1∥∥zk+1 − wk+1∥
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2L2∥wk − wk+1∥2, (40)

where we use Cauchy-Schwarz inequality in the second inequality and L-Lipschitzness of
F(·) in the third inequality. In the last inequality, we optimize the quadratic function in
∥zk+1 − wk+1∥.
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Summing Equation (40) for k = 0, 1, · · · , T and using Lemma 16, we get

∥zT+1 − z∗∥2 ≤ ∥z0 − z∗∥2 −
T

∑
k=0

∥zk − wk+1∥2 + η2L2
T

∑
k=0

∥wk − wk+1∥2

≤ ∥z0 − z∗∥2 −
T

∑
k=0

∥zk − wk+1∥2 +
2η2L2

1 − 2η2L2

(
∥w0 − z0∥2 +

T

∑
k=0

∥zk − wk+1∥2

)
(Lemma 16)

= ∥z0 − z∗∥2 − 1 − 4η2L2

1 − 2η2L2

T

∑
k=0

∥zk − wk+1∥2 +
2η2L2

1 − 2η2L2 ∥w0 − z0∥2.

Since η2L2 < 1
4 , we complete the proof by rearranging the above inequality. ■

H.1.1 Bounded Iterates of OG with Constant Step Size

Corollary 3. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting points
and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all k ≥ 1,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2,

∥wk − z∗∥ ≤2 ·

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2.

Proof. By Lemma 15 for k ≥ 1 we have that,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2.

Since 1−2η2L2

1−4η2L2 ≥ 1, ∥z0 − z∗∥ ≤
√

1−2η2L2

1−4η2L2 ∥z0 − z∗∥2 + 2η2L2

1−4η2L2 ∥w0 − z0∥2, which implies

that for all k ≥ 0,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2. (41)

For the second part of the proof, by Lemma 15 for all k ≥ 1 we have that,

∥wk − zk−1∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2. (42)

For all k ≥ 1, by triangle inequality, Inequality (41) and Inequality (42) we have that,

∥wk − z∗∥ ≤ ∥wk − zk−1∥+ ∥zk−1 − z∗∥ ≤ 2 ·

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2,

which concludes the proof.

H.2 Best-Iterate of Φ(zk, wk)

In this section, we use Lemma 15 to show that there exists t∗ ∈ [T] such that Φ(zt∗ , wt∗) =
O( 1

T ).
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Lemma 17. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding monotone VI. Let z0, w0 ∈ Z be arbitrary starting
point and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all
k ≥ 1,

T

∑
k=1

(
∥ηF(zk)− ηF(wk)∥2 + η2rtan(zk)

2
)
≤ 4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2 +
16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2.

Moreover, when w0 = z0
T

∑
k=1

(
∥ηF(zk)− ηF(wk)∥2 + η2rtan(zk)

2
)
≤ 4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2.

Proof of Lemma 17: For all k ≥ 1, we have

∥ηF(zk)− ηF(wk)∥2 ≤ η2L2∥zk − wk∥2 (L-Lipschitzness of F)

≤ η4L4∥wk−1 − wk∥2. (Equation (36))

Using Lemma 6 with the fact that zk = ΠZ [zk−1 − ηF(wk)], we have for all k ≥ 1,

η2rtan(zk)
2 ≤ ∥zk−1 − zk + ηF(zk)− ηF(wk)∥2

≤ 2∥zk−1 − zk∥2 + 2η2∥F(zk)− F(wk)∥2

≤ 2∥zk−1 − wk + wk − zk∥2 + 2η2L2∥wk − zk∥2 (L-Lipschitzness of F)

≤ 4∥zk−1 − wk∥2 + (4 + 2η2L2)∥wk − zk∥2

≤ 4∥zk−1 − wk∥2 + (4 + 2η2L2)η2L2∥wk−1 − wk∥2. (Equation (36))

Summing the above inequalities with k = 1, · · · , T and using Lemma 15 and Lemma 16, we
have

T

∑
k=1

(
∥ηF(zk)− ηF(wk)∥2 + η2rtan(zk)

2
)

≤ 4
T−1

∑
k=0

∥zk − wk+1∥2 + (4 + 3η2L2)η2L2
T−1

∑
k=0

∥wk − wk+1∥2

≤ 2(4 + 3η2L2)η2L2

1 − 2η2L2 ∥w0 − z0∥2 +

(
4 +

2(4 + 3η2L2)η2L2

1 − 2η2L2

) T−1

∑
k=0

∥zk − wk+1∥2

≤ 2(4 + 3η2L2)η2L2

1 − 2η2L2 ∥w0 − z0∥2 +

(
8η2L2

1 − 4η2L2 +
4(4 + 3η2L2)η4L4

(1 − 2η2L2) · (1 − 4η2L2)

)
∥w0 − z0∥2

+

(
4 − 8η2L2

1 − 4η2L2 +
2(4 + 3η2L2)η2L2

1 − 4η2L2

)
∥z0 − z∗∥2

=
16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2 +
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2,

which concludes the proof. ■

The following is a corollary of Lemma 17.
Corollary 4. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting point
and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all T ≥ 1,
there exists t∗ ∈ [T] such that

∥ηF(zt∗)− ηF(wt∗)∥2 + η2rtan(zt∗)
2 ≤ 1

T
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2 +
1
T

16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2.

Moreover, when w0 = z0

∥ηF(zt∗)− ηF(wt∗)∥2 + η2rtan(zt∗)
2 ≤ 1

T
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2.
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H.3 Monotonicity of Φ(zk, wk)

In this section, we show that the potential function Φ(zk, wk) is monotonically decreasing
across iterates of OG. We only include the simplified proof discovered using a degree 2 SOS
program.
Theorem 7. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-Lipschitz op-
erator. Then for any zk, wk ∈ Z , the OG algorithm with step size η ∈ (0, 1

2L ) produces wk+1, zk+1 ∈
Z that satisfy ∥F(zk)− F(wk)∥2 + rtan(zk)

2 ≥ ∥F(zk+1)− F(wk+1)∥2 + rtan(zk+1)
2.

Proof. Let ck = ΠNZ (zk)
(−F(zk)) and ck+1 = ΠNZ (zk+1)

(−F(zk+1)). Lemma 13 implies that

η2rtan(zk)
2 + η2∥F(zk)− F(wk)∥2 −

(
η2rtan(zk+1)

2 + η2∥F(zk+1)− F(wk+1)∥2
)

= ∥ηF(zk) + ηck∥2 + η2∥F(zk)− F(wk)∥2

−
(
∥ηF(zk+1) + ηck+1∥2 + η2∥F(zk+1)− F(wk+1)∥2

)
(43)

Since F is monotone and L-Lipschitz, and η ∈ (0, 1
2L ), we have

(−2) · (⟨ηF(zk+1)− ηF(zk), zk+1 − zk⟩) ≤ 0, (44)

(−2) ·
(

1
4
∥zk+1 − wk+1∥2 − ∥ηF(zk+1)− ηF(wk+1)∥2

)
≤ 0. (45)

Since wk+1 = ΠZ
[
zk − ηF(wk)

]
and zk+1 = ΠZ

[
zk − ηF(wk+1)

]
, we have that zk −

ηF(wk)− wk+1 ∈ N(wk+1) and zk − ηF(wk+1)− zk+1 ∈ N(zk+1). Thus we have

(−1) · ⟨zk − ηF(wk)− wk+1, wk+1 − zk+1⟩ ≤ 0, (46)
(−2) · ⟨zk − ηF(wk+1)− zk+1, zk+1 − zk⟩ ≤ 0. (47)

Since c(zk) ∈ N(zk), we have that

(−1) · ⟨ηc(zk), zk − wk+1⟩ ≤ 0, (48)
(−1) · ⟨ηc(zk), zk − zk+1⟩ ≤ 0. (49)

According to Lemma 13 and the fact that zk − ηF(wk+1) − zk+1 ∈ N(zk+1), ck+1 ∈
ΠN(zk+1)

(−F(zk+1)) we have

(−2) · ⟨ηc(zk+1) + ηF(zk+1), zk − ηF(wk+1)− zk+1⟩ ≤ 0, (50)
(−2) · ⟨ηc(zk+1) + ηF(zk+1),−ηc(zk+1)⟩ = 0, . (51)

MATLAB code for the verification of the following identity is included in the supplementary
material under the name "verify_identity_OG.m".

Expression (43) + LHS of Inequality (44) + LHS of Inequality (45) + LHS of Inequality (46)
+ LHS of Inequality (47) + LHS of Inequality (48) + LHS of Inequality (49)
+ LHS of Inequality (51) + LHS of Inequality (50)

=

∥∥∥∥wk+1 − zk+1
2

+ ηF(wk)− ηF(zk)

∥∥∥∥2
(52)

+

∥∥∥∥ηF(zk) + ηc(zk)− zk +
wk+1 + zk+1

2

∥∥∥∥2
(53)

+ ∥zk − ηF(wk+1)− zk+1 − ηc(zk+1)∥2 (54)
≥ 0.

Thus, ∥F(zk)− F(wk)∥2 + rtan(zk)
2 ≥ ∥F(zk+1)− F(wk+1)∥2 + rtan(zk+1)

2.
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H.4 Combining Everything

In this section, we combine the results of the previous sections and show that Φ(zT , wT) =

O
(

1
T

)
and we show the last-iterate convergence rate for performance measures of iterest.

Lemma 18. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator. For any zk, wk ∈ Z , the OG algorithm update satisfies,

rtan
(F,Z)(wk+1) ≤

√
2(2 + ηL)

√
rtan
(F,Z)

(zk)2 + ∥F(wk)− F(zk)∥2.

Proof. Since wk+1 = ΠZ [zk − F(wk)], by using Lemma 6 we have

rtan
(F,Z)(wk+1) ≤

∥∥∥∥ zk − wk+1
η

+ F(wk+1)− F(wk)

∥∥∥∥
≤
∥∥∥∥ zk − wk+1

η

∥∥∥∥+ ∥F(wk)− F(zk)∥+ ∥F(zk)− F(wk+1)∥

≤ 1 + ηL
η

∥zk − wk+1∥+ ∥F(wk)− F(zk)∥. (L-Lipschitzness of F)

Using Lemma 7 and the non-expansiveness of the projection mapping, we have

∥zk − wk+1∥ ≤ ∥zk − ΠZ [zk − ηF(zk)]∥+ ∥ΠZ [zk − ηF(zk)]− wk+1∥
= rnat

(ηF,Z)(zk) + ∥ΠZ [zk − ηF(zk)]− ΠZ [zk − ηF(wk)]∥

≤ rtan
(ηF,Z)(zk) + η∥F(zk)− F(wk)∥

= ηrtan
(F,Z)(zk) + η∥F(zk)− F(wk)∥.

Combing the above two inequalities, we have

rtan
(F,Z)(wk+1) ≤ (1 + ηL)rtan

(F,Z)(zk) + (2 + ηL)∥F(wk)− F(zk)∥

≤
√

2(2 + ηL)
√

rtan
(F,Z)

(zk)2 + ∥F(wk)− F(zk)∥2. (a + b ≤
√

2
√

a2 + b2)

Combining Corollary 4, Theorem 7, Lemma 18, Lemma 7 and Lemma 4 we get O( 1√
T
)

last-iterate convergence rate in terms of the tangent residual, natural residual and gap
function for both zT and wT+1. The result is formally stated in Theorem 8.
Theorem 8. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting
point, {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ) and D0 :=√
(4 + 6η4L4)∥z0 − z∗∥2 + (16η2L2 + 6η4L4)∥w0 − z0∥2. Then for all T ≥ 1,

•
√

Φ(zT , wT) ≤ 1√
T

D0

η
√

1−4η2L2

• GAPF,Z ,D(zT) ≤ 1√
T
· D·D0

η·
√

1−4·(ηL)2
,

• rnat
F,Z (zT) ≤ rtan

F,Z (zT) ≤ 1√
T
· D0

η·
√

1−4·(ηL)2
,

• GAPF,Z ,D(wT+1) ≤ 1√
T
·
√

2(2+ηL)·D·D0

η·
√

1−4·(ηL)2
,

• rnat
F,Z (wT+1) ≤ rtan

F,Z (wT+1) ≤ 1√
T
·

√
2(2+ηL)D0

η·
√

1−4·(ηL)2
.
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I Last-Iterate Convergence for Variational Inequalities

Theorem 9. Let Z ⊆ Rn be a closed convex set, F(·) : Z → Rn be a monotone and L-Lipschitz
operator and z∗ ∈ Z be a solution to the corresponding VI. Then for any T ≥ 1, zT produced by EG
with any constant step size η ∈ (0, 1

L ) satisfies

• GAP(zT) ≤ 1√
T

3D||z0−z∗ ||
η
√

1−(ηL)2
,

• rnat(zT) ≤ rtan(zT) ≤ 1√
T

3||z0−z∗ ||
η
√

1−(ηL)2
.

• max{∥zT − zT+ 1
2
∥, ∥zT−zT+1∥

2 } ≤ 1√
T

3||z0−z∗ ||√
1−(ηL)2

.

Proof. The proof follows by combining Theorem 6 and Lemma 19.

Theorem 10. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator and z∗ ∈ Z a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting
point and {zk, wk}k≥0 be the iterates of the OG algorithm with any step size η ∈ (0, 1

2L ). Let

D0 :=

√
(4+6η4L4)∥z0−z∗∥2+(16η2L2+6η4L4)∥w0−z0∥2

√
1−4(ηL)2

. Then for any T ≥ 1,

• GAPZ ,F,D(zT) ≤ DD0
η
√

T
,

• rnat
Z ,F,D(zT) ≤ rtan

Z ,F,D(zT) ≤ D0
η
√

T
,

• ∥zT − zT+1∥ ≤
√

3D0√
T

,

• GAPZ ,F,D(wT+1) ≤
√

2(2+ηL)·D·D0
η
√

T
,

• rnat
Z ,F,D(wT+1) ≤ rtan

Z ,F,D(wT+1) ≤
√

2(2+ηL)D0
η
√

T
,

• ∥wT − wT+1∥ ≤ 5D0√
T−1

.

Proof. The proof follows by Theorem 8 and Lemma 20.

I.1 Auxiliary Lemmas

Lemma 19. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-Lipschitz
operator. For any zk ∈ Z , the EG algorithm update with step-size η ∈ (0, 1

L ) satisfies,

max
{∥∥∥zk − zk+ 1

2

∥∥∥,
∥∥∥zk+ 1

2
− zk+1

∥∥∥} ≤ηrtan
(F,Z)(zk),

∥zk − zk+1∥ ≤2 · ηrtan
(F,Z)(zk).

Proof. We are only going to prove that max
{
∥zk − zk+ 1

2
∥, ∥zk+ 1

2
− zk+1∥

}
≤ ηrtan

(F,Z)
(zk),

since inequality ∥zk − zk+1∥ ≤ 2 · ηrtan
(F,Z)

(zk) follows by triangle inequality.

Since zk+ 1
2
= ΠZ

[
zk − ηF(zk)

]
, by Definition 7 we have that∥∥∥zk − zk+ 1

2

∥∥∥ = rnat
(ηF,Z)(zk) ≤ rtan

(ηF,Z)(zk) = ηrtan
(F,Z)(zk), (55)

where the first inequality follow by Lemma 7 and the second equality follows by Definition 4.
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Moreover, since zk+1 = ΠZ
[
zk − ηF(zk+ 1

2
)
]
, by non-expansiveness of the projection map-

ping, the fact that F is L-Lipschitz, that ηL ≤ 1 and Inequality (55), we have∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≤
∥∥∥ηF(zk+ 1

2
)− ηF(zk)

∥∥∥ ≤ ηL
∥∥∥zk − zk+ 1

2

∥∥∥ ≤ ηrtan
(F,Z)(zk).

Lemma 20. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting point
and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all k ≥ 1,

∥zk − zk+1∥ ≤
√

3η
√

Φ(zk, wk),

∥wk − wk+1∥ ≤5η
√

Φ(zk−1, wk−1).

Proof. By Lemma 14 and the fact that wk+1 = ΠZ (zk − ηF(wk)) for all k ≥ 0, we have that,

∥wk+1 − zk∥2 ≤ 2
(

η2rtan(zk)
2 + η2∥F(wk)− F(zk)∥2

)
= 2η2Φ(zk, wk). (56)

Thus, for all k ≥ 0, by combining Lemma 14, the fact that zk+1 = ΠZ (zk − ηF(wk+1),
L-Lipschitzness of F, Inequality (56), the fact that η2L2 ≤ 1

4 we have that for all k ≥ 0,

∥zk+1 − zk∥2 ≤2
(

η2rtan(zk)
2 + η2∥F(wk+1)− F(zk)∥2

)
≤2
(

η2rtan(zk)
2 + η2L2∥wk+1 − zk∥2

)
≤2η2

(
rtan(zk)

2 + 2 · η2L2Φ(zk, wk)
)

≤2η2
(

rtan(zk)
2 +

Φ(zk, wk)

2

)
≤3 · η2Φ(zk, wk). (57)

Moreover for all k ≥ 1, by triangle inequality, Inequality (56), Inequality (57) and Theorem 7,
we have that,

∥wk+1 − wk∥ ≤∥wk+1 − zk∥+ ∥zk − zk−1∥+ ∥wk − zk−1∥

≤η ·
√

2Φ(zk, wk) + η ·
√

3Φ(zk−1, wk−1) + η
√

2Φ(zk−1, wk−1)

≤5η
√

Φ(zk−1, wk−1).

J Non-Monotonicity of Several Standard Performance Measures

We conduct numerical experiments by trying to find saddle points in constrained bilinear
games using EG, and verified that the following performance measures are not mono-
tone: the (squared) natural residual, ∥zk − zk+ 1

2
∥2, ∥zk − zk+1∥2, maxz∈Z ⟨F(z), zk − z⟩,

maxz∈Z ⟨F(zk), zk − z⟩.
All of our counterexamples are constructed by trying to find a saddle point in bilinear games
of the following form:

min
x∈X

max
y∈Y

x⊤Ay − b⊤x − c⊤y (58)

where X ,Y ⊆ R2, A is a 2 × 2 matrix and b, c are 2-dimensional column vectors. All of the
instances of the bilinear game considered in this section have X ,Y = [0, 10]2. We denote by

Z = X × Y and by F(x, y) =
(

Ay − b
−A⊤x + c

)
: Z → Rn. We remind readers that finding a

saddle point of bilinear game (58), is equivalent to solving the corresponding monotone VI
with operator F(z) on set Z .
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J.1 Non-Monotonicity of the Natural Residual and its Variants

Performance Measure: Natural Residual. Let A =

[
1 2
1 1

]
, b = c =

[
1
1

]
. Running

the EG algorithm on the corresponding VI problem with step-size η = 0.1 starting at
z0 = (0.3108455, 0.4825575, 0.4621875, 0.5768655)T has the following trajectory:

z1 = (0.24923465, 0.47967569, 0.43497808, 0.57458145)T ,

z2 = (0.19396855, 0.48164918, 0.40193211, 0.56061753)T .

Thus we have

rnat(z0)
2 =0.15170013184049996,

rnat(z1)
2 =0.13617654362050116,

rnat(z2)
2 =0.16125792556139756.

It is clear that the natural residual is not monotone.In Figure 6, the red line is the squared
natural residual and the blue line is the squared tangent residual across many iterations.

Performance Measure: ∥zk − zk+ 1
2
∥2. Note that the norm of the operator mapping defined

in [Dia20] is exactly 1
η · ∥zk − zk+ 1

2
∥. Let A =

[
0.50676631 0.15042569
0.46897595 0.96748026

]
, b = c =

[
1
1

]
.

Running the EG algorithm on the corresponding VI problem with step-size η = 0.1 starting
at z0 = (2.35037432, 0.00333996, 1.70547279, 0.71065999)T has the following trajectory:

z 1
2
=(2.35325656, 0, 1.72473848, 0.64633879)T ,

z1 =(2.35324779, 0, 1.72472791, 0.64605901)T ,

z1+ 1
2
=(2.35612601, 0, 1.74398258, 0.58145791)T

z2 =(2.35612201, 0, 1.74412844, 0.5815012)T ,

z2+ 1
2
=(2.35898819, 0, 1.76352876, 0.51694333)T .

Thus we have ∥∥∥z0 − z 1
2

∥∥∥2
=0.00452784581555656,∥∥∥z1 − z1+ 1

2

∥∥∥2
=0.004552329544896258,∥∥∥z2 − z2+ 1

2

∥∥∥2
=0.004552306444552208.

It is clear that the ∥zk − zk+ 1
2
∥2 is not monotone. In Figure 7, the red line is

∥zk−z
k+ 1

2
∥2

η2 and
the blue line is the squared tangent residual across many iterations.

Performance Measure: ∥zk − zk+1∥2. Let A =

[
0.50676631 0.15042569
0.46897595 0.96748026

]
, b = c =

[
1
1

]
.

Running the EG algorithm on the corresponding VI problem with step-size η = 0.1 starting
at z0 = (2.37003485, 0, 1.84327237, 0.25934775)T has the following trajectory:

z1 =(2.37267186, 0, 1.86351397, 0.1950396)T ,

z2 =(2.37524308, 0, 1.88388624, 0.13077023)T ,

z3 =(2.37774149, 0.00426125, 1.90438549, 0.06653856)T .
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Thus we have

∥z0 − z1∥2 =0.004552214685275266,

∥z1 − z2∥2 =0.004552191904998012,

∥z2 − z3∥2 =0.004570327450598002.

It is clear that the ∥zk − zk+1∥2 is not monotone. In Figure 8, the red line is ∥zk−zk+1∥2

η2 and
the blue line is the squared tangent residual across many iterations.

J.2 Non-Monotonicity of the Gap Functions and its Variant

Performance Measure: Gap Function and maxz∈Z ⟨F(z), zk − z⟩. Let A =[
−0.21025101 0.22360196
0.40667685 −0.2922158

]
, b = c =

[
0
0

]
. One can easily verify that

⟨F(z), zk − z⟩ = ⟨F(zk), zk − z⟩, which further implies that maxz∈Z ⟨F(z), zk − z⟩ =
maxz∈Z ⟨F(zk), zk − z⟩ = GAP(zk), which implies that non-monotonicity of the
gap function implies non-monotonicity of maxz∈Z ⟨F(z), zk − z⟩. Running the EG
algorithm on the corresponding VI problem with step-size η = 0.1 starting at
z0 = (0.53095379, 0.29084076, 0.62132986, 0.49440498) has the following trajectory:

z1 = (0.53290086, 0.28009156, 0.62151204, 0.4981395)T ,

z2 = (0.5347502, 0.26947398, 0.62122195, 0.50222691)T .

One can easily verify that

GAP(z0) =0.6046398415472187,
GAP(z1) =0.58462873354003214,
GAP(z2) =0.5914026255469654.

It is clear that the duality gap is not monotone. In Figure 9, the red line is the gap function
and the blue line is the scaled squared tangent residual across many iterations.

Plots for the Numerical Experiments

In Figures 6-10, we plot the values of the non-monotone performance measures of interest
as well as the tangent residual properly scaled so that it can fit in the figure for more
iterations using the same instances as provided Appendix J.1 and J.2 with starting point
z0 = (0.25, 0.25, 0.25, 0.25)T and step size η = 0.1. Note that in Figures 6-9, the blue line
always corresponds to (scaled) tangent residual – our potential function, and the red line
corresponds to the performance measure stated at the top of the plot.
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Figure 6: Non-monotonicity of the Natural Residual
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Figure 7: Non-monotonicity of ∥zk − zk+1/2∥2
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Figure 8: Non-monotonicity of ∥zk − zk+1∥2
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Figure 9: Non-monotonicity of Variants of Gap Functions. Here we have scaled the tangent
residual ×100 to make the plot clear.
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Figure 10: Numerical experiments on bilinear game (58) with A =[
0.50676631 0.15042569
0.46897595 0.96748026

]
, b = c =

[
1
1

]
, initial point z0 = (0.25, 0.25, 0.25, 0.25)⊤

and step size η = 0.1. This is the same bilinear game we used in Figure 7 and 8.
Performance Measures: the blue line is tangent residual; the red line is natural residual; the
gray line is ∥zk − zk+1/2∥2/η2; the green line is ∥zk − zk+1∥2/η2. Non-monotonicity of the
natural residual is clear. Non-monotonicity of ∥zk − zk+1/2∥2 and ∥zk − zk+1∥2 are better
illustrated in Figure 7 and 8.
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