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Abstract

This document provides supplementary information that is not elaborated in our
main paper due to the space constraints: Section A describes some preliminary
concepts and definitions of our methodology. Section B provides additional dis-
cussions on previous techniques for regularizing GANs. Section C details our
used datasets. Section D presents the implementation details of our experiments.
Section E shows more results and analysis.

A Preliminaries of Methodology

To further facilitate readers’ understanding of the theoretical analysis and the proposed Adaptive
Pseudo Augmentation (APA), this section will provide some preliminary concepts and definitions for
the methodology section in our main paper.

Generative adversarial networks (GANs) [7] aim at capturing the real data distribution to synthesize
new data. Two networks are trained alternately via an adversarial process: a generator G learns to
produce new samples, and a discriminator D (i.e., a binary classifier) predicts the probability that a
sample comes from the real data rather than from G. Following [7, 13], our main paper focuses on
the fundamental problem of GANs, i.e., unconditional image synthesis, which is generating random
samples from a noise input in the latent space. The noise is sampled from a Gaussian distribution.

The goal of GANs is to learn an ideal generated distribution pg from the real data distribution pdata.
Let pz (z) be the prior on the input noise variable. The mapping from the latent space to the image
space can be denoted as G (z). For sample x, D (x) represents the estimated probability of x coming
from the real data. Here, both G and D should be differentiable functions that are defined by the
network parameters. To quantify the adversarial process, G and D play a minimax two-player game
with the value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1−D (G (z)))] . (1)

Let the virtual training criterion [7] for the generator G be C (G). The global minimum of C (G)
is achieved if and only if pg = pdata, and the minimum value is − log 4, as proved by [7]. This
indicates that GANs can perfectly model the real data distribution if given sufficient capacity and
time. In practice, we usually use a non-saturated form for G and train it to maximize logD (G (z))
instead of minimizing log (1−D (G (z))) to ensure a healthy gradient at the early training stage.

In all the figures of this work, we show raw output logits of D before the last Sigmoid activation to
better visualize its prediction confidence. Let logit denotes the logit function, we define:

Dreal = logit (D (x)) , Dfake = logit (D (G (z))) . (2)
∗Corresponding author.
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B Additional Discussions on Previous Techniques for Regularizing GANs

As mentioned in our main paper, previous techniques for regularizing GANs include adding noise to
the inputs of the discriminator [2, 22, 9], gradient penalty [18, 8, 20], one-sided label smoothing [21],
spectral normalization [19], label noise [5], etc. These approaches are designed for stabilizing training
or preventing mode collapse [21]. The essence of their objectives could be considered similar to our
method since training GANs in the low-data regime exhibits similar behaviors as previously observed
in early GANs with sufficient data. However, several differences are worth highlighting.

First of all, the actual goals of previous strategies and the proposed APA may not be completely the
same. Specifically, APA is specialized for training GANs in the low-data regime, which was not
carefully considered by prior studies. This difference in the data setting is quite important since it
is the core problem we wish to address. Even the performance of state-of-the-art StyleGAN2 [13]
deteriorates when trained with a limited amount of data, although it has exploited many advanced
techniques for stabilizing training or preventing mode collapse, such as R1 regularization [18]. The
main challenge that lies within the low-data regime is the overfitting of the discriminator. Although
this issue might also appear on early GANs, it becomes more severe when data is limited.

Besides, we have presented the comparative studies on APA and conventional techniques in the
main paper. Empirically, we showed that previous methods could not boost the performance of
StyleGAN2 much under limited data. Some of them showed a huge performance gap in comparison
to the proposed APA. The experiments indicate that previous relevant strategies cannot handle the
low-data regime well, further suggesting the effectiveness and usefulness of APA.

Last but not least, APA and these techniques themselves are not exactly the same. The proposed APA
is an effective practice and improvement of these ideas on modern GANs, whose implementations
are very different from the early ones. Compared to previous techniques, APA is more adaptive to fit
different settings and the overfitting status in training. Although using adaptive heuristics was also
explored in the past, it had been found unpractical at the time [5]. APA makes the adaptive control
scheme possible in practice.

We believe that the proposed APA could contribute to the community for its effectiveness, simplicity,
and adaptability for training state-of-the-art GANs in the low-data regime. Hopefully, our approach
could extend the breadth and potential of solutions to GAN training with limited data.

C Dataset Details

This section will detail our explored datasets in the main paper. We randomly select subsets to confine
the size of large datasets and directly use small datasets for GAN training with limited data under
different settings. Our main paper focuses on the fundamental unconditional image synthesis task
with powerful contemporary GANs. Thus, there is no need to split a separate test set. We exploit a
high-quality Lanczos filter [17] for image resizing and save images in the uncompressed PNG format.
We will detail each dataset separately as follows.

• AFHQ-Cat. We use the AFHQ-Cat dataset released by [6], which is the cat category of
the high-quality Animal Faces-HQ (AFHQ) dataset [6]. The original authors mentioned
that they collected images with permissive licenses from the Flickr and Pixabay websites.
All images were vertically and horizontally aligned at the center. The dataset was released
under Creative Commons BY-NC 4.0 license by NAVER Corporation. As a small dataset,
we exploit 5, 153 training images of cat faces with various breeds. The original resolution is
512× 512, which is scaled to 256× 256 for training.

• FFHQ. The full Flickr-Faces-HQ (FFHQ) dataset [12] consists of 70, 000 high-quality
(1024 × 1024) human face images. The faces contain considerable variation in terms of
age, ethnicity, background, and accessories. The original authors mentioned that the images
were crawled from the Flickr website, and only the ones under permissive licenses were
collected. The images were automatically aligned [14] and cropped. The individual images
were published in Flickr by their respective authors under either Creative Commons BY
2.0, Creative Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain CC0 1.0,
or U.S. Government Works license. The dataset itself was made available under Creative
Commons BY-NC-SA 4.0 license by NVIDIA Corporation. We randomly select different

2



subsets of FFHQ, i.e., FFHQ-1k (1, 000 images, ∼ 1.4% data), FFHQ-5k (5, 000 images,
∼ 7% data), FFHQ-7k (7, 000 images, 10% data), and FFHQ-70k (70, 000 images, 100%
data) to perform GAN training given different data amounts. The original images are resized
to 256 × 256 for training in the experiments of our main paper. We will also show some
synthesized examples with the original resolution in this document.

• Danbooru2019 Portraits (Anime). The Danbooru2019 Portraits (Anime) [3] is a dataset
consisting of 512 × 512 anime faces cropped from solo SFW Danbooru2019 images [1].
The full dataset contains a total of 302, 652 images in a broad portrait style encompassing
ears, necklines, hats, etc., rather than the tightly cropped faces. The dataset was released
under the Creative Commons public domain (CC-0) license. We artificially confine the
dataset into a subset for GAN training, i.e., Anime-5k (5, 000 images, ∼ 2% data). The
training image size is 256× 256.

• Caltech-UCSD Birds-200-2011 (CUB). The Caltech-UCSD Birds-200-2011 (CUB) [24]
is an extended version of CUB-200 [25], a challenging dataset containing 200 bird species.
The dataset consists of 11, 788 bird images at diverse locations with heavy background
clutter. The images were harvested using the Flickr image search. We were unable to find
the license information about this dataset. We employ all the available images for GAN
training since the dataset is already small and difficult. The resolutions of original images
vary, and we uniformly resize them to 256× 256.

D Implementation Details

In the main paper, we choose the state-of-the-art StyleGAN2 [13] as the backbone to verify the effec-
tiveness of the proposed APA on limited data. Besides, we compare our method with representative
approaches designed for the low-data regime, including the adaptive discriminator augmentation
(ADA) [11] and LC-regularization (LC-Reg) [23], which perform standard data augmentations and
model regularization, respectively. In addition, we compare APA with representative conventional
techniques for regularizing GANs, i.e., instance noise [22] and one-sided label smoothing [21]. For a
fair and controllable comparison, we reimplement all baselines and run the experiments from scratch
using official code. The qualitative and quantitative results of each method are reported using the best
model throughout training.

We ran our experiments on an internal computing cluster with Slurm Workload Manager. All the
models are trained on 8 NVIDIA Tesla V100 GPUs with 32 GB memory capacity. We follow [11] and
employ its mixed-precision FP16/FP32 training scheme in all our experiments. The actual memory
consumption for each model is around 11 GB per GPU. We perform 25, 000 kimg (i.e., thousands of
images shown to the discriminator, measuring the training progress [12, 13, 11]) of training for each
model. For the average training time cost of different models, please refer to the Training cost of
Section 4.2 in the main paper.

We implemented the proposed APA on top of the official implementation of StyleGAN2 [13]. The
network architecture is kept unchanged. The mapping network contains 8 fully connected layers,
and the dimensionality of the input and intermediate latent space is 512. We use the combination of
a generator with output skips and a residual discriminator. The detailed structures of the generator
and the discriminator are the same as [13], e.g., using weight demodulation [13] in the generator.
The activation function is Leaky ReLU with a negative slope of 0.2. We apply several other standard
techniques in [10, 12, 13], including the mini-batch standard deviation layer at the end of the
discriminator [10], equalized learning rate for all the trainable parameters [10], pixel-wise feature
vector normalization [10], the exponential moving average of generator weights [10], style mixing
regularization [12], path length regularization [13], and lazy regularization [13]. The training loss
is the non-saturating logistic loss [7, 13] with R1 regularization [18]. The batch size is 64 for our
experiments trained with the resolution of 256 × 256. The Adam [15] optimizer is applied with
β1 = 0, β2 = 0.99. For other network and training details, we follow the original paper and official
code of StyleGAN2 [13].

For APA, we set the overfitting heuristic λ = λr in our main experiments and study other variants
(i.e., λ = λf and λ = λrf ) through the ablation study. Aside from the ablation study of a fixed
deception probability p = 0.5, p is adaptively adjusted according to λ. The adaptive adjustment of
p is as follows. We first initialize p to be zero and set a threshold value t (t = 0.6 in most cases
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Table 1: The FID (lower is better) and IS (higher is better) scores (256×256) of transfer learning on
MetFaces [11] with limited data amounts from the pre-trained StyleGAN2 model on FFHQ-70k [12].

MetFaces-1336 (full data) MetFaces-500 (∼ 37% data)
Method FID ↓ IS ↑ FID ↓ IS ↑
StyleGAN2 [13] 30.988 3.719 54.691 3.218
APA (Ours) 21.050 4.103 29.508 3.986

Table 2: The FID (lower is better) and IS (higher is better) scores (256×256) under a lower amount
of training data on FFHQ-500 [12] (a subset of 500 images, ∼ 0.7% of full data).

FFHQ-500 (∼ 0.7% data)
Method FID ↓ IS ↑
StyleGAN2 [13] 119.815 2.446
APA (Ours) 50.989 4.099

unless specified otherwise). If λ signifies too much/little overfitting regarding t (i.e., larger/smaller
than t), the probability p will be increased/decreased by one fixed step. Using this step size, p can
increase quickly from zero to one, i.e., in 500k images shown to D. We adjust p once every four
iterations. We clamp p from below to zero after each adjustment so that p can always be larger than
zero. We do not set an upper bound for p while it can be naturally restricted under a safe limit. Then,
the pseudo augmentation of each instance will be applied with the probability p or be skipped with
the probability 1− p. In this way, the strength of pseudo augmentation can be adaptively controlled
based on the degree of overfitting throughout training.

As for other methods used for comparison, we strictly follow all the details in their papers and
released official code using recommended setups.

E More Results and Analysis

Effectiveness of APA for transfer learning. Table 1 reports the additional transfer learning results
on MetFaces [11] from the pre-trained StyleGAN2 model on FFHQ-70k [12]. All the metrics can be
boosted by APA, further verifying its effectiveness for transfer learning besides training from scratch.

The performance of APA under a lower amount of data (i.e., fewer than 1k). We have reported
transfer learning results on MetFaces-500 [11] (a subset of 500 images, ∼ 37% of full data) in
Table 1. Table 2 shows more results on FFHQ-500 [12] (a subset of 500 images, ∼ 0.7% of full data).
Under fewer data, APA can still boost StyleGAN2 performance by a large margin. However, the
quality itself of synthesized images by APA can still be improved, consistent with our discussion on
limitations in the main paper.

More examples of the effectiveness of APA on various datasets. We show more comparative
results of StyleGAN2 [13] and the proposed APA to demonstrate the effectiveness of our method to
improve the state-of-the-art baseline on various datasets with limited data amounts, i.e., AFHQ-Cat-
5k [6] (Figure 1), FFHQ-5k [12] (Figure 2), Anime-5k [3] (Figure 3), and CUB-12k [24] (Figure 4).
Regardless of applying the truncation trick [4, 12, 13] or not, the proposed APA can significantly
ameliorate the degraded synthesis quality of StyleGAN2 with limited training data in all cases. The
generated images by our method are highly photorealistic using only limited training data, being
closer to the real data distributions.

Qualitative results of comparison with other solutions for GAN training with limited data. In
the main paper, we have quantitatively shown the effectiveness of the proposed APA over other state-
of-the-art approaches designed for the low-data regime, including ADA [11] and LC-regularization
(LC-Reg) [23], which perform standard data augmentations and model regularization, respectively.
In Figure 5, we show the qualitative results for further illustration. The synthesis quality of the
StyleGAN2 [13] baseline deteriorates on the limited amount of training data. Ripple artifacts and
substantial distortions appear on the generated images by StyleGAN2. LC-Reg [23] slightly improves
the quality of synthesis by reducing the distortions on the images. The amelioration of visual quality
is more evident by applying ADA [11], where the ripple artifacts are clearly subsided while some
minor artifacts exist on the hair and beard. The proposed APA achieves comparable or even better
visual quality than LC-Reg [23] and ADA [11], effectively improving the StyleGAN2 synthesized
results on limited data. Notably, APA is also complementary to ADA [11] for gaining a further
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Figure 1: More examples of the effectiveness of our method to improve state-of-the-art Style-
GAN2 [13] synthesized results (256× 256) on AFHQ-Cat-5k [6] (5, 153 images, which is small by
itself).
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Figure 2: More examples of the effectiveness of our method to improve state-of-the-art Style-
GAN2 [13] synthesized results (256× 256) on FFHQ-5k [12] (a subset of 5, 000 images, ∼ 7% of
full data).
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Figure 3: More examples of the effectiveness of our method to improve state-of-the-art Style-
GAN2 [13] synthesized results (256× 256) on Anime-5k [3] (a subset of 5, 000 images, ∼ 2% of
full data).
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Figure 4: More examples of the effectiveness of our method to improve state-of-the-art Style-
GAN2 [13] synthesized results (256 × 256) on CUB-12k [24] (11, 788 images, which is small by
itself).

6



St
yl
eG

AN
2

AP
A 

(O
ur

s)

AFHQ-Cat-5k (5,153 img, 100% data) FFHQ-5k (5,000 img, ~7% data)

LC
-R
eg

AD
A

AD
A 

+ 
AP

A 
(O

ur
s)

Figure 5: The synthesized results (256 × 256, no truncation) of our method compared to other
state-of-the-art solutions designed for GAN training with limited data on StyleGAN2 [13]. We
confine the data amount of FFHQ [12] and directly use AFHQ-Cat [6] that is small by itself.

Table 3: The FID (lower is better) and IS (higher is better) scores (256 × 256) of additional
comparison with the state-of-the-art ADA [11] tailored for GAN training with limited data on
StyleGAN2 trained with FFHQ [12] and MetFaces [11]. The bold number indicates the best value,
and the underline marks the second best.

FFHQ-7k FFHQ-1k MetFaces-1336 MetFaces-500
Method FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
StyleGAN2 [13] 27.738 4.264 86.407 2.806 30.988 3.719 54.691 3.218
ADA [11] 10.275 4.813 22.590 4.239 20.834 4.005 30.368 3.974
APA (Ours) 10.800 4.860 45.192 4.130 21.050 4.103 29.508 3.986
ADA + APA (Ours) 7.333 4.994 18.892 4.316 18.865 4.207 28.408 4.044

performance boost, suggesting the compatibility of our method with standard data augmentations.
The visual results we present here are in line with the quantitative performance in our main paper.

More comparative results with ADA [11]. Table 3 reports additional comparative results with
the state-of-the-art ADA [11] tailored for GAN training with limited data to further highlight the
advantages of the proposed APA. We include additional comparisons on FFHQ-7k [12] and FFHQ-1k
(see our main paper for 5k and 70k). To make the comparison settings more comprehensive, we also
provide the transfer learning results on MetFaces [11] from the pre-trained StyleGAN2 model on
FFHQ-70k. We also make a comparison with a fewer data amount (i.e., 500 images). Combined
with the results we presented in the main paper, the proposed APA achieves comparable or even
better performance than ADA [11] while with less computational cost. Both methods outperform the
StyleGAN2 baseline under limited data. Although applying APA solely may be inferior to ADA [11]
on FFHQ-1k (in line with our discussion in the main paper), it is worth mentioning that APA is also
complementary to ADA [11], which is very important to boost the performance further.
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StyleGAN2

APA (Ours)

Figure 6: The effectiveness of our method to improve state-of-the-art StyleGAN2 [13] higher-
resolution synthesized results (1024 × 1024, no truncation) trained with the limited data, i.e.,
FFHQ-5k [12] (a subset of 5, 000 images, ∼ 7% of full data). Our method achieves an FID score of
9.545, outperforming the original StyleGAN2 of 18.296.
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Figure 7: The evolution of the deception probability p during training on FFHQ [12] (256× 256)
with different data amounts. The “kimg” denotes thousands of real images shown to the discriminator.

(b)(a) (c)

Figure 8: The overfitting and convergence status of APA compared to StyleGAN2 (SG2) on
FFHQ [12] (256× 256). (a) The discriminator raw output logits of StyleGAN2 on the full (70k) or
limited (5k) datasets. (b) The discriminator raw output logits of StyleGAN2 and APA on the limited
(5k) dataset. (c) The training convergence shown by FID.

Higher-resolution examples on StyleGAN2. In Figure 6, we show some higher-resolution (1024×
1024) synthesized images on FFHQ-5k [12] (a subset of 5, 000 images, ∼ 7% of full data) to further
illustrate the effectiveness of our approach in improving StyleGAN2 with limited training data. The
truncation trick [4, 12, 13] is not applied. The proposed APA evidently improves StyleGAN2 in both
perceptual quality and the FID score, indicating its effectiveness for GAN training with limited data.

Evolution of the deception probability. In Figure 7, we visualize the evolution of the deception
probability p in training on FFHQ [12] (256× 256) with different data amounts. The evolution of p
may be relatively more unstable when the data amount is very limited (i.e., 1k). Notably, the proposed
APA possesses a desired property that the deception probability p can be naturally restricted under
a safe limit (∼ 0.8) regardless of the training data amounts. Hence, the fundamental capability of
discriminator in adversarial training may be better preserved thanks to the adaptive control scheme.

More overfitting and convergence analysis. Aside from the overfitting and convergence analysis
on FFHQ-7k (10% of full data) in our main paper, we present the additional analysis on FFHQ-5k
(∼ 7% of full data) and FFHQ-1k (∼ 1.4% of full data) in Figure 8 and Figure 9, respectively. The
trend of model overfitting and convergence on FFHQ-5k and FFHQ-1k is similar to FFHQ-7k. The
divergence of StyleGAN2 discriminator predictions can be effectively restricted by applying the
proposed APA, indicating its effectiveness in mitigating the discriminator overfitting. Meanwhile,
APA improves the training convergence measured by FID.

Furthermore, we show the comparative overfitting analysis on APA and previous techniques for
regularizing GANs in Figure 10. We observe that the effectiveness to counteract overfitting is in
line with the generation performance of these methods in the main paper. Specifically, StyleGAN2
experiences diverged predictions most rapidly, and APA obtains the most effective restriction on the
divergence of discriminator outputs. Applying instance noise (ISN) [22] produces curves that are very
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(b)(a) (c)

Figure 9: The overfitting and convergence status of APA compared to StyleGAN2 (SG2) on
FFHQ [12] (256× 256). (a) The discriminator raw output logits of StyleGAN2 on the full (70k) or
limited (1k) datasets. (b) The discriminator raw output logits of StyleGAN2 and APA on the limited
(1k) dataset. (c) The training convergence shown by FID.

(b)(a) (c)

Figure 10: The overfitting and convergence status of APA compared to previous techniques for
regularizing GANs on FFHQ-5k [12] (256×256, ∼ 7% data). (a) The discriminator raw output logits
of StyleGAN2 (SG2) and APA. (b) The discriminator raw output logits of instance noise (ISN) [22]
and APA. (c) The discriminator raw output logits of one-sided label smoothing (OLS) [21] and APA.

Table 4: The FID (lower is better) and IS (higher is better) scores (32 × 32) of class-conditional
image synthesis on BigGAN trained with the subsets of CIFAR-10 [16] with limited data amounts.

full data 20% data 10% data
Method FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
BigGAN [4] 9.531 9.078 22.024 8.343 44.061 7.589
APA (Ours) 8.283 9.362 15.316 8.822 25.987 8.410

Table 5: The FID (lower is better) and IS (higher is better) scores (32 × 32) of class-conditional
image synthesis on BigGAN trained with the subsets of CIFAR-100 [16] with limited data amounts.

full data 20% data 10% data
Method FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
BigGAN [4] 13.281 10.525 35.590 8.706 64.828 6.635
APA (Ours) 11.429 11.243 23.506 9.811 45.794 8.114

close to StyleGAN2, and one-sided label smoothing (OLS) [21] only restricts the real predictions.
This further suggests: 1) the importance of addressing the discriminator overfitting for training
GANs with limited data; 2) the effectiveness of APA in alleviating the discriminator overfitting,
outperforming previous strategies.

Additional training convergence visualizations. Please refer to our supplementary video for addi-
tional training convergence visualizations on FFHQ-7k [12] (7, 000 images, 10% of full data). The
truncation trick [4, 12, 13] with ψ = 0.7 is applied to the synthesized images. The proposed APA
effectively improves the training convergence of StyleGAN2 on limited data.

Class-conditional image synthesis with BigGAN [4]. To further enrich our benchmark and demon-
strate the effectiveness of the proposed APA under diverse settings, we show additional class-
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conditional image synthesis results on the state-of-the-art BigGAN [4] trained with CIFAR-10 [16]
and CIFAR-100 [16] in Table 4 and Table 5, respectively. It can be observed that APA outperforms
BigGAN under limited training data in all cases, further suggesting its adaptability and effectiveness
for class-conditional image synthesis with other powerful contemporary GANs, such as BigGAN.
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