
Supplementary Materials for
"Generative vs Discriminative:

Rethinking The Meta-Continual Learning"

Mohammadamin Banayeeanzade∗, Rasoul Mirzaiezadeh∗,
Hosein Hasani∗, Mahdieh Soleymani Baghshah

Department of Computer Engineering
Sharif University of Technology

m.banayeean@gmail.com, mirzaierasoul75@gmail.com
hasanih@ce.sharif.edu, soleymani@sharif.edu

1 Justification of Statements

To justify the two statements mentioned in the paper, we consider a training dataset {(xi, yi)}Ni=1,
where each xi is generated from an underlying distribution determined by yi, i.e. xi ∼ Pyi(x | θyi).
θc denotes the unknown parameters for the distribution of class c. In the i.i.d. scenario, i.e. without
presence of continual learning restrictions, a generative Bayes classifier would simply infer class-
specific parameters either by solving maximum likelihood estimation (θ̂c = argmax

θc
Pc(Sc | θc)) or

by forming the posterior distribution (P c(θc | Sc)). Notice that the mentioned formulas only depend
on Sc and not the samples of other classes. This good property of generative models enables zero
forgetting in the following continual scenarios:

Statement 1. In the class-incremental scenario, the data points for every class are delivered to the
learner all at once. Hence, the parameter estimation or inference can be performed exactly as it was
done in the i.i.d. setting. In fact, the inferred class-specific parameters would be the same in both
continual and i.i.d. scenarios, resulting in the same decision boundaries.

Statement 2. In the fully incremental scenario, using incrementally-updatable sufficient statistics
will guarantee zero forgetting. For more details, consider T c(x1, ..., xn) as the sufficient statistics for
P (θc | x1, ..., xn) after observing n samples of class c. A desired recursive form is T c(x1, ..., xn) =
g(xn, T

c(x1, ..., xn−1)) where updating sufficient statistics of each class only depends on the last
observed sample and the obtained sufficient statistic from previous samples. With this in mind, we see
that observing the samples all at once will lead to the same sufficient statistics as the sequential case.
Therefore inferring the posterior distribution will be the same for both continual and i.i.d. settings:

P c(θc | Sc) = P c(θc | T c(Sc)) = P c(θc | T c(x1, ..., xn)) = P c(θc | g(xn, T
c(x1, ..., xn−1))).

(1)

Exponential family distributions, as a good example, have a closed-form predictive formulation and a
convenient sufficient statistic:

P c(x | η) ∝ exp(ηc.T c(x)). (2)

∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

The sufficient statistics for this family is:

T c(Sc) =
∑
x∈Sc

T c(x), (3)

with the incremental form easily written as:

T c(x1, ..., xn) = T c(x1, ..., xn−1) + T c(xn). (4)

2 Incremental Form for Gaussian Distributions

In the paper, we have mentioned that posterior parameters for class-specific Gaussian distributions
can be written in an incremental form. In this section, we will investigate this claim in more detail.

Gaussian distributions are special cases of the exponential family, therefore as mentioned in the
previous section, we will use the first and second-order moments as the incremental sufficient
statistics:

z̄n = 1
n

∑n
i=1 zi = (n−1)z̄n−1+zn

n

γ̄n = 1
n

∑n
i=1 z

2
i = (n−1)γ̄n−1+zn

n ,

(5)

where zi is the embedded input in the d-dimensional space. With this in hand, we can write an
incremental form for the posterior distribution parameters:

κn = κ0 + n, µn = κ0µ0+nz̄n
κn

,

αn = α0 + n
2 , βn = β0 + n

2 (γ̄n − z̄2
n) + κ0n(z̄n−µ0)2

2(κ0+n) ,
(6)

where the class indicator c and feature index j are omitted for simplicity. It is easy to see that z̄n ∈ Rd,
γ̄n ∈ Rd+ and n is a scalar. Therefore it suffices to store 2d+ 1 parameters for each class and update
them as new samples for that class are arrived incrementally.

3 Hyperparameter Estimation

In this section, we first present an iterative algorithm for learning the prior distribution parameters.
As mentioned in the paper, we are using the Normal-Gamma prior distribution as:

P (µc, λc | α0, β0, κ0, µ0) ∝
d∏
j=1

N
(
µcj | µ0, (κ0λ

c
j)
−1
)
Ga
(
λcj | α0, β0

)
, (7)

where µc and λc are the mean and precision parameters for class c in an d-dimensional embedding
space, and α0, β0, κ0, and µ0 parameterize the prior distribution. We set κ0 = µ0 = 0 to impose a
flat uninformative prior on mean. However, the α0, β0 are estimated using maximum likelihood on
the inner-class precision of the features from the meta-train dataset.

Λ = { 1

var(fψ(X c)j)
| 0 ≤ j ≤ d, c ∈ Cmeta-train}, (8)

where X c denotes all the data points from class c. Using these observations the likelihood function
can be written as:

logL(α, β; Λ) =
∑
λ∈Λ logGa (λ | α, β) =

∑
λ∈Λ log

(
βα

Γ(α)λ
α−1e−βλ

)
= nα log β − n log Γ(α) + (α− 1)

∑
λ∈Λ log λ−

∑
λ∈Λ βλ,

(9)

2

where n =| Λ |. Applying straight forward maximization w.r.t. β we get:

β = nα∑
λ∈Λ λ

, (10)

plugging this into Equation 9, we get:

−n log Γ(α) + (α− 1)
∑
λ∈Λ log λ+ nα(log nα− log

∑
λ∈Λ λ)− nα. (11)

Using the Taylor expansion, we can show:

α logα ≥ (1 + logα0)(α− α0) + α0 logα0. (12)

Substituting this into Equation 11, we get a lower bound on the likelihood function:

logL(α; Λ) ≥ −n log Γ(α) + (α− 1)
∑
λ∈Λ log λ− nα

+n((1 + logα0)(α− α0) + α0 logα0) + nα(log n− log
∑
λ∈Λ λ).

(13)

This lower bound is maximized at:

α = Ψ−1(log nα0 +
∑
λ∈Λ

log λ
n − log

∑
λ∈Λ λ), (14)

where Ψ denotes the digamma function. Given a good starting point for α0, we can use Equation 14
to solve the maximum likelihood. To find a good starting point, we use the Method of Moments:

α0 = µ2

v ,

µ =
∑
λ∈Λ λ,

v =
∑
λ∈Λ(λ−µ)2

n−1 .

(15)

A combination of Equation 14 and Equation 15 produces Algorithm 1 for maximum likelihood
estimation of Gamma distribution.

Algorithm 1 Gamma Maximum Likelihood

Require: observation set Λ
1: µ =

∑
λ∈Λ λ

2: v =
∑
λ∈Λ(λ−µ)2

n−1

3: α = µ2

v
4: while not converged do
5: α = Ψ−1(log nα+

∑
λ∈Λ

log λ
n − log

∑
λ∈Λ λ)

6: β = nα∑
λ∈Λ λ

7: return α, β

3.1 Maximum Likelihood in Practice

Figure 1 shows that a proportion of features are inactive in each class, meaning that they have zero
(or close to zero) inner-class variance. The inactive features vary for different classes. As shown
in Figure 1 as we increase the embedding size by simply changing the input size from 28 × 28
to 84 × 84 in Omniglot, the proportion of inactive features increases. Moreover, with the same
input and embedding size, this proportion also increases as the dataset complexity decreases from
Mini-ImageNet to Omniglot (84 × 84). These inactive features cause instability in the maximum
likelihood estimation as the precision approaches infinity. Moreover, an increase in the number
of inactive features causes a heavy bias towards zero in the prior distribution, this bias results in
unstable zero-variance posterior. To make our method robust to dataset complexity and embedding
size changes, we propose three approaches and discuss their results.

3

Figure 1: Distribution of intra-class variances on the embedding features from Mini-ImageNet and
Omniglot meta-train datasets.

Table 1: Effect of hyperparameter estimation procedure on the performance of the GeMCL method.

Dataset
Method Naïve Mean of

Variances
Filtering
Variances

Parameter
Scaling

Mini-ImageNet 57.0±0.9 59.2±0.9 59.1±0.9 59.2±1.0

Omniglot 68.8±0.7 86.9±0.6 86.8±0.6 86.8±0.6

Omniglot (28× 28) 83.2±0.7 84.4±0.6 84.4±0.6 84.1±0.6

Mean of Variances: In order to reduce the effect of too high (noisy feature) or too low (inactive
feature) variances, we use a summary of feature variances for each class instead of using each feature
variance. In other words, the observation set is changed to:

Λ = { d∑
0≤j≤d var(fψ(X c)j)

| c ∈ Cmeta-train}, (16)

this change reduces the size of Λ but produces more stable samples, resulting in a better prior which
is not heavily biased towards inactive or noisy features.

Filtering Variances: Another way of resolving the inactive and noisy variances is by omitting l
smallest and h largest variances. Obviously, this method reduces the noise and unwanted bias caused
by the noisy or inactive features, by selecting a set of more stable features for each class. As the
behavior of features varies based on the dataset and architecture, we employ a search among different
values for h and l to select the best-performing ones based on the meta-validation set.

Parameter Scaling: Unlike the previous approaches which modify the observation set Λ, in this
approach, we modify the prior distribution directly. After the maximum likelihood estimation on the
observation set, we scale both α and β parameters by a factor C. This modification preserves the
mean value of the distribution while changing its mode to reduce its bias towards zero. Same as the
filtering approach this constant factor needs to be tuned based on the meta-validation set.

In order to evaluate these approaches, we perform experiments on Mini-ImageNet and Omniglot
datasets as shown in Table 1. The acceptable performance of the naive approach in Mini-ImageNet
and Omniglot (28× 28), which is in line with the lower bias shown in Figure 1, show that it performs
well when the embedding dimension matches the dataset complexity. However, the robustness and
better performance of the proposed approaches result in a method, applicable to all the settings
without worrying about the embedding size. Among the proposed methods using the mean of
variances shows slightly better performance without the need for further hyperparameter tuning,
therefore we select this approach for other experiments.

4

4 GeMCL Algorithm

As mentioned in the paper, our meta-training algorithm will first optimize embedding parameters
based on the following loss function:

L(ψ) = −
∑

(x,y)∈Q logP (y | fψ(x), fψ(SX),SY , α0, β0)

= −
∑

(x,y)∈Q log
P (fψ(x)|y,fψ(SX),SY ,α0,β0)∑C
ŷ=1 P (fψ(x)|ŷ,fψ(SX),SY ,α0,β0)

= −
∑

(x,y)∈Q log
P(fψ(x)|fψ(SyX),α0,β0)∑C
ŷ=1 P(fψ(x)|fψ(SŷX),α0,β0)

= −
∑

(x,y)∈Q log softmax (logP (fψ(x) | fψ(SyX), α0, β0)) .

(17)

In the above formulations, we assumed a uniform distribution on class labels for simplicity in notation.
It is easy to generalize to the case of unbalanced class distributions. The α0 and β0 are kept constant
while training the feature extractor with the values of 100 and 1000 respectively. When the feature
extractor is trained, the α0 and β0 are estimated using maximum likelihood, as discussed in Section 3.

The detailed steps of meta-train and meta-test phases are described in Algorithm 2 and Algorithm 3
respectively.

Algorithm 2 GeMCL meta-train phase

Require: set of continual learning problems, i.e. Dmeta−train
1: initialize α0, β0 with large values
2: randomly initialize ψ
3: while not done do
4: M = {} . class-specific parameters
5: sample a continual problem (S,Q) from Dmeta−train
6: for St ∈ S do
7: for (xi, yi) ∈ St do
8: if yi /∈M then
9: M[yi]← (0, 0, 0) . initialize parameters for class yi

10: (nyi , z̄yin , γ̄
yi
n)←M[yi]

11: zi = fψ(xi)
12: update the first and second-order moments (Eq. 5)
13: M[yi]← (nyi + 1, z̄yin+1, γ̄

yi
n+1)

14: compute posterior parameters for all classes (Eq. 6)
15: optimize L(ψ) with respect to ψ over samples in Q (Eq. 17)
16: freeze ψ
17: compute Λ from Dmeta−train (Eq. 16)
18: compute α0 and β0 using Alg. 1 and Λ
19: return α0, β0, fψ

5 Backbones Comparison

As mentioned in the paper, we incorporate a well-studied backbone for our experiments which
uses less than 115K parameters [2]. We did not explore further modifications of the architecture to
optimize it for our proposed method. OML has introduced a backbone that uses more than 2.9M
parameters and is designed to fit their method. Although their backbone imposes feature sparsity
and also dead-neurons in our case, in Table 2 we have included the result of the GeMCL method on
the OML backbone. Moreover, adding a batch normalization after each layer of the OML backbone
significantly reduces the number of dead neurons and increases the accuracy. Note that, as the ANML
utilizes a method-specific architecture with a mask branch, we did not include it in this experiment.

5

Algorithm 3 GeMCL meta-test phase

Require: a continual problem : (S,Q)
Require: fψ, α0, β0

1: M = {} . class-specific parameters
2: for St ∈ S do
3: for (xi, yi) ∈ St do
4: if yi /∈M then
5: M[yi]← (0, 0, 0) . initialize parameters for class yi
6: (nyi , z̄yin , γ̄

yi
n)←M[yi]

7: zi = fψ(xi)
8: update the first and second-order moments (Eq. 5)
9: M[yi]← (nyi + 1, z̄yin+1, γ̄

yi
n+1)

10: compute posterior parameters for all classes (Eq. 6)
11: for xi ∈ Q do
12: ŷi = argmax

y
P (fψ(xi) | αyn, βyn, µyn, κyn)

Table 2: Performance of the GeMCL model using OML backbone along with the standard perfor-
mance of methods.

Method
Dataset Mini-ImageNet Omniglot

OML 22.1±1.4 21.1±0.7

GeMCL (OML Backbone) 47.3±1.0 76.6±0.7

GeMCL (OML Backbone + BN) 59.7±1.0 85.0±0.8

GeMCL 59.2±0.9 86.9±0.6

6 Study of the Feature Extractors

All of the mentioned meta-continual methods use meta-train data to provide a rich feature extractor
and then perform further adaptation to meta-test data. Using the same method for meta-training and
meta-testing is reasonable, since each method may perform poorly on the networks meta-trained with
other methods. However, analyzing each method on feature extractors produced by various methods
can provide more insights into the power and generality of that method. Moreover, it also shows the
strength of the feature extractors provided by each method. As shown in Tables 3 and 4, the GeMCL
variants outperform other methods on various feature extractors. The feature extractor provided by
the GeMCL and PGLR methods have also high accuracy across different models.

Table 3: Performance of the proposed baselines on the Mini-ImageNet dataset using feature extractors
trained by various methods. The blue highlighted cells indicate the performance of each model on its
standard feature extractor. The last row shows the average accuracy of the corresponding method
across feature extractors.

Network
Test Method

MTLR PGLR Prototypical GeMCL-
MAP GeMCL

Random 5.5±0.9 15.3±1.2 17.8±0.8 18.9±0.8 18.9±0.8

Pretrained 32.8±3.1 54.2±1.0 55.6±1.1 55.9±1.1 55.9±1.1

MTLR 31.1±1.1 43.4±1.1 43.2±1.0 43.3±0.9 43.4±0.9

PGLR 19.6±3.9 53.2±1.1 56.8±1.0 57.0±1.1 57.0±1.1

Prototypical 5.0±0.0 46.7±1.4 54.8±0.9 55.4±0.9 55.4±1.0

GeMCL-MAP 23.6±4.2 56.3±1.0 58.4±1.0 58.7±1.0 58.7±1.0

GeMCL 26.0±4.0 56.6±1.1 58.7±1.0 59.2±0.9 59.2±0.9

Average 20.5 46.5 49.3 49.8 49.8

6

Table 4: Performance of the proposed baselines on the Omniglot dataset using feature extractors
trained by various methods.

Network
Test Method

MTLR PGLR Prototypical GeMCL-
MAP GeMCL

Random 4.4±0.1 32.7±0.8 36.2±0.8 38.1±0.8 37.6±0.8

Pretrained 23.6±0.7 61.0±0.8 73.9±0.6 76.3±0.8 75.9±0.8

MTLR 61.9±0.7 74.6±0.6 82.0±0.6 84.3±0.7 84.9±0.6

PGLR 39.1±0.7 72.8±0.6 87.0±0.5 87.9±0.5 87.4±0.5

Prototypical 1.9±0.3 79.6±0.7 83.7±0.6 83.6±0.5 83.7±0.5

GeMCL-MAP 20.0±1.8 82.7±0.6 86.4±0.5 86.9±0.6 86.7±0.6

GeMCL 19.8±1.9 82.8±0.6 86.6±0.6 87.0±0.6 86.9±0.6

Average 25.0 70.1 76.5 77.7 77.6

7 Effect of Learning Rate

The inner learning rate of the discriminative baselines is the most important factor that affects the
catastrophic forgetting analysis. High values of learning rate may result in higher accuracy for the
current task, but it may also increase the forgetting of the earlier tasks. On the other hand, small values
for the learning rate may reduce the catastrophic forgetting, but may also reduce the performance on
newer tasks. This issue relates to the so-called stability-plasticity dilemma [1]. Keeping the learning
rate fixed, the number of training epochs imposes the same dilemma.

In the paper, we use the plots of the first-class accuracy to analyze the forgetting issue, and plots of
the average accuracy to analyze the ability of adaptation and generalization capability of baselines.

Learning rate tuning for discriminative baselines is necessary to find the best setting. OML and
ANML perform a learning rate search on the meta-test data and find the best learning rate for the
final experiment. Even for a minor change in experiment setup, e.g. changing the number of ways or
shots, they retune the learning rate. In fact, the abnormal changes of the OML performance, like the
increase in the 450-way performance in Figure 4 of the paper, are related to this issue.

Since this use of meta-test data is counter-intuitive, we tune the learning rate of our MTLR and PGLR
baselines using meta-validation data once the feature extractor is trained and use it across different
numbers of shots and ways. We also retune the learning rate of MTLR for i.i.d settings in Table 3 of
the paper, since the optimal learning rate for the continual setting is too small for the i.i.d. setting.
However, it is more desirable if the optimal learning rate for the i.i.d. setting of a baseline performs
well on the continual setting too. Hence in Table 5, we analyze the performance of the baselines in a
fair scenario, in which the performance of the MTLR and PGLR models are compared in the same
situations. As shown, substantial gaps between the performance of MTLR in different tuning settings
show that this model is extremely sensitive to the learning tuning setting. As opposed to the MTLR
model, the PGLR model is more stable across the different learning rate tuning schemes and it is
robust to forgetting, even when the learning rate is tuned for the i.i.d. setting. It is worth mentioning
that the GeMCL model does not require learning rate tuning and also performs identically in the
continual and i.i.d. scenarios.

8 MTLR and PGLR Baselines

MTLR and PGLR are two discriminative methods based on logistic regression that both utilize
optimization-based meta-learning to achieve a proper feature extractor. The classification head of
the MTLR model is a simple logistic regression that is updated via gradient descend. It mimics the
idea from the OML model but removes additional details such as 1: Maintaining a classifier head
with an output for each class across all meta-train episodes, 2: Using out-of-episode query samples in
meta-training, 3: Using a two-layer classifier head, 4: Visiting the data of meta-test episodes multiple
times to tune inner-learning rate. The PGLR model possesses the following modifications compared
with the standard logistic regression:

• Normalization of the class-related weights

7

Table 5: Effect of learning tuning procedure on the performance of selected baselines.

Dataset Learning Rate Mode Head for Pretrained Backbone Meta-train

Tuning Setting MTLR PGLR GeMCL MTLR PGLR GeMCL

Mini-ImageNet
Continual Continual 32.8±3.1 54.2±1.0 55.9±1.1 31.1±1.1 53.2±1.1 59.2±0.9

IID 38.5±1.4 55.8±1.0 55.9±1.1 31.5±1.1 57.0±0.9 59.2±0.9

IID Continual 7.1±1.9 53.3±1.0 55.9±1.1 22.3±1.4 51.4±1.4 59.2±0.9

IID 60.9±1.0 56.2±1.0 55.9±1.1 48.9±1.1 57.4±1.0 59.2±0.9

Omniglot
Continual Continual 23.6±0.7 61.0±0.8 75.9±0.8 61.9±0.7 72.8±0.6 86.9±0.6

IID 40.5±0.8 74.2±0.6 75.9±0.8 74.5±0.6 86.8±0.5 86.9±0.6

IID Continual 4.9±1.0 68.3±0.7 75.9±0.8 46.6±1.1 79.1±0.6 86.9±0.6

IID 77.8±0.7 74.6±0.8 75.9±0.8 82.9±0.5 86.8±0.5 86.9±0.6

• Performing gradient descent only through the class-related weights

Here we aim to analyze the effectiveness of the aforementioned components. We introduce two new
variants for the PGLR model by removing each one of these components. The PGLR/Norm is a
PGLR model without the first component, and the PGLR/Opt is a PGLR model without the second
one.

To evaluate the methods impartially, here we remove the need for feature extractors, by comparing
the performance of classifier heads on random 10-dimensional datasets. For better comparison, extra
conditions including the learning rate and the number of epochs should also be identical. However,
as discussed in Section 7, different models have different stability-plasticity criteria, and choosing the
same setting for different models is not fair. Hence, we propose a new criterion for comparison. We
choose a proper but fixed learning rate for all of the models but the number of training epochs of each
task is different. Each model continues learning on a specific task until its performance on validation
data of that task reaches a minimum threshold. In this scenario, the amount of learning (plasticity) in
different models is controlled to be relatively identical. So, with the same amount of learning, the
comparison of robustness to forgetting (stability) becomes more impartial.

Figure 2 shows the performance of the PGLR model and its variants along the MTLR and generative
approaches on the suggested toy datasets. As shown, both of the PGLR components are effective
in reducing forgetting. Moreover, when combined in the PGLR model, they offer considerable
robustness to the forgetting. Note that the described stability-plasticity dilemma and controlling the
learning rate effect is not an issue in the generative approaches and reduction in their performance is
due to the generalization issue.

Figure 2: Performance of classifier heads on 10-dimensional toy datasets. The pale margins indicate
confidence intervals across different datasets.

8

Table 6: Approximate running time of the proposed baselines on the GTX 1080 Ti GPU.
Method

Dataset Mode Episodes Ways Shots Queries MTLR PGLR Prototypical GeMCL

Mini-ImageNet Train 30K 20 10 30 170 min 200 min 130 min 140 min

Test 100 20 100 100 70 sec 120 sec 10 sec 20 sec

Omniglot Train 20K 20 5 15 110 min 130 min 90 min 90 min

Test 100 600 15 5 320 sec 620 sec 120 sec 240 sec

9 Computing Infrastructure and Further Experiment Details

We have performed our experiments on the two separate devices with GeForce GTX 1080 Ti GPU.
Since the main approach uses a light backbone and the training procedure does not use second-order
optimization, the overall running time is low. Table 6 compares the duration of training and test time
of different methods on the same device. It shows our method can be used with much less energy
consumption while achieving better results.

To pretrain the backbone on datasets we put the meta-train and meta-validation classes together to be
used both in training and validation. The validation split is constructed by taking 20% of data for
each class and the remaining data is used for training. The backbone is pretrained for 1000 epochs
with a batch size of 64 on Mini-ImageNet, and 50 epochs with batches of size 32 for Omniglot.

Throughout this paper, all experiments reported with an error bar have been repeated in 100 random
test episodes. To make results standard and comparable, all of the tables that include experiments
on the Mini-ImageNet dataset are performed with 20-way 100-shot settings, and Omniglot experi-
ments are performed with 600-way 15-shot settings. These settings are chosen to better reflect the
performance of models in continual learning scenarios, however, other settings also result in similar
outcomes preserving relative performance between models (See Figure 4 and 5 in the paper).

10 Code and Data Availability

Related source code is available at https://github.com/aminbana/GeMCL. In this repository,
there exists a README file containing instructions, configuration details, and path to the trained
models. Moreover, the licenses of the freely available datasets and used source codes are also
available in the README file.

References
[1] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investigating

the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in psychology, 4:504,
2013.

[2] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175, 2017.

9

https://github.com/aminbana/GeMCL

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We cover all of the contributions and claims in both the
abstract and introduction.

(b) Did you describe the limitations of your work? [Yes] We cover the limitations in the
discussion section.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We cover
this in Discussion section, especially the second paragraph.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We briefly in-

cluded theoretical results in the paper with even additional details in the supplementary
materials.

(b) Did you include complete proofs of all theoretical results? [Yes] We justify all of the
theoretical calculations in the supplementary materials or cite the source of them.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include the
codes and instructions in the supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] we include important information in the paper and discuss further
details in the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We perform randomized trials to obtain results and reflect
the error bars and confidence intervals in the result figures and tables.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Details are reported in the
supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all of the

assets that are included in this paper.
(b) Did you mention the license of the assets? [Yes] We mentioned the licenses in the

supplementary materials.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We included our source codes in the supplementary materials.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We used public datasets and cited the related papers.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

10

	Justification of Statements
	Incremental Form for Gaussian Distributions
	Hyperparameter Estimation
	Maximum Likelihood in Practice

	GeMCL Algorithm
	Backbones Comparison
	Study of the Feature Extractors
	Effect of Learning Rate
	MTLR and PGLR Baselines
	Computing Infrastructure and Further Experiment Details
	Code and Data Availability

