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1 Organization

This document contains the following sections:

¢ Details on rOxford5K and rParis6K are in Section 2, which includes: i) the detail of hard
training data sampling, ii) dependency on 7" and A (Section 2.1), iii) analysis of hyper-
parameters in QE methods (Section 2.2), iv) analysis of hyper-parameters in k-reciprocal
(Section 2.3).

* The detailed results on CUB, CARS and SOP including other metrics such as Recall and
PR, and results with different number of neighbors N are provided in Section 3.

* The results of query expansion baselines on CUB, CARS and SOP with grid search on
hyper-parameters are in Section 4.

* The results of k-reciprocal [20] on CUB and CARS with grid search on hyper-parameters
are in Section 5.

* The dependency on the number of updates T for 1-shot classification on Mini-ImageNet [ 7]
is provided in Section 6

* The 1-shot results of combining our approach and k-reciprocal [20] is provided in Section 7

2 Details on rOxford5K and rParis6 K

Hard training data sampling The main difficulty is that there is no standard clean training set.
One choice is SFM 120k used in [14], which is built with structure-from-motion pipeline, and clusters
for the same 3D scene are cast as categories. We take features in [7], which already leads to good
performance on the training set. For most training samples, the mAPs on the training set are already
quite high and training SSR using the raw nearest neighbors makes it perform well only for high mAP
queries. To address this problem, we sample only difficult examples: for each query, we sample 1K
database images, the query and its nearest neighbors will be training samples only if the mAP is not
saturated (<0.8) and there are sufficient true positive samples present in the nearest neighbors (>5).

2.1 Dependency on the number of updates 7" and step size A

In Table 1, we provide the analysis of hyper-parameters in our SSR on rOxford5K and rParis6K.
Similarly, the performance with different numbers of updates T and the step size A are provided.
Additionally, we also study the impact of number of neighbors N. We observe that on rOxford5K
and rParis6K, different A has small impact on the performance. T=1 leads to the best performance,
increasing 7' is more computational expensive but the performances are not improved. N is important
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in SSR, larger N (e.g. N =400) provides clear boost across different datasets. The final performances
reported in the paper are bold numbers indicated in the table.

rOxford5K [13, 7], mAP rParis6K [13, 7], mAP
Medium Hard Average || Medium Hard Average

Feature only [7] 673 443 558 80.6 615 71.1

T A N

le-4 | 100 72.1 494  60.8 81.2 630 721
2e-4 | 100 723 494 609 813 632 723
Se-4 | 100 72.8  50.6 61.7 81.0 628 719
le-4] 200 || 70.7 521 614 | 8.6 643 73.0
2e-4 | 200 717 50.0 609 81.6 642 729
Se-4 | 200 733 528  63.1 815 641 728

Te4] 300 || 722 517 620 828 658 743
2e-4 | 300 735 543 639 79.1 60.9 70.0
Se-4 | 300 72.1 53.7 629 79.8  61.7 70.8

le-4] 400 || 722 521 622 || 815 63.6 726

2e-4 | 400 71.6  49.6  60.6 844 678 76.1

Se-4 | 400 729 528 629 80.6 630 71.8

le-4] 500 || 715 515 615 83.0 670 75.0

2e-4 | 500 723 509  61.6 8277 664 74.6
Se-4 | 500 68.9 492  59.1 83.1 67.1 75.1
le-4 | 100 713  50.0 60.7 804 621 713
2e-4 | 100 724 509 617 812 631 722
Se-4 | 100 725 503 614 81.2 630 721
le-4] 200 || 727 528 628 | 79.1 61.1  70.1
2e-4 | 200 739 520 63.0 81.1 63.9 725
Se-4 | 200 74.0  54.0 64 795  62.0 70.8

le-4] 300 || 733 516 625 78.8 593  69.1
2e-4 | 300 73.5 543 639 79.1 609  70.0
Se-4 | 300 73.4 542 638 715 587  68.1
' le-4] 400 || 75.6 542 649 | 823 642 733
2e-4 | 400 73.1  50.7 619 78.6 595  69.1
Se-4 | 400 715 506  6l.1 795 603 699
‘Te-4] 500 [
2e-4 | 500

Se-4 | 500

Table 1: Hyper-parameters analysis of SSR on rOxford5K and rParis6K. We report results on rOx-
ford5K [13] and rParis6K [13] using features in [7]. Note that bold numbers are reported in the paper.



rOxford5K [

], mAP

rParis6K [

, 71, mAP

QE No. neighbors in QE methods Medium Hard Average || Medium Hard Average

Feature only [7] 673 443 558 80.6 615 71.1

AQE [2] 1 708 48.0 594 82.1 644 733
AQE [2] + SSR 1 742 544 643 817 650 734
AQE [2] 3 682 440 56.1 80.5 61.8 712
AQE [2] + SSR 3 71.6 51.1 614 80.0 628 714
AQE [2] 5 65.8 417 538 84.1 672 757
AQE [2] + SSR 5 68.0 47.6 57.8 837 67.6 75.7
AQE [2] 7 65.0 41.0 53 846 67.8 762
AQE [2] + SSR 7 675 47.0 573 842 682 762
AQE [2] 9 643 412 5238 853 688 77.1
AQE [2] + SSR 9 682 482 582 845 687 76.6
AQEWD [6] 1 70.8 480 594 819 639 729
AQEwWD [6] + SSR 1 741 541 64.1 815 648 732
AQEWD [6] 3 719 487  60.3 822 653 738
AQEwWD [6] + SSR 3 756 561 659 827 66.1 744
AQEWD [6] 5 722 488  60.5 835 663 749
AQEwD [6] + SSR 5 742 538 64.0 833 670 752
AQEwD [6] 7 714 465  59.0 84.0 670 755
AQEwD [6] + SSR 7 692 489 59.1 837 675 75.6
AQEwD [6] 9 66.0 427 544 845 676 76.1
AQEwD [6] + SSR 9 68.7 485 58.6 839 679 759
aQE [14] 1 683 455 569 814 63.0 722
aQE [14] + SSR 1 716 525 621 812 643 728
aQE [14] 3 69.0 458 574 823 644 734
aQE [14] + SSR 3 72.8 535 632 81.8 652 735
aQE [14] 5 69.5 461 578 83.0 655 743
aQE [14] + SSR 5 73.6 537 63.7 823 66.0 742
aQE [14] 7 732 525 629 835 662 749
aQE [14] + SSR 7 732 525 629 827 66,5 74.6
aQE [14] 9 700 468 584 84.0 67.0 755
aQE [14] + SSR 9 733 518 626 831 67.0 751
DQE [1] 1 682 440 56.1 80.5 61.8 712
DQE[I]+ SSR 1 716 511 614 80.0 628 714
DQE [1] 3 664 399 532 81.7 634 726
DQE [I]+ SSR 3 65.0 432 541 81.8 65.1 735
DQE [1] 5 66.6 423 544 831 654 743
DQE [I]+ SSR 5 645 43.1 538 825 659 742
DQE [1] 7 63.1 38.6 509 83.6 662 749
DQE [!]+ SSR 7 643 424 534 832 668 75.0
DQE [1] 9 639 402 521 843 672 758
DQE [!]+ SSR 9 643 42,6 535 835 673 754

Table 2: Hyper-parameter analysis of QE and QEs + SSR on rOxford5K and rParis6K. We report mAP on

rOxfordSK [13] and rParis6K [

in the paper.

2.2 Analysis of hyper-parameters in QE methods on image retrieval benchmarks

]. The results are with features in [7]. Note that the bold numbers are reported

To combine QE and SSR, we directly apply SSR to the retrieved samples given by QE. SSR is trained
with using the hard training data sampling described in the previous section. The results are present
in Table 2. As we can see, in most cases, our SSR can again improve the performance of QEs. The
improvement is also robust with respect to different hyper-parameters of QEs.



rOxford5K [13, 7], mAP rParis6K [13, 7], mAP
Medium Hard Average || Medium Hard Average
Feature only 673 443 558 80.6 615 7I.1
0.1 72.2 52.8 62.5 83.7 66.8 75.3

ki | k2| A |SSR

—
—

01| v 717 527 622 846 682 764
40 | 20 0.3 65.6 44.1 549 8.5 715 79.0
03| v 735 530 633 873 723 798
0.5 61.7 352 485 878 747 813
05| v 723 531 62.7 888 758 823
0.1 73.8 559 649 837 670 754
01 v 729 525 627 845 683 764
80 | 40 0.3 703  47.1 587 8.8 722 795
03| v 743 529 63.6 875 73.0 803
0.5 654 414 534 879 748 814
05| v 735 543 639 88.7 759 823
0.1 73.8 553  64.6 832 663 748
01| v 739 533  63.6 839 674 757
160 | 80 0.3 , 721  50.7 614 86.7 723 795

750 531 64.1 873 73.0 802
0.5 683 470 577 878 746 812
05| v 7377 529 633 884 755 820

Table 3: Hyper-parameters analysis of k-reciprocal [20] and k-reciprocal [20] + SSR on image retrieval
benchmark. We report mAP on rOxford5K [13] and rParis6K [13]. The results are with features in [7]. Note
that the bold numbers are reported in the paper.

2.3 Analysis of hyper-parameters in k-reciprocal [20] on rOxford5K and rParis6 K

To combine k-reciprocal [20] and SSR, we directly apply SSR to the retrieved samples given by
k-reciprocal [20]. Similarly, SSR is trained with using the hard training data sampling described in
the previous section. The results are present in Table 3. As we can see, our SSR can further improve
the best performance (bold numbers) obtained by k-reciprocal [20]. The improvement is also robust
with respect to different hyper-parameters of QEs.

3 Detailed results of CUB, CARS and SOP

In this section, we provide detailed results on image retrieval benchmark. The results are illustrated
in Table 4. For each feature, we report recall at 1 (R@1), precision at R (PR) and mean average
precision at R (mAP@R).

We also report results with different numbers of neighbors for approaches which consist of applying
our method on features (’Feature + SSR’) and combining our method with k-reciprocal [20] (’Feature
+ k-reciprocal [20] + SSR’). From the results, we can see, first, the re-ranking approaches studied in
the paper (query expansion, k-reciprocal [20] and our approach) can improve metric nAP@R and
PR, and keep the same level of performance in terms of recall. Second, our approach is robust with
respect to the number of neighbors (N). N=200 leads to the most stable performance on CUB [1§]
and CARS [9] and N=50 is optimal for SOP [? ]. We thus conducted experiments with N = 200 on
CUB [18] and CARS [9] and N = 50 on SOP [? ] for combining query expansion and our approach.



CUB200 [18] CARS196 [9] SOP [? ]

R@lt PRt MAP@RT | R@l1t PRT MAP@R{ | R@lt PRt MAP@R?
‘ Feature Only ‘
GL [3] 65.4 35.6 24.5 85.3 37.8 27.8 75.7 49.9 46.9
PA[?] 68.5 37.6 27.0 86.0 37.8 28.3 78.5 54.0 51.0
PNCA++ [16] 71.7 40.5 29.6 89.8 423 332 81.5 58.3 55.4
Feature + SSR

GL [3] + SSR (N = 50) 65.1 35.7 26.9 80.7 37.8 29.8 76.3 53.5 50.8
GL [3] + SSR (N = 100) 65.3 40.2 31.5 83.1 40.0 34.0 76.3 53.6 50.9
GL [3] + SSR (N = 200) 65.2 432 34.0 83.2 454 38.3 76.4 53.0 50.1
GL [3] + SSR (N = 300) 64.0 432 33.8 77.8 46.5 38.8 - - -

T PA[?]+SSR(N=50) | 665 376 291 | 824 ~ 378 301 | 784 573 548
PA [? ] + SSR (N = 100) 66.5 42.1 33.8 84.6 39.8 339 78.3 57.3 54.6
PA [? ] + SSR (N = 200) 64.5 444 35.5 81.6 44.8 38.1 78.3 56.7 54.0
PA [? ] + SSR (N = 300) 63.1 444 35.3 80.5 45.9 38.7 - - -

" PNCA++[16]+SSR(N=350) | 702 405 321 | 872 424 352 | 817 629 606
PNCA++ [16] + SSR (N = 100) 71.3 46.1 38.11 88.3 44.7 39.4 81.5 63.1 60.7
PNCA++ [16] + SSR (N = 200) 66.2 47.9 39.5 86.3 50.9 45.1 81.9 61.6 59.0
PNCA++ [16] + SSR (N = 300) 64.3 47.3 38.8 82.7 52.4 45.8 - - -

Feature + Query Expansion
GL [3] + AQE [2] 64.4 38.3 28.3 80.9 433 34.5 75.7 51.4 49.2
GL [3] + AQEwD [0] 65.6 38.4 28.3 83.9 434 34.6 75.7 51.8 493
GL [3]+DQE[!] 61.3 36.7 26.3 81.0 41.1 31.6 75.7 50.9 48.7
GL [3] + aQE [14] 65.4 38.3 28.1 82.5 432 34.3 75.7 51.3 49.0

TPA[?T+AQE[Z] | 66.8° 406 312 [~ 832 431 349 | 792 569 548
PA [? ] + AQEwWD [6] 69.1 40.8 31.2 86.0 429 34.5 79.1 57.4 55.0
PA[?]1+DQE[!] 64.6 40.4 30.7 81.6 43.0 34.4 79.1 57.1 55.0
PA[? ] +aQE [14] 68.0 40.6 30.9 85.3 42.7 34.3 79.2 56.7 54.3

" PNCA++[16]+AQE[2] ~ |~ 699 436 341 | 850 487 409 | 815 605 584
PNCA++ [16] + AQEwWD [6] 70.7 43.6 342 88.2 48.7 40.9 81.4 61.0 58.6
PNCA++[16] + DQE [1] 70.0 429 33.0 86.9 45.0 37.0 81.4 60.4 58.3
PNCA++ [16] + aQE [14] 68.2 43.6 34.1 86.8 48.6 40.9 81.5 60.4 58.4

Feature + Query Expansion + SSR
GL [3] + AQE +SSR 62.1 43.4 34.1 75.1 48.1 40.3 75.6 522 49.5
GL [3] + AQEwD +SSR 60.4 43.1 34.0 71.3 47.5 39.2 75.8 52.6 49.9
GL [3] + DQE +SSR 60.8 42.5 33.1 75.6 47.0 39.4 75.6 52.5 49.8
GL [3] + aQE +SSR 62.6 43.0 33.6 73.8 48.3 40.4 75.6 52.4 49.7

T PA[?T+AQE+SSR T | 645 451 361 | 794 470 395 | 716 554 538
PA [? ] + AQEwD +SSR 63.0 44.7 35.9 80.3 47.1 39.7 78.3 56.9 54.2
PA [? ] + DQE +SSR 63.2 44.7 35.5 76.5 46.5 39.0 77.8 56.2 53.8
PA [? ] + aQE +SSR 62.8 43.9 34.7 76.4 44.5 35.7 78.1 56.6 54.0

" PNCA++[16]+AQE+SSR ™~~~ | 66.4 489 402 | 834 = 545 483 | B8IL.L 627 605
PNCA++ [16] + AQEwD +SSR 68.6 49.5 41.0 85.3 54.4 48.4 81.3 62.8 60.5
PNCA++ [16] + DQE +SSR 65.7 48.6 39.9 83.7 52.4 46.2 81.3 62.7 60.4
PNCA++ [16] + aQE +SSR 66.8 49.2 40.7 82.6 54.6 48.4 81.2 62.7 60.4

Feature + k-reciprocal [20]
GL [3] + [20] 65.6 46.9 37.6 84.9 56.9 49.9 72.4 54.3 51.7
PA [?]+[20] 68.3 50.5 41.8 86.0 56.6 50.2 75.5 58.7 56.3
PNCA++ [16]+ [20] 73.6 55.9 48.1 90.4 63.8 58.5 78.9 64.0 61.7
Feature + k-reciprocal [20] + SSR
GL [3] + [20] + SSR (N = 50) 66.4 46.9 37.8 84.1 56.9 50.0 73.8 55.1 52.5
GL [3] + [20] + SSR (N = 100) 66.5 46.9 38.2 84.9 56.9 49.9 73.6 55.0 52.3
GL [3] + [20] + SSR (N = 200) 66.2 474 38.7 84.2 57.3 51.1 73.0 54.7 51.9
GL [3] + [20] + SSR (N = 300) 66.3 47.5 38.8 84.9 56.9 49.9

T PA[? +[20]+SSR(N=50) | 683 505 418 | 857 566 502 | 756 591 566
PA [? ]+ [20] + SSR (N = 100) 69.0 50.7 423 86.0 56.6 50.2 75.2 58.8 56.3
PA [? ]+ [20] + SSR (N = 200) 68.7 50.7 42.3 86.1 57.0 50.9 75.3 58.6 56.2
PA [? ]+ [20] + SSR (N = 300) 68.3 50.3 42.0 85.8 57.1 50.9

" PNCA++[16]+[201+SSR(N=50) | 736 559 481 [ 904 639 5385 | 799 646 623
PNCA++ [16]+ [20] + SSR (N = 100) 74.1 56.5 48.8 90.4 63.8 58.5 79.6 64.4 62.1
PNCA++ [16]+ [20] + SSR (N = 200) 74.3 57.3 49.8 90.0 65.0 60.4 79.7 64.2 61.9
PNCA++ [16]+ [20] + SSR (N = 300) 74.1 56.3 48.9 - - - - - -

Table 4: Image retrieval: Detailed results on CUB [18], CARS[Y9], SOP [? ]. We report Recall at 1 (R@1), PR
and mAP@R for all the methods and datasets.



4 Analysis of hyper-parameters in query expansion methods on CUB, CARS
and SOP

In this section, we provide an analysis on hyper-parameters of query expansion methods. All the
approaches are explained in. For AQE and AQEwD, the only hyper-parameter is the number of
neighbor, while in alphaQE and DQE, there exists an additional hyper-parameter: alpha for alphaQE
and the number of negative samples in DQE. The plots of different approaches as well as different
alpha and numbers of negative samples are in Figure 1. We can see that the most crucial hyper-
parameter remains the number of neighbors. Moreover, large number of neighbors degrades the
performances for all the datasets and features.

We thus set alpha = 1 for alphaQE and number of negative samples as 200 in our experiments. The
detailed results are provided in Table 5. The final number of neighbors we used are shown in bold in

Table 5.

s used for QF

GL [3] feature

100

(b) CUB [

Number of neighbors used for QE

] with PA [? ] feature

100

56

5

(d) CARS [9] with GL

E

[3] feature (e) CARS [9] with PA

E

[? ] feature

Number of neig!

b

for QF

(c) CUB [18] with PN

CA++[16]

Figure 1: Ablation study on the hyper-parameters of four query expansion baselines on CUB [
with different features.

(f) CARS [9] with PNCA++[16]

] and CARS [9]

CUB CARS SOP
neighbors AQE AQEwD DQE alphaQE AQE AQEwD DQE alphaQE AQE AQEwD DQE alphaQE
GroupLoss
1 68.2 67.7 66.4 68.0 72.1 717 715 72.0 56.6 56.2 55.9 56.6
3 69.8 69.3 679 69.7 735 73.1 72.9 734 54.6 56.7 54.4 547
5 70.3 70.0 684 70.2 74.1 73.7 734 74.0 50.6 55.6 512 50.8
10 70.7 70.6 68.8 70.7 74.7 74.4 74.1 74.7 - - - -
30 69.7 70.5 68.0 69.8 752 75.2 75.0 75.2 - - - -
50 672 69.4 65.1 674 745 75.1 744 745 - - - -
100 54.3 64.2 48.5 56.5 67.4 72.8 64.0 68.2 - - - -
ProxyAnchor
1 80.8 80.4 815 80.7 80.1 81.1 80.0 80.4 80.2 810 80.4
3 81.9 81.6 82.6 81.9 81.6 81.2 825 815 78.8 80.9 80.7 79.0
5 82.4 82.1 83.0 82.4 82.1 81.8 83.0 82.0 74.9 80.1 78.9 752
10 82.8 82.6 83.5 827 82.6 82.4 83.7 82.6 - - - -
30 82.4 82.8 835 82.4 82.9 83.0 84.3 82.9 - - - -
50 81.4 823 82.8 815 82.5 82.9 84.0 82.5 - - - -
100 75.1 80.1 74.1 76.7 78.8 81.9 79.0 79.4 - - - -
ProxyNCA++
1 755 75.0 74.7 75.2 68.5 67.8 683 714 711 712 715
3 774 77.0 76.3 77.2 70.5 70.0 69.4 70.3 69.9 72,0 71.0 70.1
5 78.2 77.7 77.0 78.0 713 70.8 70.0 712 66.0 712 69.4 66.4
10 78.8 78.6 77.6 78.8 723 719 70.9 722 - - - -
30 78.6 79.1 77.5 78.7 732 73.1 71.8 73.2 - - - -
50 76.9 784 74.7 773 72.6 73.2 70.1 72.7 - - - -
100 66.1 745 612 69.9 66.5 711 62.1 68.0 - - - -
Table 5: Grid search on hyper-parameters of different query expansion baselines on train set. We report

mAP@R for comparison. We set the number of negatives as 200 for DQE and « as 1 for alphaQE.



S Analysis of hyper-parameters in k-reciprocal [20] on CUB and CARS

We also provide similar analysis for k-reciprocal [20]. We find that the optimal weight for the feature
distance « is 0.1. The plots with different k1, k2 and o = 0.1 are shown in Figure 2. We can
see k-reciprocal [20] is robust to hyper-parameters and results with large range of k;, ko leads to
important performance boost comparing to the feature comparison baseline.

The detailed results are provided in Table 6 for GL [3] feature,Table 7 for PA [? ] feature and Table 6
for PNCA++ [16] feature. The hyper-parameter we used are bold in each table. For SOP [? ], due to
computational limitation, we didn’t compute grid search and conducted all experiments with using
k1 =10, ks =4 and o = 0.1.

mAP@R
o

mAP@R
o

mAP@R

-»- Feat. Only
—— K, =30

-»¢- Feat. Only -3¢~ Feat. Only

—— K,=30

—— Ky =30
— K, =060 —— K, =60 —e— K, =60

—— Ky =90 —— Ky =90 —— Ky=9
5 0 120 160 510 50 120 160 50 S0 130 160
K K, K

(a) CUB [18] with GL [3] (b) CUB [18] with PA [? (c) CUB [I8] with

mMAP@R
=

mAP@R

mAP@R
o

-»- Feat. Only
—— Ky=30

-»- Feat. Only -»¢- Feat. Only

—— K;=30 —— K;=30

—— Ky=060 —— K, =060 —— Ky=060

—— K;=% —— Ky =90 —— K, =90
T 0 120 160 50 S0 120 160 50 80 120 160
K K K

(d) CARS [9] with GL [3] (e) CARS [9] with PA [? ) CARS [9] with
] PNCA++[16]

Figure 2: Analysis on hyper-parameters of k-reciprocal [20] on CUB [18] and CARS [9]. For each plot, we fix
a=0.1

Kl K2 CUB [18] CARS [9]
a =0.05 a=0.10 a=0.15 a =0.05 a=0.10 a=0.15
30 80.4 80.4 80.3 82.8 82.8 82.7
40 60 80.5 80.5 80.4 84.3 84.3 84.2
90 79.9 79.9 79.8 84.7 84.7 84.6
120 78.8 78.8 78.7 84.8 84.8 84.7
30 81.2 81.2 81.1 83.9 83.8 83.8
30 60 80.8 80.8 80.7 84.8 84.7 84.7
90 79.9 79.9 79.8 84.9 84.9 84.9
120 78.7 78.7 78.6 84.9 84.9 84.8
30 80.8 80.8 80.7 84.5 84.4 84.4
120 60 80.3 80.3 80.2 84.9 84.9 84.9
90 79.2 79.2 79.2 84.9 84.9 84.9
120 78.0 78.0 78.0 84.8 84.8 84.7
30 79.9 79.9 79.9 84.2 84.2 84.2
160 60 79.5 79.5 79.5 84.6 84.6 84.6
90 78.4 78.4 78.4 84.6 84.6 84.5
120 77.1 77.1 77.2 84.5 84.5 84.4

Table 6: K-reciprocal grid search on CUB [18] and CARS [9] with Group Loss feature [3], we report mAP@R
on train sets.



K1 K2 CUB [18] CARS [9]
a=0.05 a=0.10 a=0.15 a=0.05 a=0.10 a=0.15
30 86.9 86.9 86.9 85.9 85.9 85.9
40 60 87.3 87.3 87.2 87.6 87.6 87.5
90 87.0 87.0 87.0 88.2 88.1 88.1
120 86.7 86.7 86.7 88.4 88.4 88.3
30 87.2 87.2 87.2 87.1 87.1 87.1
30 60 87.3 87.3 87.3 88.0 87.9 87.9
90 86.9 86.9 86.9 88.2 88.2 88.2
120 86.6 86.6 86.6 88.4 88.3 88.3
30 87.2 87.2 87.2 87.8 87.8 87.8
120 60 87.1 87.1 87.1 88.3 88.3 88.3
90 86.7 86.7 86.8 88.4 88.4 88.3
120 86.3 86.3 86.3 88.3 88.3 88.0
30 86.8 86.9 86.9 88.0 88.0 88.0
160 60 86.8 86.8 86.8 88.3 88.3 88.3
90 86.5 86.5 86.5 88.3 88.3 88.3
120 86.0 86.0 86.0 88.1 88.1 88.1

Table 7: K-reciprocal grid search on CUB [
mAP@R on train sets.

] and CARS [9] with Proxy Anchor feature [? ], we report

a o CUB [19] CARS [7]
a=005 «=010 «a=015 | a=005 «a=0.10 «=0.15
30 36.4 36.4 836.4 30.2 30.3 30.3
10 60 87.1 87.1 87.1 82.9 82.9 82.8
90 86.9 86.8 86.8 83.7 83.6 83.6
120 86.6 86.5 86.5 84.0 83.9 83.8
30 372 87.1 87.1 31.8 31.8 31.0
%0 60 87.3 87.3 87.3 83.5 83.5 83.5
90 36.8 86.8 86.8 83.9 83.9 83.8
120 86.4 86.4 86.4 84.0 84.0 83.9
30 36.9 36.9 86.9 32.8 32.8 32.8
o 60 86.9 87.0 86.9 83.8 83.8 83.8
90 86.4 86.4 86.4 84.0 84.0 83.9
120 85.9 85.9 85.9 83.9 83.9 83.9
30 36.3 86.3 86.3 32.8 32.9 32.9
6o 60 86.4 86.4 86.4 83.7 83.7 83.7
90 85.7 85.7 85.8 83.8 83.7 83.7
120 85.1 85.1 85.1 83.6 83.6 83.6

Table 8: K-reciprocal grid search on CUB [

on train sets.

] and CARS [9] with PNCA++ feature [

], we report mMAP@R



6 Dependency on the number of updates T for 1-shot classification on
Mini-ImageNet [17]

We provide an analysis on the number of updates T. The results are in Figure 3 for 1-shot performance
on Mini-ImageNet [17]. As claimed in the paper, we found the T=3 is the best for few-shot

classification.

73

%)

=70

Figure 3: 1-shot performance on Mini-ImageNet [
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7 Combining k-reciprocal [20] and our approach on transductive few-shot

classification

In this section, we provide results of combining k-reciprocal [
few-shot classification. We experimented on Mini-ImageNet [

] and our approach for transductive
], tiered-ImageNet [

] and CIFAR-

FS [12] with the same architectures used in the paper: Conv-4-64, ResNet12, WRN-28-10. The

results are shown in Table 9. First, both methods (our SSR and k-reciprocal [

] + SSR) consistently

improve the feature comparison baseline. Second, our approach alone outperforms k-reciprocal [20]
+ SSR in most of the cases, which demonstrates the effect of our approach.

Method Mini-ImageNet [17] tiered-ImageNet [15] CIFAR-FS [12]
Conv-4-64 (Feat. Only) 52.44+0.4 55.240.5 57.84+0.5
Conv-4-64 + SSR 62.1+0.6 65.1+0.6 72.0+£0.6
Conv-4-64 + k-reciprocal [20] + SSR 60.8+0.6 65.9+0.6 69.5+0.6
ResNet-12 (Feat. Only) 57.61+0.5 68.84+0.5 66.440.5
ResNet-12 + SSR 68.1+0.6 81.21+0.6 76.8+-0.6
ResNet-12 + k-reciprocal [20] + SSR 69.41+0.6 80.0+0.6 76.2+0.6
WRN-28-10 (Feat. Only) 61.9+0.5 69.4+0.5 69.5+0.5
WRN-28-10 + SSR 72.4+0.6 79.5+0.6 81.6:0.6
WRN-28-10 + k-reciprocal [20] + SSR 69.8+0.6 77.6+0.6 79.6+£0.6

Table 9: Combining k-reciprocal [

ImageNet [15] and CIFAR-FS [

]

] and our approach: 1-shot performance on mini-ImageNet [17], tiered-
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