A More Details on Stem

In this section, we provide more details on STEM, including dataset analysis, models, evaluation settings, and dataset collection.

A. 1 ANALYSIS

Questions and Answers STEM contains multi-choice questions (Appendix D provides a question example for each skill). The question contains a textual description with an optional image context. Answer options are in text or in an image. We further analyze the questions from the following aspects. (i) The number of answers. STEM has averaging 2.8 answer options for each question. The distribution is presented in Figure 11. In practice, the more answer options one question has, the more difficult it is. (ii) Question type. We categorize questions based on the first three words of the question text as shown in Figure 12. STEM mostly includes factoid questions that start with words such as "which" and "what". We also show the word cloud of our STEM in Figure 13. We can see the most common words like "shape" and "number". This indicates the questions require joint reasoning of the text and images. (iii) Question distribution. Figure 14 depicts the distribution of question lengths. We can see all subjects generally follow a long-tail distribution, while math distribution is most steep and science distribution is flatter. Heuristically, longer questions are more difficult to solve. Figure 15 shows the number of questions in each grade. While pre-K has more questions, the number of questions in other grades is approximately evenly distributed.

Figure 11: \#Answers distribution.

Figure 12: Question type distribution.

Figure 13: Word cloud of question texts in STEM.

Figure 14: Question length distribution.

Figure 15: \#Questions per grade.

Table 3: Skill comparison between STEM and existing datasets (IconQA and ScienceQA).
(a) Number of skills.
(b) Skill comparison between STEM and IconQA.

Subject	IconQA	ScienceQA	STEM
Science	0	167	82
Technology	0	0	9
Engineering	0	0	6
Math	13	0	351
Total	13	167	448

IconQA	STEM	
Counting	Count to 10, Count shapes in rows, Count sides and corners \ldots	
Geometry	Classify triangles, Identify symmetry, Identify shapes . .	
Time	Match times, Identify A.M./P.M., Read a calendar	
\ldots	\ldots	\ldots
Not cover	Science Technology Engineering Math	Compare concentrations of solutions ... Identify peripherals ... Identify laboratory tools ... Linear and exponential functions . .

Skill Comparison We compare the skills of STEM with other related datasets in Table 3 STEM contains the largest skill set among existing datasets, with a great number of new skills introduced to STEM that are not yet covered by existing datasets, e.g., skills in technology and engineering.

A. 2 Models

In this section, we introduce the foundation models we benchmark in detail.

Vision-Language Models

CLIP (Radford et al., 2021). CLIP is pretrained on a sufficiently large dataset of 400 million text-image pairs across the Internet. It uses a Transformer as the text encoder, and has several variants of image encoder, including ResNet (RN) backbones and Vision Transformers (ViT) (Dosovitskiy et al. 2020). CLIP aligns the text and image representation by training on in-batch contrastive loss, and is able to zero-shot transfer to downstream vision language tasks. To align with CLIP pretraining, we formulate question answering as matching text and images. We use the cosine similarity between the text and image embeddings as the matching function, the same as the original zero-shot image-text retrieval settings in CLIP (Radford et al., 2021).
ViLBERT and 12-in-1 (Lu et al., 2019; 2020). ViLBERT adopts two parallel streams to process image regions and text segments separately, with co-attentional transformer layers connecting them. There is also a multi-task version called $12-\mathrm{in}-1$ (Lu et al., 2020) that trains 12 different tasks with individual task-specific heads sharing 1 "trunk" ViLBERT model. Its multi-modal alignment prediction serves as the matching score.

UNITER (Chen et al., 2020b). UNITER consists of an Image Embedder with Faster R-CNN (Anderson et al. 2018), a Text Embedder with Transformer (Vaswani et al., 2017), as well as a multilayer Transformer to get cross-modality representation. During inference on STEM, the matching
score function is the same as CLIP, i.e., the cosine similarity between the text and image embeddings (Chen et al., 2020b).

Virtex (Desai \& Johnson, 2021). Virtex first extracts visual features with ResNet-50 (He et al., 2016) backbone. The visual features are then fed into a text head, which consists of two unidirectional Transformers, to predict captions. We extract the image feature with the image encoder, then feed text into the textual head and use the sum of bidirectional generation logits as the matching score.

Language Models

GPT-3 (Chen et al., 2020a) and GPT-3.5-Turbo (Ouyang et al., 2022). These foundation language models are generation models pretrained on a large corpus of text. We use the OpenAI API "text-davinci-002" and "gpt-3.5-turbo" corresponding to the best-performing GPT-3 and GPT-3.5-Turbo respectively. We formalize the evaluation task as a question-answering task. The input to GPT-3 and GPT-3.5-Turbo is the concatenation of the question text, the context text, and multiple answer options. The output is to predict a final answer from answer options. For images in questions, we follow Lu et al. (2022) to convert them to visual context text based on a captioning model consisting of ViT (Dosovitskiy et al. 2020) and GPT-2 (Radford et al. 2019).

UnifiedQA (Khashabi et al., 2020). UnifiedQA is a pretrained question-answering model. We use both its base and small versions. Its evaluation setup is the same as that of GPT-3 and GPT-3.5-Turbo.

GloVe (Pennington et al., 2014). GloVe is a pretrained word embedding model. We use the similarity between the average embedding of the concatenation of the question and context and the average embedding of each answer option. The answer option with the largest similarity score is the answer output. We use average pooling based on the 300 -dimensional word embeddings. The images are also converted to text using the same method as GPT-3 and GPT-3.5-Turbo.

A. 3 Evaluation Settings

We benchmark state-of-the-art foundation models on STEM under different settings, including zeroshot, few-shot, finetuning, and multi-task.
(i) Zero-Shot. We use CLIP (Radford et al., 2021), ViLBERT (Lu et al., 2019), 12-in-1 (Lu et al. 2020), UNITER (Chen et al., 2020b), and Virtex (Desai \& Johnson, 2021) for the zero-shot evaluation of foundation multimodal models. CLIP is the state-of-the-art multimodal model. For zero-shot CLIP, we follow its original setup in Radford et al. (2021). The input to the text encoder is the concatenation of the question text and an answer option. The input to the image encoder is the image context. The output is the cosine similarity scores between the text embeddings and image embedding. Then the answer option with the largest similarity score serves as an answer. For questions with image answer options, the input to the image encoder will also add the image answer options.
(ii) Few-Shot. We also use CLIP to benchmark the multimodal few-shot results. For k-shot setup, we randomly select k questions for each skill from the training set as a meta training set. For each STEM subject, we train the model on the meta training set and select the best model on the validation set. At test time, the evaluation is the same as the zero-shot setup.
(iii) Finetuning. We also finetune CLIP on the entire training set for each subject. The remaining setup is the same as the few-shot setting.
(iv) Multi-Task. Under this setting, we train CLIP on the mixture of training sets of four subjects to produce a single model for all subjects.

A. 4 Dataset Collection

We collect science, engineering and math problems from $I X L^{1}$, and technology problems from ProProfs Quizzes $\sqrt{2}^{2}$ and Triviaplaz α^{3}. We first collect multi-choice problems that have at least one image in either question context or answers. We collect at most 2,000 problems for each skill and remove duplicated problems. There are many formulas embedded in math problems that are not

[^0]Table 4: Results of CLIP with different training schemes.

Method		Science	Technology	Engineering	Math	Average
CLIP	Zero-Shot	50.3	68.7	55.1	43.6	54.4
	75.2	70.9	61.9	63.2	67.8	
	Finetuning	87.0	71.9	67.7	78.4	76.3
	Multi-Task	86.3	60.4	73.4	77.7	74.5

represented in the text. We use the Mathpix $\left[{ }^{4}\right.$ OCR API to convert these math formulas into the latex format.

B More Details on Experiments

B. 1 Experimental Setup

For the zero-shot setting, we evaluate all models on the test set. For the few-shot, finetuning, and multitask setting, we train CLIP-ViT-L/14@336px on the corresponding train set, tune hyperparameters on the valid set, and finally evaluate on the test set. We use AdamW for optimization and tune hyperparameters as follows: batch size is chosen from $\{16,32,64,128\}$, and set to 16 for few-shot learning, 128 for finetuning and multi-task learning after hyperparameter tuning. The learning rate is chosen between $[5 \mathrm{e}-6,5 \mathrm{e}-5]$ and set to $1 \mathrm{e}-5$ for all training. We set the warm-up ratio to 0.1 and set weight decay as 0.2 . We set the maximum of training samples to 100 k for finetuning, 200k for multitask training, and 10 epochs for few-shot training, all with early stopping on the valid set. We use NVIDIA GeForce RTX 3090 GPUs for training.

B. 2 DEtailed Experimental Analysis

Few-Shot In the few-shot setting, we sample different number of samples in each grade to see how the learning performance varies. Specifically, we sample 16 samples per skill and train CLIP on the sampled data. The results are shown in Table 4. We observe that CLIP gains much improvement in all subjects after few-shot learning. This implies that CLIP has already stored STEM-related knowledge and a few samples are able to trigger such knowledge. We also show performance varies when the number of samples of each skill changes (Figure 16). The overall performance improves with more samples, but 1 -shot and 2 -shot in technology are worse than zero-shot. Since there are only 9 skills in technology, 1 -shot and 2-shot learning in technology might lead to overfitting.

Multi-Task We show the results in Table 4 Multi-task learning improves in engineering but performs worse in other subjects compared with individual finetuned models. The reason for the great drop in technology is mainly because its data is much less than other subjects. Multi-task training actually improves performance in engineering. This implies that data from one subject may be beneficial for another when the knowledge is transferable. For example, science shares many common topics with engineering like chemical experiments.

Number of Answers We also analyze how model performance changes with the number of answers. The results are shown in Figure 17. We find that for GPT-3, GPT-3.5-Turbo, CLIP zero-shot, and few-shot, the accuracy drops as the number of answers increases, but the accuracy of CLIP finetuning and multi-task does not drop. This implies that models after full training are actually solving the problem rather than guessing, so the number of choices does not affect the performance much.

Question Lengths Figure 18 shows how the question length affects model accuracy. For GPT-3, GPT-3.5-Turbo and CLIP zero-shot, the accuracy decreases slightly as the question becomes longer. For tuned models, the same trend holds for questions less than 70 tokens, but the accuracy starts to increase for longer questions. We think this may be caused by some bias in longer questions and the

[^1]

Figure 16: Result of few-shot CLIP.

Figure 18: Results on questions with different lengths.

Figure 17: Results on questions with different numbers of answers.

Figure 19: Zero-shot CLIP performance on different question types.

Figure 20: The correlation graphs of exam scores with model accuracy (left) and human accuracy (right).
tuned models learn such bias and achieve higher accuracy. Since there are only a small proportion of questions that are longer than 70 tokens, such bias will not affect the whole dataset much.

Question Type We mark the types of problems as the first word in the question or request of each problem. In Figure 19 we show the accuracy of the top 10 frequent types. Questions starting with "What" and "How" have relatively low accuracy, as these questions are more difficult to answer.

Figure 21: Average accuracies on each grade.

Figure 22: Accuracy on sampled STEM for human performance.

Table 5: Error analysis of CLIP on math and science subsets of STEM.

Subject	Reason	Ratio (\%)
Math	Commonsense	36
	Numerical calculation	24
	Counting	16
	Read table/graph	12
	Transformation	12
Science	Comparison	40
	Commonsense	32
	Direction	20
	Read table/graph	8

Grades We show the model accuracy on each grade in Figure 21 There is no obvious performance drop as the increase in grade levels, which is similar to the trend of exam scores. This implies the learning curve for neural models may be different from that of humans.

Correlation Between Exam Scores and Accuracy We evaluate exam scores' correlation with model accuracy and human accuracy(Figure 20). They in general positively correlated to each other. Even though exam score is different from accuracy, it overall captures accuracy as an important factor.

B. 3 Error Analysis

To better understand the errors made by CLIP zero-shot, we sample 25 error cases of CLIP zero-shot on math and science. We manually check the reasons for these errors. Table 5 shows the analysis results. For math, 36% errors are caused by a lack of mathematical commonsense, such as area formulas and symmetry. Other errors include failure of calculation (24%), counting objects (16%), reading tables or graphs (12%, e.g., graphs of functions), and transformation (12%, e.g., rotation of a 3D object). For science, comparison causes the most errors with a ratio of 40%. Most of these questions only require a straightforward comparison like the distance between two pairs of magnets. However, CLIP fails on such basic problems. This indicates that it is not good at comparing objects and properties yet. Lacking science commonsense also leads to a good number of errors (32\%), followed by identifying directions (20%, e.g., the directions of push and pull, towards and away) and reading tables or graphs (8%).

Moreover, we show the top- 5 skills with the most errors of fine-tuned models on math and science subsets in Table 6 and Table 7 respectively.

Skill	Error Rate	Example
greatest-and-least-word-problems-up-to-100	76.8\%	Description: The school district compared how many swings each elementary school has. Which school has the fewest swings? Picture: Choices: [Shoreline Elementary, Hillside Elementary, Valley Elementary, Lincoln Elementary,] Answer index: 2 Prediction: 0
greatest-and-least-word-problems-up-to-1000	76.0\%	Description: Paul kept a log of how many minutes he spent practicing ice skating over the past 4 days. On which day did Paul practice the least? Picture: (4) Finay Choices: [Tuesday, Wednesday, Thursday, Friday,] Answer index: 3 Prediction: 2
reading-schedules	75.0\%	Description: Look at the following schedule: Which meeting ends at 12:00 P.M.? Choices: [the city council meeting, the construction permit meeting, the parking meter meeting, the police meeting,] Answer index: 0 Prediction: 2
angles-of-90-180-270-and-360-degrees	73.8\%	Description: What fraction of a turn is this angle? Picture: \qquad Choices: [3/4, 1 full turn, 1/2, 1/4,] Answer index: 2 Prediction: 3
points-lines-line-segments-rays-and-angles	73.8\%	

Table 6: Error analysis of top-5 skills with most errors on math.

B. 4 Comparison with Human

Exam Score We test exam scores on all skills in engineering and technology, and randomly choose 40 skills from math, and 30 skills from science due to technical and time constraints. We compare neural models with humans using the exam score, and the results are shown in Table 8 . The detailed scores and skills are listed in Table 10

Accuracy We randomly sample 20 problems for each subject and ask 7 Ph.D. students to answer these questions, and calculate the average accuracy for each subject. To evaluate neural models on these questions, we use the corresponding skill accuracy for each sampled problem as the models' score on this problem and average all accuracy together as the final score. We do not evaluate models on these sampled data directly since the small number of samples will lead to a large variance, and skill accuracy can avoid such variance. The comparison results are shown in Table 8 and Figure 22 All sampled problems are listed in Table 12 to 17.

B. 5 Zero-Shot Prompt Sensitivity

We study the effect of prompts on CLIP zero-shot. We design 5 types of prompts and demonstrate them with an example problem. The example question is "Which property matches this object?" and the answer is "Rough". Examples of different prompt types and the corresponding accuracies are shown in Table 9 We observe that "Q+A results in the best performance on average, but the difference is only marginal, meaning that CLIP zero-shot is not very sensitive to the format of prompts.

B. 6 Detailed Performance on Skills

We show the accuracy of neural models on all 448 skills in Figure 23 to 28 . We can see that the zero-shot performance is generally better than random guesses on most skills and achieves near 100% on some skills (e.g., "circles" and "cones"). After finetuning, accuracy improves on most skills and becomes near 100% on many skills.

B. 7 VQA Results

Skill	Error Rate	Example
use-punnett-squares-to-calculate-ratios-of-offspring-types	69.10\%	Description: This passage describes the antenna type trait in fruit flies: Most fruit flies have a pair of antennae on their head. But, some flies appear to have an extra pair of legs on their head instead! These flies have a mutation, or change, in a gene that affects body development. This mutation makes the cells in the fly's head form mutated antennae that are like legs. In a group of fruit flies, some individuals have mutated antennae and others have normal antennae. In this group, the gene for the antenna type trait has two alleles. The allele for normal antennae (a) is recessive to the allele for mutated antennae (A). This Punnett square shows a cross between two fruit flies. What is the expected ratio of offspring with normal antennae to offspring with mutated antennae? Choose the most likely ratio. Picture: Choices: [0:4, 3:1, 2:2, 1:3, 4:0,] Answer index: 0 Prediction: 3
use-punnett-squares-to-calculate-probabilities-of-offspring-types	60.10\%	Description: In a group of tomato plants, some individuals have smooth fruit and others have fuzzy fruit. In this group, the gene for the fruit texture trait has two alleles. The allele for smooth fruit (F) is dominant over the allele for fuzzy fruit (f). This Punnett square shows a cross between two tomato plants. What is the probability that a tomato plant produced by this cross will be homozygous recessive for the fruit texture gene? Picture: Choices: [0/4, 1/4, 2/4, 3/4, 4/4,] Answer index: 0 Prediction: 3
predict-temperature-changes	55.00\%	Description: Two identical blocks are heated to different temperatures. The blocks are placed so that they touch, and heat begins to flow between the blocks. The pair of blocks is insulated, so no energy escapes. Later, the temperature of each block is measured again. Which pair of temperatures is possible? Picture: Choices: Answer index: 1 Prediction: 0
identify-magnets-that-attract-or-repel	21.10\%	Description: Two magnets are placed as shown. Hint: Magnets that attract pull together. Magnets that repel push apart. Choices: [attract, repel,] Answer index: 1 Prediction: 0
predict-heat-flow	16.20\%	Description: Two solid blocks are at different temperatures. The blocks are touching. Which picture shows how heat will move? Picture: None Answer index: 0 Prediction: 1

Table 7: Error analysis of top-5 skills with most errors on science.

Table 8: Comparison between models and humans.

Method	Exam Score				Accuracy			
	Science	Engineering	Math	Technology	Science	Technology	Engineering	Math
Human	90.0	90.0	90.0	68.6	90.7	62.9	86.4	92.1
Random	26.7	16.1	51.1	25.0	38.3	25.0	40.0	36.8
GPT-3	45.7	50.2	51.4	22.1	48.4	21.3	65.2	42.4
GPT-3.5-Turbo	48.9	58.7	53.5	26.3	48.5	27.4	62.5	40.6
Zero-Shot	33.9	19.0	52.9	68.7	53.8	60.7	65.5	44.3
CLIP Few-Shot	39.1	43.9	67.6	70.9	77.3	59.7	55.5	67.8
CLIP Finetuning	57.8	37.4	75.7	71.9	91.9	62.6	60.3	83.5
Multi-Task	61.9	50.3	72.0	60.4	90.9	50.6	70.2	82.5

Table 9: Examples for different prompts and their zero-shot accuracy.

Prompt Format	Example	Science	Technology	Engineering	Math	Average
Q+A	Which property matches this object? Rough.	50.3	68.7	55.1	43.6	54.4
A+Q	Rough. Which property matches this object?	50.0	66.0	4.6	43.2	5.2
Q "Choose the best answer:" A	Which property matches this object? Choose the best answer: Rough.	50.1	70.7	49.7	44.2	53.7
"Answer the question:" Q + A	Answer the question: Which property matches this object? Rough.	49.4	67.6	51.0	43.6	52.9
A "best answers the question" Q	Rough best answers the question: Which property matches this object?	49.7	69.5	50.8	43.8	53.4

We evaluate the zero-shot CLIP model and models finetuned on each subject on the VQA (Antol et al. 2015) dataset. Results are shown in Table 11. The average increase of the finetuned models over the zero-shot setting is 1.2%.

C Additional Related Work

Model	Accuracy
Zero-Shot CLIP	24.7%
Finetuning with Science	27.3%
Finetuning with Technology	26.5%
Finetuning with Engineering	24.8%
Finetuning with Math	24.9%

Table 11: Results on the VQA (Antol et al., 2015) dataset.
In addition to vision-language foundation models included in the main text, we expand the discussion to some recent models, including BLIP-2 (Li et al., 2023), EVA-CIIP (Sun et al., 2023), and KOSMOS-2 (Peng et al. 2023). BLIP-2 provides a versatile and efficient strategy for pre-training. This strategy enhances the visionlanguage pre-training process by utilizing frozen pre-trained image encoders and frozen large language models, while EVA-CLIP proposes a series of methods to increase the training efficiency of the CLIP model. KOSMOS-2 enables new capabilities for perceiving object descriptions. This work focuses on the creation of a dataset to evaluate the multimodal STEM understanding and we chose the foundation models like CLIP for a pilot study on our dataset. There are more benchmarks targeting formal math reasoning (Zheng et al., 2022; Liu et al., 2023, Xiong et al., 2023b), however, they are all restricted to single text modality and they can not evaluate fundamental skills.

D Summary of Skills

We list all skills in STEM in Table 18 to 20 and show some examples in Table 21 to 27.

Subject	Grade/Skill	Random	Zero-shot	Finetune
Science	grade-2/classify-matter-as-solid-liquid-or-gas	28	40	100
	grade-2/identify-animals-with-and-without-backbones	0	70	70
	grade-2/identify-mammals-birds-fish-reptiles-and-amphibians	0	0	18
	grade-2/identify-materials-in-objects	21	40	100
	grade-2/identify-properties-of-an-object	35	65	65
	grade-3/compare-strengths-of-magnetic-forces	0	18	63
	grade-3/describe-ecosystems	65	50	100
	grade-3/find-evidence-of-changes-to-earths-surface	17	38	100
	grade-3/identify-ecosystems	35	100	100
	grade-3/identify-minerals-using-properties	35	11	35
	grade-4/compare-properties-of-objects	10	17	20
	grade-4/describe-ecosystems	74	100	100
	grade-4/identify-minerals-using-properties	35	16	35
	grade-4/use-evidence-to-classify-mammals-birds-fish-reptiles-and-amphibians	26	35	35
	grade-5/animal-adaptations-beaks-mouths-and-necks	17	27	35
	grade-5/classify-elementary-substances-and-compounds-using-models	75	75	75
	grade-5/compare-ancient-and-modern-organisms-use-observations-to-support-a-hypothesis	32	32	50
	grade-5/identify-directions-of-forces	0	26	35
	grade-5/identify-the-photosynthetic-organism	0	0	100
	grade-5/predict-temperature-changes	0	22	0
	grade-5/use-evidence-to-classify-animals	35	35	35
	grade-5/use-evidence-to-classify-mammals-birds-fish-reptiles-and-amphibians	18	35	35
	grade-5/weather-and-climate-around-the-world	60	36	60
	grade-6/compare-concentrations-of-solutions	15	11	100
	grade-6/describe-the-effects-of-gene-mutations-on-organisms	52	13	69
	grade-6/diffusion-across-membranes	50	25	50
	grade-7/describe-the-effects-of-gene-mutations-on-organisms	42	13	69
	grade-8/classify-symbiotic-relationships	25	36	45
	grade-8/diffusion-across-membranes	0	18	35
	grade-8/moss-and-fern-life-cycles	0	12	0
Engineer		0	0	100
	grade-6/identify-control-and-experimental-groups	0	0	0
	grade-6/identify-independent-and-dependent-variables	0	0	100
	grade-6/identify-the-experimental-question	30	30	30
	grade-7/evaluate-tests-of-engineering-design-solutions	0	0	0
	grade-7/identify-control-and-experimental-groups	0	0	40
	grade-7/identify-independent-and-dependent-variables	0	0	30
	grade-7/identify-the-experimental-question	40	0	40
	grade-8/identify-control-and-experimental-groups	0	0	0
	grade-8/identify-the-experimental-question	60	0	40
	grade-5/identify-laboratory-tools	21	42	31
	grade-6/identify-laboratory-tools	21	21	21
	grade-6/laboratory-safety-equipment	24	65	52
	grade-7/identify-laboratory-tools	10	28	21
	grade-7/laboratory-safety-equipment	9	58	52
	grade-8/identify-laboratory-tools	49	21	21
	grade-8/laboratory-safety-equipment	9	58	58
Math	algebra-2/factor-quadratics-using-algebra-tiles	40	51	55
	algebra-2/outliers-in-scatter-plots	55	47	97
	calculus/determine-continuity-using-graphs	36	63	80
	calculus/find-limits-at-vertical-asymptotes-using-graphs	60	65	85
	grade- 1 /subtraction-sentences-up-to-10-which-model-matches	50	30	99
	grade-2/identify-halves-thirds-and-fourths	65	75	97
	grade-2/identify-lines-of-symmetry	70	64	99
	grade-2/interpret-bar-graphs-ii	14	23	12
	grade-2/ordinal-numbers-up-to-10th	32	61	28
	grade-3/compare-fractions-in-recipes	55	50	68
	grade-3/identify-parallelograms	51	64	70
	grade-3/is-it-a-polygon	71	60	98
	grade-3/parallel-sides-in-quadrilaterals	29	66	45
	grade-4/nets-of-three-dimensional-figures	68	40	99
	grade-5/nets-of-three-dimensional-figures	53	40	99
	grade-6/changes-in-mean-median-mode-and-range	38	14	15
	grade-6/classify-triangles	47	38	45
	grade-6/identify-polyhedra	75	75	75
	grade-6/mean-median-mode-and-range-find-the-missing-number	55	41	99
	grade-6/model-and-solve-equations-using-algebra-tiles	36	36	57
	grade-6/rational-numbers-find-the-sign	31	78	99
	grade-6/rotational-symmetry	62	56	78
	grade-6/similar-and-congruent-figures	34	33	46
	grade-6/which-figure-is-being-described	36	27	86
	grade-7/rational-numbers-find-the-sign	47	58	99
	grade-8/rotational-symmetry-amount-of-rotation	47	32	63
	kindergarten/count-on-ten-frames-up-to-10	15	2	49
	kindergarten/fewer-and-more-up-to-20	80	62	97
	kindergarten/subtraction-sentences-up-to-5-which-model-matches	41	30	96
	pre-k/addition-sentences-up-to-10-which-model-matches	60	55	96
	pre-k/count-on-ten-frames-up-to-3	84	50	51
	pre-k/fewer-and-more-compare-by-matching	63	52	90
	pre-k/one-less-with-pictures-up-to-10	61	37	66
	pre-k/one-more-with-pictures-up-to-5	48	36	75
	pre-k/shapes-of-everyday-objects	67	96	96
	pre-k/spheres	67	96	96
	pre-k/triangles	57	75	75
	pre-k/what-comes-next	75	56	70
	pre-k/ordinal-numbers-up-to-tenth kindergarten/are-there-enough	27 40	84 99	82 96

Table 10: Exam scores for each skill.

Figure 23: Accuracy per skill on math (part 1).

Figure 24: Accuracy per skill on math (part 2).

Figure 25: Accuracy per skill on math (part 3).

Figure 26: Accuracy per skill on science.

Figure 27: Accuracy per skill on technology.

Figure 28: Accuracy per skill on engineering.

Subject: Technology Description: This is a(n old) logo of which famous app or program? Picture: Choices: [Microsoft Office Outlook, Microsoft Office OneDrive, OfficeSuite Pro, Opera,] Answer index: 3	Subject: Technology Description: What kind of computer component do you see here? Picture. Choices: [TV Tuner Card, PC Card, Motherboard, Modem Card,] Answer index: 2
Subject: Technology Description: This is (part of) a (former) logo of which computer related brand? Picture: Choices: [ASRock, Amiga Inc., Arctic, ATI Technologies,] Answer index: 3	Subject: Technology Description: This is (part of) a (former) logo of which computer related brand? Picture: Choices: [Fujitsu, Samsung, Iiyama, Brother,] Answer index: 2
Subject: Technology Description: This is (part of) a (former) logo of which computer related brand? Picture: Choices: [Xiaomi, Cisco, Intel, Wii,] Answer index: 3	Subject: Technology Description: What kind of computer component do you see here? Picture: Choices: [Display Adapter/Video Card, PC Card, Power Supply Unit, Hard Disk Drive,] Answer index: 3
Subject: Technology Description: What meaning or function is usually associated with this web interface symbol? Picture: Choices: [Paste, Search, Tip/Idea, Calendar/Event,] Answer index: 2	Subject: Technology Description: This is a(n old) logo of which famous app or program? Picture: Choices: [YouTube Music, Beats Music, MX Player, YouTube,] Answer index: 2
Subject: Technology Description: What kind of computer related plug or port do you see here? Picture: Choices: [USB type-C plug, DVI plug (type D), HDMI plug, 3.5mm Audio Cable plug,] Answer index: 0	Subject: Technology Description: Identify this font type Picture: ActionQuiz Choices: [Lucida MT, News Gothic MT, Fixedsys, Courier New,] Answer index: 2
Subject: Technology Description: Identify this font type Picture: Craction Quix Choices: [Commercial Script BT, Brush Script MT, Vivaldi D, ShelleyVolante BT,] Answer index: 3	Subject: Technology Description: Identify this font type Picture: ActionQuiz Choices: [Garamond, Times New Roman, Courier New, Georgia,] Answer index: 3
Subject: Technology Description: This is (part of) a (former) logo of which computer related brand? Picture: Choices: [BenQ, Lexmark, Creative Technology, Lenovo,] Answer index: 2	Subject: Technology Description: Identify this font type Picture: ActionQuiz Choices: [Webdings, Courier, Impact, System,] Answer index: 3
Subject: Technology Description: Identify this font type Picture: ActionQuiz Choices: [Serifa BT, Stylus ITC, Calisto MT, Tempus Sans ITC,] Answer index: 0	Subject: Technology Description: What meaning or function is usually associated with this web interface symbol? Picture: Choices: [Pin/Make something sticky, Storage for deleted files, Options/Settings, Print (preview),] Answer index: 1
Subject: Technology Description: What meaning or function is usually associated with this web interface symbol? Picture: Choices: [Zoom in, Help, Like something, Link select,] Answer index: 3	Subject: Technology Description: What meaning or function is usually associated with this web interface symbol? Picture: Choices: [Apply, Options/Settings, Reload/Refresh, Download,] Answer index: 2
Subject: Technology Description: What type of video game console do you see here? Picture: Choices: [Mattel Intellivision, Sega Master System, Magnavox Odyssey 2, Atari 5200,] Answer index: 3	Subject: Technology Description: What meaning or function is usually associated with this web interface symbol? Picture: Choices: [Find, Delete, Attachment, Calendar/Event,] Answer index: 0

Table 12: Human evaluation problem set (part 1).

Subject: Engineer Description: Select the gloves. Picture: None Choices: Answer index: 0	Subject: Engineer Description: iption: In this experiment, which were part of an experimental group? The passage below describes an experiment. Lucy and Erik were taking a snowboarding class. During the class, their instructor said they would go faster if they applied wax to the undersides of their snowboards. After the class, Lucy applied a thin layer of wax to the underside of a snowboard and rode the board straight down a hill. Then, she removed the wax and rode the snowboard straight down the hill again. Erik timed how long each ride took. Lucy repeated these rides on four other snowboards, alternating whether she first rode with or without wax. Picture: Choices: [the snowboards with wax removed, the snowboards with wax added,] Answer index: 1
Subject: Engineer Description: Select the test tube. Picture: None Choices: Answer index: 2	Subject: Engineer Description: Select the funnel. Picture: None Choices: Answer index: 2
Subject: Engineer Description: Select the round-bottom flask. Picture: None Choices:	Subject: Engineer Description: iption: In this experiment, which were part of an experimental group? The passage below describes an experiment. Kimberly grew roses for a flower shop. One day, she noticed tumor-like growths on her rose stems. She could tell that the plants had crown gall disease, which is caused by a type of bacteria. She knew that allicin, a chemical in garlic, can kill bacteria. Kimberly wondered if spraying her plants with garlic juice would prevent more tumors from forming on her plants. Once a day, Kimberly sprayed garlic juice on ten infected plants and left another 10 infected plants unsprayed. After one month, she compared the number of new tumors on plants in the two groups. Picture: Choices: [the roses sprayed with garlic juice, the roses that were not sprayed,] Answer index: 0
Subject: Engineer Description: iption: Which of the following could Kendra's test show? Wind turbines use wind power to produce electricity. Kendra was a materials engineer who designed wind turbines. She wanted to design a new turbine that would produce 10% more electricity than older wind turbines. She thought that a turbine made from lightweight material would turn more easily and produce more electricity. So, Kendra created a computer model of a turbine made from lightweight material. Then she used the model to calculate how much more electricity the new turbine could produce compared to the older turbines. The passage below describes how the engineering-design process was used to test a solution to a problem. Read the passage. Then answer the question below. Picture: Choices: [how much the new turbine would weigh, whether the new turbine could produce 10% more electricity, if the new turbine could turn easily,] Answer index: 1	Subject: Engineer Description: iption: In this experiment, which were part of an experimental group? The passage below describes an experiment. Isaac and his friend Belle flew nylon kites on the beach. They wondered if putting a tail on a kite would affect how well the kite flew. Isaac flew a kite that did not have a tail for five minutes. Then, he attached a four-foot-long tail and flew the kite for five more minutes. Isaac repeated this with three similar kites, alternating whether he started the kite with or without a tail. During each flight, Belle counted the number of times the kite crashed to the ground. Picture: Choices: [the kites without tails, the kites with tails,] Answer index: 1
Subject: Engineer Description: iption: Identify the question that Bryant and Lamar's experiment can best answer. The passage below describes an experiment. Read the passage and then follow the instructions below Bryant placed a ping pong ball in a catapult, pulled the catapult's arm back to a 45° angle, and launched the ball. Then, Bryant launched another ping pong ball, this time pulling the catapult's arm back to a 30° angle. With each launch, his friend Lamar measured the distance between the catapult and the place where the ball hit the ground. Bryant and Lamar repeated the launches with ping pong balls in four more identical catapults. They compared the distances the balls traveled when launched from a 45° angle to the distances the balls traveled when launched from a 30° angle. Picture: Choices: [Do ping pong balls stop rolling along the ground sooner after being launched from a 30° angle or a 45° angle?, Do ping pong balls travel farther when launched from a 30° angle compared to a 45° angle?,] Answer index: 1	Subject: Engineer Description: Select the Erlenmeyer flask. Picture: None Choices: Answer index: 3

Table 13: Human evaluation problem set (part 2).

Table 14: Human evaluation problem set (part 3).

Table 15: Human evaluation problem set (part 4).

Subject: Science Description: iption: Think about the magnetic force between the magnets in each pair. Which of the following statements is true? The images below show two pairs of magnets. The magnets in different pairs do not affect each other. All the magnets shown are made of the same material. Picture: Choices: [The magnetic force is stronger in Pair 2., The magnetic force is stronger in Pair 1., The strength of the magnetic force is the same in both pairs.,] Answer index: 0	Subject: Science Description: Select the gas. Picture: None
Subject: Science Description: Select the plant. Picture: None Choices: Answer index: 0	Subject: Science Description: iption: Which property matches this object? Select the better answer. gold ring Picture: Choices: [soft, smooth,] Answer index: 1
Subject: Science Description: iption: Select the animal that does not have a backbone. Hint: Insects, spiders, and worms do not have backbones. Picture: None Choices: Answer index: 0	Subject: Science Description: iption: The diagram below is a model of two solutions. Each green ball represents one particle of solute. Which solution has a higher concentration of green particles? Picture: Choices: [neither; their concentrations are the same, Solution A, Solution B,] Answer index: 2
Subject: Science Description: iption: Two solid blocks are at different temperatures. The blocks are touching. Which picture shows how heat will move? Picture: None Answer index: 1	Subject: Science Description: Select the chemical formula for this molecule. Picture: Choices: [H2C, $\mathrm{HCl}, \mathrm{HC}, \mathrm{HCl} 2$,] Answer index: 1
Subject: Science Description: iption: Which statement best describes the climate of Bangor? Hint: Summers in the Northern Hemisphere occur in June, July, and August. Winters in the Northern Hemisphere occur in December, January, and February. Bangor, Maine, is a city in the United States. It has a warm summer continental climate. Picture: Choices: [Summers have higher temperatures and slightly more precipitation than winters., On average, On average,] Answer index: 1	Subject: Science Description: Select the temperature shown by this thermometer. Picture: Choices: $\left[13^{\circ} \mathrm{F}, 61^{\circ} \mathrm{F}, 56^{\circ} \mathrm{F}\right.$,] Answer index: 2

Table 16: Human evaluation problem set (part 5).

Table 17: Human evaluation problem set (part 6).

Subject	Grade	Skills
Science	grade-2	classify-fruits-and-vegetables-as-plant-parts, classify-matter-as-solid-liquid-or-gas, classify-matter-as-solid-or-liquid, classify-rocks-and-minerals-by-color-and-shape, compare-properties-of-materia 1s, compare-properties-of-objects, compare-temperatures-on-thermometers, find-evidence-of-changes-to-earths-surface, identify-animals-with-and-without-backbones, identify-carth-s-land-features, identi fy-living-and-nonliving-things, identify-magnets-that-attract-or-repel, identify-mammals-birds-fish-reptiles-and-amphibians, identify-materials-in-objects, identify-plants-and-animals, identify-proper ties-of-an-object, identify-pushes-and-pulls, identify-solids-and-liquids, identify-solids-liquids-and-gases, identifying-mixtures, natural-resources, predict-heat-flow, read-a-thermometer
	grade-3	animal-adaptations-beaks-mouths-and-necks, animal-adaptations-feet-and-limbs, animal-adaptations-skins-and-body-coverings, classify-fruits-and-vegetables-as-plant-parts, classify-matter-as-solid-liqui nd-unbalanced-forces-affect-motion, identify-earth-s-land-features, identify-ecosystems, identify-living-and-nonliving-things, identify-magnets-that-attract-or-repel, identify-mammals-birds-fish-repti les-and-amphibians, identify-materials-in-objects, identify-minerals-using-properties, identify-plants-and-animals, identify-properties-of-an-object, identify-pushes-and-pulls, identify-rocks-using-pr operties, identify-roles-in-food-chains, identify-solids-liquids-and-gases, identify-vertebrates-and-invertebrates, interpret-food-webs, natural-resources, predict-heat-flow, predict-temperature-chang es, read-a-thermometer, use-climate-data-to-make-predictions, use-data-to-describe-u-s-climates, use-data-to-describe-world-climates, weather-and-climate-around-the-world
	grade-4	animal-adaptations-beaks-mouths-and-necks, animal-adaptations-feet-and-limbs, animal-adaptations-skins-and-body-coverings, classify-fruits-and-vegetables-as-plant-parts, classify-rocks-as-igneous-sedi mentary-or-metamorphic, compare-amplitudes-and-wavelengths-of-waves, compare-ancient-and-modern-organisms-use-observations-to-support-a-hypothesis, compare-properties-of-materials, compare-properties- of-objects, compare-strenghss-of-magnetic-forces, compare-temperatures-on-thermometers, describe-classify-and-compare-kingdoms, evaluate-natural-energy-sources, how-do-balanced-and-unbalanced-forces-a ffect-motion, identify-and-classify-fossils, identify-and-sort-solids-liquids-and-gases, identify-common-and-scientific-names, identify-directions-of-forces, identify-earths-land-features-using-photog raphs, identify-earths-land-features-using-satellite-images, identify-ccosystems, identify-living-and-nonliving-things, identify-magnets-that-attract-or-repel, identify-mammals-birds-fish-reptiles-and -amphibians, identify-minerals-using-properties, identify-phases-of-the-moon, identify-rocks-using-properties, identify-roles-in-food-chains, identify-vertebrates-and-invertebrates, interpret-food-web s, origins-of-scientific-names, predict-heat-flow, predict-temperature-changes, read-a-thermometer, use-climate-data-to-make-predictions, use-data-to-describe-climates, use-evidence-to-classify-animal s , use-evidence-to-classify-mammals-birds-fish-reptiles-and-amphibians, use-scientific-names-to-classify-organisms, weather-and-climate-around-the-world
	grade-5	animal-adaptations-beaks-mouths-and-necks, animal-adaptations-feet-and-limbs, animal-adaptations-skins-and-body-coverings, classify-elementary-substances-and-compounds-using-models, classify-fruits-an d-vegetables-as-plant-parts, classify-rocks-as-igneous-sedimentary-or-metamorphic, compare-amplitudes-and-wavelengths-of-waves, compare-ancient-and-modern-organisms-use-observations-to-support-a-hypot hesis, compare-magnitudes-of-magnetic-forces, compare-properties-of-objects, describe-classify-and-compare-kingdoms, evaluate-natural-energy-sources, flowering-plant-and-conifer-life-cycles, how-do-ba lanced-and-unbalanced-forces-affect-motion, identify-and-classify-fossils, identify-common-and-scientific-names, identify-directions-of-forces, identify-earths-land-features-using-photographs, identif y-earths-land-features-using-satellite-images, identify-ecosystems, identify-magnets-that-attract-or-repel, identify-mammals-birds-fish-reptiles-and-amphibians, identify-phases-of-the-moon, identify-r ocks-and-minerals, identify-roles-in-food-chains, identify-the-photosynthetic-organism, identify-vertebrates-and-invertebrates, match-chemical-formulas-to-ball-and-stick-models, moss-and-fern-life-cyc les, origins-of-scientific-names, predict-heat-flow, predict-temperature-changes, use-data-to-describe-climates, use-evidence-to-classify-animals, use-evidence-to-classify-mammals-birds-fish-reptiles-and-amphibians, use-scientific-names-to-classify-organisms, weather-and-climate-around-the-world
	grade-6	analyze-data-to-compare-properties-of-planets, classify-elementary-substances-and-compounds-using-models, classify-rocks-as-igneous-sedimentary-or-metamorphic, classify-symbiotic-relationships, compar e -ages-of-fossils-in-a-rock-sequence, compare-amplitudes-wavelengths-and-frequencies-of-waves, compare-concentrations-of-solutions, compare-magnitudes-of-magnetic-forces, compare-thermal-energy-transf ers, describe-populations-communities-and-ecosystems, describe-tectonic-plate-boundaries-around-the-world, describe-the-effects-of-gene-mutations-on-organisms, diffusion-across-membranes, flowering-pl ant-and-conifer-life-cycles, identify-and-compare-air-masses, identify-common-and-scientific-names, identify-carths-land-features-using-photographs, identify-earths-land-features-using-satellite-image s , identify-cosystems, identify-elementary-substances-and-compounds-using-models, identify-how-particle-motion-affects-temperature-and-pressure, identify-phases-of-the-moon, identify-rocks-and-minera 1 Is , identify-the-photosynthetic-organism, match-chemical-formulas-to-ball-and-stick-models, moss-and-fern-life-cycles, origins-of-scientific-names, predict-heat-flow-and-temperature-changes, use-data- to-describe-climates, use-scientific-names-to-classify-organisms, weather-and-climate-around-the-world
	grade-7	analyze-data-to-compare-properties-of-planets, angiosperm-and-conifer-life-cycles, classify-elementary-substances-and-compounds-using-models, classify-rocks-as-igneous-sedimentary-or-metamorphic, clas sify-symbiotic-relationships, compare-ages-of-fossils-in-a-rock-sequence, compare-amplitudes-wavelengths-and-frequencies-of-waves, compare-concentrations-of-solutions, compare-magnitudes-of-magnetic-f orces, compare-thermal-energy-transfers, describe-populations-communities-and-ecosystems, describe-tectonic-plate-boundaries-around-the-world, describe-the-effects-of-gene-mutations-on-organisms, diff usion-across-membranes, identify-and-compare-air-masses, identify-chemical-formulas-for-ball-and-stick-models, identify-common-and-scientific-names, identify-ecosystems, identify-how-particle-motion-a ffects-temperature-and-pressure, identify-phases-of-the-moon, identify-rocks-and-minerals, identify-the-photosynthetic-organism, moss-and-fern-life-cycles, origins-of-scientific-names, predict-heat-fil ow-and-temperature-changes, use-data-to-describe-climates, use-scientific-names-to-classify-organisms
	grade-8	analyze-data-to-compare-properties-of-planets, angiosperm-and-conifer-life-cycles, classify-elementary-substances-and-compounds-using-models, classify-symbiotic-relationships, compare-ages-of-fossils-in-a-rock-sequence, compare-amplitudes-wavelengths-and-frequencies-of-waves, compare-concentrations-of-solutions, compare-magnitudes-of-magnetic-forces, compare-thermal-energy-transfers, describe-popu lations-communities-and-ecosystems, describe-tectonic-plate-boundaries-around-the-world, describe-the-effects-of-gene-mutations-on-organisms, diffusion-across-membranes, identify-and-compare-air-masse s , identify-chemical-formulas-for-ball-and-stick-models, identify-common-and-scientific-names, identify-ecosystems, identify-how-particle-motion-affects-temperature-and-pressure, identify-phases-of-th e-moon, identify-rocks-and-minerals, identify-the-photosynthetic-organism, moss-and-fern-life-cycles, origins-of-scientific-names, predict-heat-flow-and-temperature-changes, use-data-to-describe-clima tes, use-punnett-squares-to-calculate-probabilities-of-offspring-types, use-punnett-squares-to-calculate-ratios-of-offspring-types, use-scientific-names-to-classify-organisms
Technology	-	cables, font, icons, logo, parts, peripherals, photo, web, others
Engineering	grade-5	identify-laboratory-tools
	grade-6	evaluate-tests-of-engineering-design-solutions, identify-control-and-experimental-groups, identify-independent-and-dependent-variables, identify-laboratory-tools, identify-the-experimental-question, 1 aboratory-safety-equipment
	grade-7	evaluate-tests-of-engineering-design-solutions, identify-control-and-experimental-groups, identify-independent-and-dependent-variables, identify-laboratory-tools, identify-the-experimental-question, 1 aboratory-safety-equipment
	grade-8	identify-control-and-experimental-groups, identify-laboratory-tools, identify-the-experimental-question, laboratory-safety-cquipment

Table 18: Full skill summary (part 1), including science, technology and engineering skills.

Table 19: Full skill summary (part 2), including math skills for algebra- $\{1,2\}$ and calculus.

Subject	Grade	Skills
	grade-1	addition-sentences-up-to-10-what-does-the-model-show, addition-sentences-up-to-10-which-model-matches, addition-sentences-using-number-Lines-sumss-up-to-20, am-or-pm, certain-probable--unlikely-and-impo ssible, compare-clocks, compare-money-amounts, compare-objects-lenght-and-height, compare-sides-and-corners, compare-size-weight-and-capacity, compare-vertices-edges-and-faces, comparing-review, count ou-have-enough-money, read-a-calendar, read-a-calendar-ii, rhombuses, select-1hree-dimensional-shapes, select-two-dimensional-shapes, shapes-of-everyday-objects, simple-fractions-what-fraction-does-sh nd-clock-word-problems, times-ofeveryday-events, two-dimensional-and-three-dimensional-shapes, which-bar-graph-is-correct, which-picture-graph-is-correct, which-table-is-correct, which-tally-chart-i s-correct, wide-and-narow
	grade-2	equal-sides, equivalent-amounts-of-money-up-to-1-dollar, estimate-to-the-nearest-ten, even-or-odd, find-the-next-shape-in-a-growing-pattern, find-the-next-shape-in-a-repeating-pattern, flip-turn-and tify-faces-of-three-dimensional-shapes, identify-fourths, identify-halves, identify-halves-thirds-and-fourths, identify-lines-of-symmetry, identify-multiplication-sentences-for-equal-groups, identify-repeated-addition-in-arrays-sums-to-10, identify-repeated-addition-in-arrays-sums-to- 25 , identify-shapes-traced-from-solids, identify-the-fraction, identify-thirds, interpret-bar-graphs-ii, interpret-tally-charts, match-addition-sentences-and-models-sums-to-10, match-analog-and-digital-clocks, match-analog-clocks-and-times, match-digital-clocks-and-times, more-less-and-equally-likely, name-the-thr r-ii, read-a-thermometer, select-figures-with-a-given-area, select-three-dimensional-shapes, shapes-of-everyday-objects, skip-counting-stories, symmetry, which-bar-graph-is-correct, which-picture-show s-more-up-to-5-dollars, which-shape-illustrates-the-fraction, which-table-is-correct, which-tally-chart-is-correct, write-subtraction-sentences-to-describe-pictures-up-to-18, write-subtraction-sentenc es-to-describe-pictures-up-to-two-digits
	grade-3	acute-obtuse-and-right-triangles, am-or-pm, angles-greater-than-less-than-or-equal-to-a-right-angle, certain-probable-unlikely-and-impossible, choose-the-appropriate-measuring-tool, compare-area-and-p crimeter-of-two-figures, compare-fractions-in-recipes, compare-fractions-using-models, compare-fractions-using-number-lines, coordinate-planes-as-maps, correct-amount-of-change, division-input-output-tables-find-the-rule, find-the-next-shape-in-a-pattern, fractions-of-a-group-denominators-2-3-4-6-8, fractions-of-a-group-unit-fractions, identify-equivalent-fractions-on-number-lines, identify-faces-of-three-dimensional-shapes, identify-multiplication-expressions-for-arrays, identify-multiplication-expressions-for-equal-groups, identify-parallelograms, identify-rhombuses, identify-three-dimension al-shapes, identify-trapezoids, identify-two-dimensional-shapes, identify-unit-fractions-on-number-lines, interpret-line-graphs, is-it-a-polygon, lines-line-segments-and-rays, match-analog-and-digital -clocks, match-clocks-and-times, match-fractions-to-models-halves-thirds-and-fourths, match-mixed-numbers-to-models, multiplication-input-output-tables-find-the-rule, open-and-closed-shapes, parallel-perpendicular-and-intersecting-lines, parallel-sides-in-quadrilaterals, purchases-do-you-have-enough-money-up-to-10-dollars, read-a-calendar, read-a-thermometer, reading-schedules, reflection-rotation -and-translation, scalene-isosceles-and-equilateral-triangles, select-figures-with-a-given-area, select-fractions-equivalent-to-whole-numbers-using-models, shapes-of-everyday-objects, symmetry, which-picture-shows-more
Math	grade-4	acute-obtuse-and-right-triangles, acute-right-obtuse-and-straight-angles, angles-as-fractions-of-a-circle, angles-of-90-180-270-and-360-degrees, classify-triangles, compare-area-and-perimeter-of-two-f igures, compare-decimals-using-models, compare-fractions-in-recipes, compare-fractions-using-models, compare-fractions-with-like-numerators-or-denominators-using-models, decompose-fractions-into-unit-fractions-using-models, elapsed-time, estimate-angle-measurements, find-the-next-shape-in-a-pattern, fractions-of-a-whole-word-problems, identify-equivalent-fractions-using-number-lines, identify-face s -of-three-dimensional-figures, identify-lines-of-symmetry, identify-parallel-perpendicular-and-intersecting-lines, identify-parallelograms, identify-rhombuses, identify-three-dimensional-figures, ide ntify-trapezoids, interpret-bar-graphs, interpret-stem-and-leaf-plots, is-it-a-polygon, measure-angles-with-a-protractor, multiplication-input-output-tables-find-the-rule, multiply-fractions-by-whole-numbers-using-models, multiply-unit-fractions-by-whole-numbers-using-models, nets-of-three-dimensional-figures, parallel-perpendicular-and-intersecting-lines, parallel-sides-in-quadrilaterals, points-lines-line-segments-rays-and-angles, properties-of-three-dimensional-figures, rotational-symmetry, scalene-isosceles-and-equilateral-triangles, sides-and-angles-of-quadrilaterals, transportation-sched ules, what-decimal-number-is-illustrated
	grade-5	acute-obtuse-and-right-triangles, adjust-a-budget, angles-of-90-180-270-and-360-degrees, classify-triangles, compare-decimals-using-grids, compare-fractions-and-mixed-numbers, compare-patterns, fracti ons-of-a-whole-word-problems, identify-parallelograms, identify-rhombuses, identify-three-dimensional-figures, identify-trapezoids, interpret-bar-graphs, is-it-a-polygon, line-symmetry, mean-find-the-missing-number, median-find-the-missing-number, multiplication-input-output-tables-find-the-rule, multiply-unit-fractions-by-whole-numbers-using-models, multiplying-fractions-by-whole-numbers-choose-t he-model, nets-of-three-dimensional-figures, parallel-perpendicular-and-intersecting-lines, parallel-sides-in-quadrilaterals, parts-of-a-circle, points-lines-line-segments-rays-and-angles, range-find-the-missing-number, reflection-rotation-and-translation, regular-and-irregular-polygons, rotational-symmetry, rotational-symmetry-amount-of-rotation, scalene-isosceles-and-equilateral-triangles, three -dimensional-figures-viewed-from-different-perspectives, types-of-angles, understanding-probability
	grade-6	absolute-value-and-integers-word-problems, changes-in-mean-median-mode-and-range, classify-rational-numbers-using-a-diagram, classify-triangles, compare-and-order-rational-numbers-using-number-lines, compare-area-and-perimeter-of-two-figures, compare-checking-accounts, front-side-and-top-view, identify-complementary-supplementary-vertical-adjacent-and-congruent-angles, identify-equivalent-expressi ons-using-strip-models, identify-polyhedra, identify-trapezoids, interpret-bar-graphs, interpret-double-bar-graphs, interpret-graphs-of-proportional-relationships, interpret-histograms, line-symmetry, mean-median-mode-and-range-find-the-missing-number, model-and-solve-equations-using-algebra-tiles, nets-of-three-dimensional-figures, occupations-education-and-income, quadrants, rational-numbers-fin d-the-sign, reflection-rotation-and-translation, rotational-symmetry, rotational-symmetry-amount-of-rotation, similar-and-congruent-figures, understanding-area-of-a-triangle, understanding-area-of-tra pezoids, understanding-percents-strip-models, which-figure-is-being-described, which-is-the-better-coupon, which-model-represents-the-ratio
	grade-7	apply-addition-and-subtraction-rules, apply-multiplication-and-division-rules, bases-of-three-dimensional-figures, changes-in-mean-median-mode-and-range, classify-quadrilaterals, classify-rational-num bers-using-a-diagram, compare-and-order-integers, cross-sections-of-three-dimensional-figures, describe-a-sequence-of-transformations, front-side-and-top-view, identify-alternate-interior-and-alternat e-exterior-angles, identify-complementary-supplementary-vertical-and-adjacent-angles, identify-equivalent-linear-expressions-using-algebra-tiles, identify-linear-and-nonlinear-functions, identify-refl ections-rotations-and-translations, identify-trapezoids, identify-trends-with-scater-plots, interpret-circle-graphs, interpret-graphs-of-proportional-relationships, line-symmetry, make-predictions-wi th-scatter-plots, mean-median-mode-and-range-find-the-missing-number, model-and-solve-equations-using-algebra-tiles, nets-of-three-dimensional-figures, parallel-perpendicular-and-intersecting-lines, p arts-of-a-circle, perimeter-and-area-changes-in-scale, rational-numbers-find-the-sign, rotational-symmetry, rotational-symmetry-amount-of-rotation, similar-and-congruent-figures, simplify-expressions-by-combining-like-terms-with-algebra-tiles, transversals-of-parallel-lines-name-angle-pairs, which-is-the-better-coupon
	grade-8	angle-angle-criterion-for-similar-triangles, apply-addition-and-subtraction-rules, apply-addition-subtraction-multiplication-and-division-rules, apply-multiplication-and-division-rules, base-plans, ch anges-in-mean-median-mode-and-range, classify-quadrilaterals, compare-and-order-integers, compare-linear-functions-graphs-and-equations, compare-linear-functions-tables-graphs-and-equations, congruent -triangles-sss-sas-and-asa, describe-a-sequence-of-transformations, front-side-and-top-view, identify-alternate-interior-and-alternate-exterior-angles, identify-complementary-supplementary-vertical-ad jacent-and-congruent-angles, identify-congruent-figures, identify-functions-graphs, identify-linear-and-nonlinear-functions-graphs-and-equations, identify-linear-and-nonlinear-functions-tables, identi fy-lines-of-best-fit, identify-reflections-rotations-and-translations, identify-similar-triangles, identify-trapezoids, identify-trends-with-scatter-plots, interpret-graphs-of-proportional-relationshi ps , interpret-the-slope-and- y -intercept-of-a-linear-function, irrational-numbers-on-number-lines, line-symmetry, make-predictions-with-scatter-plots, mean-median-mode-and-range-find-the-missing-number model-and-solve-equations-using-algebra-tiles, multiply-polynomials-using-algebra-tiles, nets-of-three-dimensional-figures, parts-of-a-circle, parts-of-three-dimensional-figures, perimeter-and-area-changes-in-scale, quadrants-and-axes, rotational-symmetry, rotational-symmetry-amount-of-rotation, similar-and-congruent-figures, transversals-of-parallel-lines-name-angle-pairs
	kindergarten	addition-sentences-up-to-10-what-does-the-model-show, addition-sentences-up-to-10-which-model-matches, addition-sentences-up-to-5-what-does-the-model-show, addition-sentences-up-to-5-which-model-match es, am-or-pm, are-there-enough, circles, classify-shapes-by-color, coin-names-penny-through-quarter, compare-sides-and-corners, compare-size-weight-and-capacity, compare-two-groups-of-coins-pennies-th rough-dimes, cones, count-corners, count-cubes-up-to- 10 , count-cubes-up-to- 5 , count-dots- 0 -to- 5 , count-dots-up-to-10, count-money-pennies-and-nickels, count-money-pennies-through-dimes, count-on-ten-f rames-up-to-10, count-pictures-up-to-10, count-pictures-up-to-3, count-pictures-up-to-5, count-scattered-shapes-up-to-10, count-scattered-shapes-up-to-5, count-shapes-in-rings-up-to-10, count-shapes-i n-rows-up-to-10, count-shapes-in-rows-up-to- 5 , count-shapes-up-to- 3 , count-sides, count-sides-and-corners, count-to-100, count-to-fill--ten-frame, cubes, curved-parts, cylinders, different, equal-sid n -rows-up-to-10, count-shapes-in-rows-up-to-5, count-shapes-up-to-3, count-sides, count-sides-and-corners, count-to-100, count-to-fill-a-ten-frame, cubes, curved-parts, cylinders, different, equal-sid es, fewer-and-more-compare-by-counting, fewer-and-more-compare-by-matching, fewer-and-more-compare-in-a-mixed-group, fewer-and-more-up-to-20, fewer-more-and-same, flat-and-solid-shapes, hexagons, hold s -more-or-less, identify-halves-thirds-fourths, identify-pictures-with-symmetry, identify-shapes-traced-from-solids, inside-and-outside, introduction-to-symmetry, light-and-heavy, match-analog-and-dig ital-clocks, match-analog-clocks-and-times, match-digital-clocks-and-times, more-or-less-likely, name-the-three-dimensional-shape, name-the-two-dimensional-shape, one-less-with-pictures-up-to-10, one-less-with-pictures-up-to-5, one-more-and-one-less-with-pictures-up-to-10, one-more-with-pictures-up-to-10, one-more-with-pictures-up-to-5, ordinal-numbers-up-to-fifth, ordinal-numbers-up-to-tenth, rec tangles, represent-numbers-up-to-10, represent-numbers-up-to-20, represent-numbers-with-pictures-up-to-3, represent-numbers-with-pictures-up-to-5, represent-numbers-with-shapes-up-to-3, represent-numb ers-with-shapes-up-to-5, select-three-dimensional-shapes, select-two-dimensional-shapes, shapes-of-everyday-objects, spheres, square-corners, squares, subtraction-sentences-up-to-10-what-does-the-mode 1-show, subtraction-sentences-up-to-10-which-model-matches, subtraction-sentences-up-to-5-what-does-the-model-show, subraction-sentences-up-to-5-which-model-matches, take-apart-10-words, take-apart-n umbers-up-to-10-words, take-apart-numbers-up-to-5-words, tall-and-short, times-of-everyday-events, triangles, wide-and-narrow
	pre-k	
	precalculus	determine-continuity-on-an-interval-using-graphs, determine-continuity-using-graphs, determine-one-sided-continuity-using-graphs, find-limits-at-vertical-asymptotes-using-graphs, identify-graphs-of-co ntinuous-functions, outliers-in-scatter-plots, solve-a-triangle

Table 20: Full skill summary (part 3), including math skills for grade 1-8 and pre-k, kindergarten and pre-calculus.

Table 21: Question examples for each skill (part 1).

Table 22: Question examples for each skill (part 2).

Subject: Math Skill: identify-alternate-interior-and-alternate-exterior-angles Description: line $\{R T\}$ and line $\{\mathrm{UW}\}$ are parallel lines. Which angles are alternate interior angles? Picture: Choices: [angle\{TSV\} and angle\{UVS\}, angle\{TSV\} and angle\{TSQ\}, angle\{TSV\} and angle $\{$ RSV $\}$, angle $\{T S V\}$ and angle $\{\mathrm{WVS}\}$,] Answer index: 0	Subject: Math Skill: identify-complementary-supplementary-vertical-adjacent-and-congruent-angles Description: Which angle is vertical to angle $\{3\}$? Picture: Choices: [angle $\{6\}$, angle $\{5\}$, angle $\{4\}$, angle $\{2\}$,] Answer index: 0
Subject: Math Skill: identify-complementary-supplementary-vertical-and-adjacent-angles Description: Which angles are adjacent to each other? Picture: Choices: [angle $\{1\}$ angle $\{3\}$ and angle $\{7\}$, angle $\{1\}$ angle $\{5\}$ and angle $\{1\}$ angle $\{4\}$, angle $\{8\}$ and angle $\{4\}$, angle $\{1\}$ angle $\{0\}$ and angle $\{4\}$,] Answer index: 1	Subject: Math Skill: identify-congruent-figures Description: Are these shapes congruent? Picture: Choices: [no, yes,] Answer index: 1
Subject: Math Skill: identify-direct-variation-and-inverse-variation Description: Which equation shows direct variation? Picture: None Choices: $y=\frac{x}{-34} y=\frac{x}{-34}$ Answer index: 1	Subject: Math Skill: identify-equivalent-expressions-using-strip-models Description: This model represents the expression $\mathrm{x}+\mathrm{x}+1+1$. Which expression is equivalent to $\mathrm{x}+\mathrm{x}+1+1$? Picture: \qquad Choices: $[4 \mathrm{x}, 2 \mathrm{x}+3,3 \mathrm{x}+1,2 \mathrm{x}+2$,] Answer index: 3
Subject: Math Skill: identify-equivalent-fractions-on-number-lines Description: Is $1 / 2$ equivalent to $1 / 3$? Picture: Choices: [no, yes,] Answer index: 0	Subject: Math Skill: identify-equivalent-fractions-using-number-lines Description: Is $2 / 3$ equivalent to $4 / 6$? Picture: Choices: [yes, no,] Answer index: 0
Subject: Math Skill: identify-equivalent-linear-expressions-using-algebra-tiles Description: These tiles represent the expression $3 x+5 x$. Which expression is equivalent to $3 x+5 x$? Picture: \square Choices: $[\mathrm{x}+8,2 \mathrm{x}, 8 \mathrm{x}, 8 \mathrm{x}+2$,] Answer index: 2	Subject: Math Skill: identify-faces-of-three-dimensional-figures Description: Which shape has a circle as a face? Picture: None Choices: Answer index: 1
Subject: Math Skill: identify-faces-of-three-dimensional-shapes Description: Which shape has a circle as a face? Picture: None Choices: Answer index: 1	Subject: Math Skill: identify-fourths Description: Look at the colored part of each shape. Which shape shows one-fourth? Picture: None Choices: Answer index: 3
Subject: Math Skill: identify-functions Description: Look at this graph:Is this relation a function? Picture: Choices: [yes, no,] Answer index: 1	Subject: Math Skill: identify-functions-graphs Description: Which of these relations is a function? Picture: None Choices: Answer index: 3
Subject: Math Skill: identify-functions-vertical-line-test Description: Which of these relations is a function? Picture: None Choices: Answer index: 3	Subject: Math Skill: identify-graphs-of-continuous-functions Description: Is the function $f(x)$ continuous? Picture: Choices: [yes, no,] Answer index: 0
Subject: Math Skill: identify-halves Description: Look at the colored part of each shape. Which shape shows one-half? Picture: None Answer index: 0	Subject: Math Skill: identify-halves-and-fourths Description: Which figure shows fourths? Picture: None Choices: Answer index: 1

Table 23: Question examples for each skill (part 3).

Subject: Math Skill: lines-line-segments-and-rays Description: What is this? Picture: Choices: [line, line segment, ray,] Answer index: 1	Subject: Math Skill: make-predictions-with-scatter-plots Description: Based on the scatter plot below, which is a better prediction for x when $\mathrm{y}=46$? Picture: Choices: [50, 98,] Answer index: 0
Subject: Math Skill: match-addition-sentences-and-models-sums-to-10 Description: Which shows $2+2=4$? Picture: None Choices: \square \square \square Answer index: 0	Subject: Math Skill: match-analog-and-digital-clocks Description: Look at the analog clock:Which digital clock shows the same time? Picture: Choices: Answer index: 0
Subject: Math Skill: match-analog-clocks-and-times Description: What time does the clock show? Picture: Choices: [5:00, 4:30,] Answer index: 0	Subject: Math Skill: match-clocks-and-times Description: What time does the clock show? Picture: Choices: [eight fifty, seven fifty, nine forty,] Answer index: 1
Subject: Math Skill: match-digital-clocks-and-times Description: Which clock shows six thirty-five? Picture: None 5:30 6:35 6:45 Choices: Answer index: 1	Subject: Math Skill: match-exponential-functions-and-graphs Description: formula_desc.png Picture: None Choices: Answer index: 0
Subject: Math Skill: match-exponential-functions-and-graphs-ii Description: formula_desc.png Picture: None Choices: Answer index: 2	Subject: Math Skill: match-fractions-to-models-halves-thirds-and-fourths Description: Look at the colored part of each shape. Which shape shows one-fourth? Picture: None Choices: Answer index: 2
Subject: Math Skill: match-mixed-numbers-to-models Description: Which mixed number is shown? Picture: Choices: [3 3/8, 4 2/8, 3 2/8, 3 5/8,] Answer index: 0	Subject: Math Skill: mean-find-the-missing-number Description: Susan has the following data:If the mean is 25 , which number could r be? Picture: Choices: [29, 38,] Answer index: 0
Subject: Math Skill: mean-median-mode-and-range-find-the-missing-number Description: Jayla has the following data:If the mean is 14 , which number could s be? Picture: Choices: [11, 3,] Answer index: 0	Subject: Math Skill: measure-angles-with-a-protractor Description: Is this angle acute, right, or obtuse? Picture: Choices: [right, obtuse, acute,] Answer index: 2
Subject: Math Skill: median-find-the-missing-number Description: Danny has the following data:If the median is 97 , which number could c be? Picture: Choices: [98, 47,] Answer index: 0	Subject: Math Skill: model-and-solve-equations-using-algebra-tiles Description: Which equation does this set of algebra tiles represent? Picture: 1 [${ }^{[1 /}$ Choices: $[-4 x-1=-9,-8 x-1=-9,8 x-1=-9,-x-1=-10$,] Answer index: 3
Subject: Math Skill: model-and-solve-linear-equations-using-algebra-tiles Description: Which equation does this set of algebra tiles represent? Picture: Choices: $[3 \mathrm{x}=27,3 \mathrm{x}=24,2 \mathrm{x}=26,2 \mathrm{x}=24$,] Answer index: 1	Subject: Math Skill: more Description: Which group has more? Picture: None Choices: Answer index: 0

Table 24: Question examples for each skill (part 4).

Subject：Math Skill：reflection－rotation－and－translation Description：How has this figure been transformed？It has been．．． Picture： Choices：［translated，reflected，rotated，］ Answer index： 1	Subject：Math Skill：regular－and－irregular－polygons Description：Is this shape a regular polygon？ Picture： Choices：［yes，no，］ Answer index： 1
Subject：Math Skill：represent－numbers－up－to－10 Description：Which group has 6 triangles？ Picture：None Choices： Answer index： 0	Subject：Math Skill：represent－numbers－up－to－20 Description：Which picture shows 8 dots？ Picture：None Choices： －৩・ゃゃゃゃへ \square －•••••••• Answer index： 0
Subject：Math Skill：represent－numbers－with－pictures－up－to－3 Description：Which shows 2？ Picture：None Answer index： 0	Subject：Math Skill：represent－numbers－with－pictures－up－to－5 Description：Which shows 1 ？ Picture：None Answer index： 0
Subject：Math Skill：represent－numbers－with－shapes－up－to－3 Description：Which group has 3 circles？ Picture：None	Subject：Math Skill：represent－numbers－with－shapes－up－to－5 Description：Which group has 4 hexagons？ Picture：None Answer index： 0
Subject：Math Skill：rhombuses Description：Which shape is a rhombus？ Picture：None	Subject：Math Skill：rotational－symmetry Description：Does this picture have rotational symmetry？ Picture： Choices：［no，yes，］ Answer index： 0
Subject：Math Skill：rotational－symmetry－amount－of－rotation Description：This image has rotational symmetry．What is the smallest fraction of a full turn you need to rotate the image for it to look the same？ Picture： Choices：［12 of a full turn， 16 of a full turn， 14 of a full turn， 13 of a full turn，］ Answer index： 0	Subject：Math Skill：scalene－isosceles－and－equilateral－triangles Description：Is this triangle scalene？ Picture： Choices：［yes，no，］ Answer index： 1
Subject：Math Skill：select－figures－with－a－given－area Description：Which shape has an area of 7 square units？The shapes are made of unit squares． Picture：None Choices： Answer index： 1	Subject：Math Skill：select－fractions－equivalent－to－whole－numbers－using－models Description：Count the equal parts．What fraction does this picture show？ Choices：［2／4，4／8，8／2，2／8，］ Answer index： 2
Subject：Math Skill：select－solid－shapes Description：Which shape is a cone？ Picture：None Choices： Answer index： 2	Subject：Math Skill：select－three－dimensional－shapes Description：Which shape is a rectangular prism？ Picture：None Choices： Answer index： 2
Subject：Math Skill：select－two－dimensional－shapes Description：Which shape is a hexagon？ Picture：None Answer index： 2	Subject：Math Skill：shapes－of－everyday－objects Description：Which is shaped like a cylinder？ Picture：None Choices：

Table 25：Question examples for each skill（part 5）．

Table 26: Question examples for each skill (part 6).

Table 27: Question examples for each skill (part 7).

[^0]: 1/https://www.ixl.com/
 2https://www.proprofs.com/quiz-school
 https://www.triviaplaza.com/

[^1]: 4https://mathpix.com/

