
Published as a conference paper at ICLR 2024

A RELATED WORK

Vertical Federated Learning. Federated Learning (FL) (McMahan et al., 2016b; Yang et al.,
2019b;a) is a learning paradigm which allows multiple parties to build a machine learning model
collaboratively without centralizing each data owner’s local private data. Depending on whether data
are partitioned by sample or by feature, FL can be further categorized into Horizontal FL (HFL)
and Vertical FL (VFL) (Yang et al., 2019a). VFL (Liu et al., 2022b; Cheng et al., 2021; Jiang et al.,
2022b) is commonly applied in real-world applications in the field of finance and advertising (Cheng
et al., 2020; FedAI-maintainers) where cross-silo participants holding different sets of features of
a common group of users jointly build machine learning models while keeping both local data
and local model private. In VFL, only one participant possesses sensitive label information and is
often referred to as active party while others are referred to as passive parties. Depending on how
model is partitioned among parties, the VFL architecture can be further categorized into aggVFL and
splitVFL (Liu et al., 2022a). In aggVFL, each party possesses a local sub-model, and a non-trainable
aggregation function is used as the global model; while in splitVFL, a trainable aggregation model
is used. Communication efficiency issue is a key bottleneck in VFL training. Approaches such as
FedBCD (Liu et al., 2022b), Compressed-VFL (Castiglia et al., 2022b) (including Quantize and Top-k
compression), Flex-VFL (Castiglia et al., 2022a), AdaVFL (Zhang et al., 2022), and CELU-VFL (Fu
et al., 2022b) enhance VFL system efficiency by enabling each party to perform multiple local
updates during each communication iteration. Although raw data and model parameters are not
shared in NN-based VFL training and inference procedure, the threats of data leakage and model
integrity remain. Existing attacks target either the reconstruction of private data (Li et al., 2022b;
Jiang et al., 2022a) or the compromise of model robustness (Liu et al., 2020b; Zou et al., 2022;
Pang et al., 2023). Private label or private features are both potential targets for data leakage attacks.
Sample-level gradients (SLI) (Li et al., 2022b; Fu et al., 2022a; Sun et al., 2021a; Yang et al., 2022a)
or batch-level gradients (BLI) (Zou et al., 2022) or trained local models (Fu et al., 2022a) can all be
exploit to conduct label inference attacks. Model inversion technique (Jin et al., 2021; Luo et al.,
2021; Li et al., 2022a; Jiang et al., 2022a) for white-box or black-box oracle setting with image
or tabular data; or linear equation solving technique (Ye et al., 2022b;a) for black-box setting with
binary value data can be applied to conduct feature reconstruction attacks. Assigning specific label
to triggered samples (Zou et al., 2022) or adding noise to randomly selected samples (Liu et al.,
2021b) or failing to transmit collaboration information (Liu et al., 2021b) can all result in successful
backdoor attacks. These attacks pose significant challenges to VFL settings and necessitate effective
countermeasures. To mitigate these threats, multiple defense methods have been proposed. Aside
from cryptography techniques such as HE or Secure Multi-Party Computation (MPC) (Yang et al.,
2019a), non-cryptography techniques such as reducing information by Adding Noise (Dwork, 2006;
Li et al., 2022b; Fu et al., 2022a; Zou et al., 2022), Gradient Sparsification (Aji &Heafield, 2017),
Gradient Discretization (Dryden et al., 2016; Fu et al., 2022a), Gradient Compression (Lin et al.,
2018), or the combination of these information reduction techniques (Shokri &Shmatikov, 2015; Fu
et al., 2022a) are often applied. Additionally, emerging defense mechanisms have been proposed
either for specific attacks or multiple type of attacks. Disguising labels (Zou et al., 2022; Jin et al.,
2021), label DP (Ghazi et al., 2021; Yang et al., 2022a), Dispersed Training (Wang et al., 2023)
have proven effective in defending against label inference attacks; Dropout and Rounding (Luo
et al., 2021), Adversarial Training (Sun et al., 2021b; Li et al., 2022a), Fabricated Features (Ye
et al., 2022b) are proposed to prevent input feature leakage; Robust Feature Recovery (Liu et al.,
2021b) has demonstrated its effectiveness for eliminating backdoor attacks, while Mutual Information
Regularization (Zou et al., 2022) and Distance Correlation Regularization (Vepakomma et al., 2019;
Sun et al., 2022) seek to mitigate various types of attacks.

Tree-based VFL. Due to its exceptional model performance and its inherent explainability, tree-based
VFL has garnered widespread applications. Gradient Boosting Decision Tree (GBDT) is the most
commonly employed approach for constructing trees-based VFL with various related algorithms
having been proposed (Cheng et al., 2021; Chen et al., 2021; Fang et al., 2021; Tian et al., 2020;
Xie et al., 2022). Another noteworthy tree-based ensemble algorithm in VFL is Random Forest
(RF) (Ho, 1995) which leverages bagging and parallelism optimization techniques to improve training
and inference efficiency (Liu et al., 2020a; Yao et al., 2022). While most tree-based VFL methods
employ cryptographic approaches to protect sensitive data, some encrypt only partial information to
enhance efficiency (Cheng et al., 2021; Wu et al., 2020) but results in data leakage threats (Chamani
&Papadopoulos, 2020; Takahashi et al., 2023). Thus, various methods have been investigated aiming
to solve the privacy (Cheng et al., 2021; Chen et al., 2021; Feng et al., 2019; Fang et al., 2021; Tian
et al., 2020; Li et al., 2022e) and efficiency (Li et al., 2022e) issue.

16



Published as a conference paper at ICLR 2024

B VFL FRAMEWORK

We include the training algorithm of NN-based VFL (Algorithm 1) as well as the description and
algorithm (Algorithm 3) of the training and inference process of tree-based VFL in this section.

Algorithm 1 A Basic VFL Training Procedure using FedSGD.
Input:learning rates η1 and η2
Output: Model parameters θ1, θ2 ... θK , φ

1: Party 1,2,. . . ,K, initialize θ1, θ2, ... θK , φ.
2: for each iteration j = 1, 2, ... do
3: Randomly sample a mini-batch of samples {x,y} ⊂ D of size n;
4: for each party k=1,2,. . . ,K in parallel do
5: Party k computes Hk = Gk(xk, θk);
6: Party k sends Hk to active party K;
7: end for
8: Active party computes the prediction ŷ = F (H1, . . . ,HK , φ) and loss L = 1

nℓ(y, ŷ);
9: Active party K updates φj+1 = φj − η1

∂ℓ
∂φ ;

10: Active party K computes and sends ∂L
∂Hk

to all other parties;
11: for each party k=1,2,. . . ,K in parallel do
12: Party k computes∇θkL = ∂L

∂θk
= ∂L

∂Hk

∂Hk

∂θk
;

13: Party k updates θj+1
k = θjk − η2∇θkL;

14: end for
15: end for

We also support using Homomorphic Encryption (HE) with Paillier Encryption to protect transmitted
results during training VFL Zou et al. (2022) (see Algorithm 2). In this protocol, Homomorphic
Encryption (HE), denoted as [[]], is applied to the communicated information, i.e., local model outputs
Hk in forward propagation and respective gradients ∂ℓ

∂Hk
in backward propagation. The active party

then computes the gradient of loss with respect to [[Hk]] under encryption, i.e. [[ ∂L
∂Hk

]], and sends the
results back to the passive parties for gradient updates. Note Taylor Expansion is used for gradient
approximation as Paillier Encryption supports only addition and multiplication, following (Liu et al.,
2018). The computed encrypted gradients [[ ∂L

∂Hk
]] are subsequently added with a random local mask

and transmitted to a Trusted Third Party (TTP) for decryption. The public key for the encryption is
generated and distributed to each party by TTP, while the paired private keys are kept at TTP for
decryption.

Algorithm 2 A vertical federated learning framework with Homomorphic Encryption (Zou et al.,
2022)
Require: Learning rate η
Ensure: Model parameters θ1, θ2, . . . , θK

1: Party 1, 2, . . . ,K initializes θ1, θ2, . . . , θK
2: Trusted Third Party (TTP) creates encryption pairs, sends public key to each party
3: for j = 1, 2, . . . do
4: for each passive party k ̸= K in parallel do
5: k computes, encrypts, and sends [[Hk]] to the active party.
6: end for
7: Active party K computes and sends [[ ∂L

∂Hk
]] to all other parties

8: for each party k = 1, 2, . . . ,K in parallel do
9: k computes [[ ∂L∂θk

]] and sends them with a random mask to TTP for decryption.
10: k receives and unmasks∇θkL ← ∂L

∂θk
and updates θj+1

k = θjk − η∇θkL
11: end for
12: end for

In tree-based VFL, the active party first broadcasts the set of record indices for the current node. Next,
each passive party calculates the percentiles for each feature based on those indices. The passive party

17



Published as a conference paper at ICLR 2024

then proceeds to create binary splits for each feature by comparing the feature value of each instance
to the percentile values. After that, the passive party sends back the statistics of each split necessary
for evaluation such as purity to the active party, and the active party selects the best split using a
specific evaluation function. To be precise, Random Forest employs gini impurity for classification,
while XGBoost utilizes its gain function, which is based on the gradient and hessian. Finally, the
active party requests the owner of the best split to send the set of record indices for the children nodes
generated by the best split. Tree-based VFL system continues these procedures recursively until
certain stop conditions, like depth constraints, are satisfied. Algorithm 3 demonstrates training details
of tree-based VFL.

Algorithm 3 A Basic Training Process of Tree-based VFL.
Input: Evaluation function for a split
Output Trained trees:

1: for each tree j = 1, 2, ... do
2: Root Node← randomly sample a subset of record indices;
3: Nodes = [Root Node] {A list of nodes to be divided}
4: while Nodes is not empty do
5: Current node← pop one element of Nodes
6: if Current node satisfies the terminate conditions then
7: Continue
8: end if
9: Active party broadcasts the set of record indices of the current node to all other parties;

10: for each party k=1,2,. . . ,K in parallel do
11: Party k receives the set of record indices of a node to be divided;
12: Party k calculates the statistics for all possible splits and sends them to the active party;
13: end for
14: Active party gathers the statistics of possible splits and picks the best one;
15: if Party k is selected as the best party then
16: Party k sends the sets of record indices of children nodes generated by the best split;
17: end if
18: Active party receives the sets of record indices of children nodes and appends them to Node;
19: end while
20: end for

C QUICK GUIDE TO USE AND EXTEND VFLAIR

In this section, we give a step-by-step user guidance on how to use and extend VFLAIR.

How to Use. Using VFLAIR requires the following steps:

1. Build. Download our code repository from GitHub and prepare all the required environ-
ments using commands shown in Fig. 7(a). Hardware requirements are listed in Tab. 9 in
Appendix D.

2. Prepare Dataset. Prepare or download the dataset into folder ../../share_dataset/,
the default folder that contains all the datasets for experiments.

3. Configure. Modify the configuration JSON file under ./src/configs/ folder to
specify settings, including learning hyper-parameters (e.g. ’epochs’ and ’lr’ for learn-
ing rate etc.), training dataset (’dataset’), training model (’model_list’ for model of
each party), model partition (’global_model’ trainable or not), communication pro-
tocol (’communication’) as well as attacks (’attack_list’) and defense method (’de-
fense’). Then rename (e.g. my_config.json) the configuration file and save it under
./src/configs/ folder. An example is shown in Fig. 7(b). Detailed explanations of all
the parameters are provided in ./src/configs/README.md for NN-based VFL and
./src/configs/README_TREE.md for Tree-based VFL.

4. Train. Use command cd src and python main_pipeline.py --configs
my_config consecutively to start a VFL training. Attack and defense evaluation will also
be performed if specified in configuration file. MP, AP, communication rounds, amount of

18



Published as a conference paper at ICLR 2024

(a) Code download and environment preparation.

(b) Example JSON file.

Figure 7: User guidance.

information transmitted each communication round as well as execution time for reaching
the specified MP is recorded.

5. Evaluate. After training is finished, use ./src/metrics/data_process.ipynb
file to perform evaluations, e.g. calculate DCS, T-DCS, C-DCS.

We summarize the above steps in Fig. 8.

Figure 8: Step-by-step user guidance for using VFLAIR.

How to Extend. Extending our VFLAIR platform is also easy thanks to our modularized design of
all the relative components.

19



Published as a conference paper at ICLR 2024

• New hyper-parameter configurations (e.g. new training optimizer specification) can be
added by modifying functions in ./src/load/LoadConfigs.py file.

• New datasets and data partitioning methods can be added by first placing the raw
data file under ../../share_dataset/ folder and then modifying functions in
./src/load/LoadDataset.py file.

• New VFL models can be added under ./src/models/ folder and loaded via modifying
the ./src/load/LoadModels.py file with proper personalized modification in the
’model_list’ part (see line 10-23 in Fig. 7(b)) of the configuration file.

• New communication protocols can be added by modifying the provided training flow
in ./src/evaluates/MainTaskVFL.py file to realize of the new communication
protocol or by adding a new python file under the same directory of that file if the user finds
the modification significant.

• New attacks can be added by inheriting Attacker class under
./src/evaluates/attacks/ folder for testing time attacks, or by modifying
the main training file ./src/evaluates/MainTaskVFL.py for training time attack.

• New defense methods can be added by modifying
./src/evaluates/defenses/defense_functions.py file and the main
training file ./src/evaluates/MainTaskVFL.py if necessary.

• New party behaviors, e.g. new information exchange strategies for new communication pro-
tocols, can be added by modifying ./src/party/party.py, under ./src/party/
folder.

Use Case: Adding a new attack. Below is a simple example for adding a new attack named
’BatchLabelReconstruction’.

1. New hyper-parameters for ’BatchLabelReconstruction’ attack, e.g. attacker party (’party’),
learning rate (’lr’) and attack model training epochs (’epochs’) in this case, can be added
to the configuration file in the ’attack_list’ part (line 29-37 in Fig. 9(a)). Rename the new
configuration file, e.g. my_new_config.json, and save it under ./src/configs/.

2. Implement necessary code for the new attack ’BatchLabelRecon-
struction’ by inheriting Attacker class (see Fig. 9(b)) under
./src/evaluates/attacks/ folder for testing time attacks. Save it in file
./src/evaluates/attacks/BatchLabelReconstruction.py. Note that,
the name of the attacker class implemented in the file should be aligned with the name of
file, ’BatchLabelReconstruction’ in this case.

3. Run the new attack with command python main_pipeline.py --configs
my_new_config under ./src/ folder.

Use Case: Adding a new local model. We further provide a second example here on adding
a new local model ’MLP2_Softmax’ to VFLAIR. Assume this local model is for the new attack
’BatchLabelReconstruction’ added above.

1. New hyper-parameters for specifying the usage of ’MLP2_Softmax’ model as local model
for each party are ’type’ attribute in ’model_list’ part (line 12 and 17 in Fig. 9(a)), which
should be specified as the name of the model. Then save the modified configuration file
my_new_config.json still under ./src/configs/.

2. New VFL bottom model ’MLP2_Softmax’ can be implemented in
./src/models/mlp.py like shown in Fig. 9(c). In this case, loading this new
model does not need to modify ./src/load/LoadModels.py file.

3. Run ’BatchLabelReconstruction’ attack with new local model ’MLP2_Softmax’ with
command python main_pipeline.py --configs my_new_config under
./src/ folder.

D VFLAIR WORKFLOW

In this section, we present the key code modules and workflow of VFLAIR.

20



Published as a conference paper at ICLR 2024

(a) New JSON file.

(b) New attack. (c) New bottom model.

Figure 9: Adding new class.

Figure 10: Code modules and Workflow of VFLAIR.

As shown in Fig. 10, VFLAIR contains 4 key modules, namely Config Module, Load Module, Train
& Evaluate Module and Metrics Module.

21



Published as a conference paper at ICLR 2024

The Config Module first processes the user-specified configurations (see Appendix C for detail), then
passes it to the Load Module for party preparation. With function load_parties(), each party
separately loads its dataset and local model with function load_dataset_per_party() and
load_models_per_party() respectively.

Afterwards, the training pipeline starts in the Train & Evaluate Module. Communication proto-
cols are implemented within the training pipeline and are controlled by pred_transmit() and
gradient_transmit() functions. All the supported defense are integrated into the training
pipeline. For attacks, training-time attacks (e.g. TB and NTB attacks) are integrated and evaluated
within training pipeline while inference-time attacks that do not affect the training flow (e.g. LI and
FR attacks) are launched and evaluated after the training pipeline. However, they are all prepared by
an AttackerLoader object before the training pipeline starts.

Finally, the Metrics Module processes the recorded results using functions implemented in
data_process.py file and produces evaluation metrics including MP, AP, communication rounds
(#Rounds), amount of information transmitted between parties each round (Amount), execution time
(EXec.Time), DCS, T-DCS and C-DCS.

We compared our framework VFLAIR with FATE, one of the most widely used FL plat-
form supporting a broad range of VFL functionalities, on the system requirements for de-
ployment in Tab. 9, to demonstrate that VFLAIR is a lightweight framework. Accord-
ing to FATE (https://github.com/FederatedAI/FATE/blob/master/deploy/
standalone-deploy/README.md), deploying a stand-alone version of the FATE framework
requires at least a 8 core CPU with 16G memory and 500G hard disk and the downloaded docker
package for deployment is of size 4.92G for version 1.7.1.1. However, for our VFLAIR, a 1 core CPU
with less than 4G memory and less than 4.0G hard disk is required for installation and environment
preparation.

Table 9: Comparison of hardware requirements for installation between FATE and VFLAIR.
CPU memory Installation required hard disk

FATE (stand-alone, version 1.7.1.1) 8 core 16G 4.92G
VFLAIR 1 core 4G <4G

E DETAIL DEFINITION OF ATTACK PERFORMANCE AND ATTACK
PERFORMANCE FOR IDEAL DEFENSES

In this section, we give detailed definition of Attack Performance (AP) for each type of attack we
studied in the literature. In this work, we use the AP for ideal defense AP*= 0.0 indicate a complete
failure of the attack..

1. In Label Inference (LI) Attacks, AP is defined as the ratio of correctly inferred labels
which can be regarded as the label inference accuracy. That is,

APLI =
Number of Samples Correctly Inferred

Number of Total Samples
(4)

One exception is that for LI attacks under binary classification tasks, i.e. NS and DS
(see Appendix F for explanation), we use the AUC of inferred labels instead for better
measurement especially for unbalanced dataset. For both settings, high label inference
accuracy indicates a successful attack.

2. In Feature Reconstruction (FR) Attacks, Mean Squared Error (MSE) is commonly em-
ployed as a measure to evaluate the quality of reconstruction, where a smaller MSE signifies
a higher-quality reconstruction. So we define the AP for FR attacks as a negative correlation
of MSE with a constant shift. Let C denote the constant shift, U0 be the real data stored in
the attacked party, Urec be the data reconstructed by the attacker and function MSE(·, ·) for
calculating the mean square error between the 2 function inputs, AP can be expressed as:

APFR = C −MSE(U0, Urec). (5)

In our evaluation, we use C = 1.0 and normalize all raw input features to [0.0, 1.0] before
training and testing. In this case, MSE(U0, Urec) = E[(u(f)

0 − u
(f)
rec)2] ∈ [0.0, 1.0] where

22

https://github.com/FederatedAI/FATE/blob/master/deploy/standalone-deploy/README.md
https://github.com/FederatedAI/FATE/blob/master/deploy/standalone-deploy/README.md


Published as a conference paper at ICLR 2024

u
(f)
0 , u

(f)
rec are the f th feature of U0, Urec respectively. Thus, APFR ∈ [0.0, 1.0] and a high

AP indicates a strong attack.
3. In Targeted Backdoor Attacks, AP is defined as the number of trigger inserted samples

that is regarded as the target class by the VFL model to the total number of trigger inserted
samples, also the backdoor accuracy, achieved by the final VFL model, that is:

APTB =
Number of Triggered Samples Inferred as Target Class

Number of Triggered Samples
(6)

Same as the 2 kinds of attacks above, a high AP indicates a successful backdoor attack.
4. In Non-targeted Backdoor (NTB) Attacks, the gap of MP on attacked samples relative to

the overall MP on all the samples is defined as AP. That is:

APNTB = MPall −MPattacked_sample (7)

Still, a higher AP indicates a more successful attack.

F EVALUATED ATTACKS

In VFLAIR, all the attacks listed below are supported and evaluated in the benchmark experiments.
Users can easily extend other attacks and evaluate them using our framework.

F.1 LABEL INFERENCE (LI) ATTACKS

In Label Inference (LI) Attacks, the attacker (also the passive party) hopes to steal the sensitive label
information kept at active part. There are multiple ways for the passive attacker to infer private labels.
In this work, we evaluate 6 label inference attacks to assess the vulnerability of a VFL system under
label leakage threat, including: Norm-based Scoring (NS) (Li et al., 2022b), Direction-based Scoring
(DS) (Li et al., 2022b) and Direct Label Inference (DLI) (Li et al., 2022b; Zou et al., 2022) that
exploit sample-level gradients, Batch-level Label Inference (BLI) (Zou et al., 2022) that uses batch-
level gradients, Passive Model Completion (PMC) (Fu et al., 2022a) and Active Model Completion
(AMC) (Fu et al., 2022a) that infer label from trained local models.

1. Norm-based Scoring (NS) (Li et al., 2022b). NS is designed for binary classification task,
and is based on an experimental observation that the norm of gradient ||g||2 for a positive
sample is generally larger than that of a negative sample in an unbalanced dataset. Thus the
passive party can calculate the norm of sample-level gradients transmitted back by the active
party and then infer the sensitive label information according to the norm values.

2. Direction-based Scoring (DS) (Li et al., 2022b). Similar to NS, DS also aims to infer label
in binary classification task. DS is based on the observation that for any given sample pairs
xa, xb, with their sample-level gradient denoted as ga, gb, the cosine similarity of these 2
gradients cos(ga, gb) = gTa gb/(||ga||2||gb||2) has a positive value if xa, xb are of the same
class, and a negative value if xa, xb are of opposite classes. Attack can be launched using
merely gradients that are transmitted back from the active party. However, to make the
attacker more powerful, in the implementation of the attack, the gradient of one positive
sample g+ is additionally given.

3. Direct Label Inference (DLI) (Li et al., 2022b; Zou et al., 2022). DLI is based on the
observation that at passive party, for sample {xi, yi}, ythi element of the gradient transmitted
back from active party gi is the only element having opposite sign compared to others, thus
the label information is revealed.

4. Batch-level Label Inference (BLI) (Zou et al., 2022). There are cases where sample-level
gradient information is protected, when using encryption techniques for example, and only
batch-level gradient is revealed to passive party. BLI is designed to infer labels from this
kind of setting. Inversion model is constructed and trained at passive party to invert label
information from batch-level gradients.

5. Passive Model Completion (PMC) (Fu et al., 2022a). PMC exploits the information of
label inherit in the trained local model at passive party. By adding a randomly initialized
linear layer on top of the trained local model to get a "completion model" and fine-tune the
"completion model" with auxiliary label data, the passive party is able to guess the label of
each sample.

23



Published as a conference paper at ICLR 2024

6. Active Model Completion (AMC) (Fu et al., 2022a). AMC is an enhanced version of
PMC where the attacker (passive party) use a malicious local optimizer which adaptively
scales up the gradient of each parameter in the adversary’s bottom model. This results
in a more accurate trained local model as the overall VFL model is tricked to rely more
on the maliciously optimized local model at passive party. With a more accurate local
model, passive party is expected to obtain a better attack using the same model completion
techniques as PMC.

F.2 FEATURE RECONSTRUCTION ATTACKS

In Feature Reconstruction (FR) Attacks, the attacker aims to recover other parties’ local features
from its local model and all information received from other innocent parties. Both active and passive
party can be the attacker when labels are not needed for completing the attack. When neural network
models serves as local models, targeted features are limited to binary values (Ye et al., 2022b;a) under
a black-box setting in which the attacker neither has any knowledge of nor has access for querying
the local model of the party under attack. Generation based on model inversion can be employed
to reconstruct data by querying the trained model in a black-box oracle manner to recover tabular
data (Luo et al., 2021). For white-box setting that has access to the trained model, model inversion
techniques can also be used to recover image data (Jin et al., 2021) with the knowledge of trained
local model, or with prior knowledge about data (Li et al., 2022a; Jiang et al., 2022a). In this work,
we test the following 2 FR attacks:

1. Generative Regression Network (GRN) (Luo et al., 2021). By querying the trained VFL
model, GRN attack reconstructs data features by matching the VFL prediction of real and
reconstructed data. A generative model is trained to map random noise to targeted features.

2. Training-based Back Mapping by model inversion (TBM) (Li et al., 2022a). When auxiliary
i.i.d. data of the local private data is available at the attacker, TBM utilizes these data to
train a generative model in order to map the embedding feature of the victim party back to
the original input feature. A strong assumption is used for TBM attack in which the attacker
can query the whole trained VFL model with the data it obtained.

F.3 TARGETED BACKDOOR ATTACKS

Targeted Backdoor (TB) Attacks have a clear incorrect leading target and aims to manipulate
the VFL model’s behavior on samples marked with backdoor related features. We evaluated Label
Replacement Backdoor (LRB) (Zou et al., 2022) in this work to assess the vulnerability of a VFL
system under targeted backdoor threat.

1. Label Replacement Backdoor (LRB) (Zou et al., 2022) aims to assign an attacker-chosen
label (target label) τ to input data with a specific pattern (i.e. a trigger). The passive
attacker is assumed of knowing a few clean samples from the target class. The triggered
poison samples are created locally by adding triggers to randomly selected samples from
the passive attacker’s own data. In training, the attacker replaces the embedding of a known
clean sample from the target class with that of a triggered poison sample to replace the
corresponding label of the poisoned sample.

F.4 NON-TARGETED BACKDOOR ATTACK

Unlike TB attacks, Non-targeted Backdoor (NTB) Attacks only aim to affect the utility of the VFL
model. Methods like adding noise to some randomly selected samples (Zou et al., 2022) or by adding
missing features (Liu et al., 2021b) can be exploit during inference. The attacks used to assess the
safety of a VFL system under NTB are listed below:

1. Noisy-Sample Backdoor (NSB) (Zou et al., 2022). In NSB attack, random noise ∼ N (0, 2)
is attached to arbitrarily selected samples by passive party to harm the model utility of VFL.

2. Missing Feature (MF) (Liu et al., 2021b). In MF attack, the embedding of passive party’s
local features of some samples are missing either due to the unstable network issue or due
to the intentional hiding by the passive attacker. Missed features are treated as all 0 in the
implementation.

Detail attack hyper-parameters settings can be seen in Appendix H.3.

24



Published as a conference paper at ICLR 2024

G EVALUATED DEFENSES

In VFLAIR, all the defense methods listed in below are supported and evaluated in the benchmark
experiments. Like for the attacks, users can easily extend other defense techniques and evaluate them
using our framework.

1. Differential privacy with Gaussian noise (G-DP) (Dwork, 2006; Li et al., 2022b; Zou et al.,
2022) or Laplace noise (L-DP) (Dwork, 2006; Fu et al., 2022a; Zou et al., 2022) added to
gradients or local model predictions to defend against attacks launched at passive or active
party.

2. Gradient Sparsification (GS) (Aji &Heafield, 2017; Fu et al., 2022a; Zou et al., 2022) defends
against attacks by dropping elements in gradients that are close to 0.

3. Gradient Perturb (GPer) (Yang et al., 2022a) defends against label leakage attacks by
perturbing the gradients with the sum of gradients from each class added with random
scalars. Label-DP is guaranteed using GPer.

4. Distance Correlation (dCor) (Sun et al., 2022; Vepakomma et al., 2019) defends against
attacks by applying correlation regularization. When the passive party applies this defense
to defend against feature reconstruction attacks, distance correlation is calculated between
input features Xk and local embedding G(Xk, θk) at each party in order to limit redundant
information of Xk kept in G(Xk, θk). In contrast, when active party applies this defense to
defend against label inference attacks or backdoor attacks, distance correlation is calculated
between label Y and G(Xk, θk) of each party to limit redundant information of Y kept in
G(Xk, θk). log(dCor(Xk, G(Xk, θk)) and log(dCor(Y,G(Xk, θk)) are used in practice
instead of dCor(Xk, G(Xk, θk) and dCor(Y,G(Xk, θk) to stabilize training.

5. Confusional AutoEncoder (CAE) (Zou et al., 2022) defends against label related attacks by
disguising labels with an encoder and reconstruct the original label with the paired decoder.
Confusion is added to map one class to multiple classes to further disguise label information.

6. Discrete-gradient-enhanced CAE (DCAE) (Zou et al., 2022) defends against attacks by
applying discrete gradients along with CAE to get a stronger defense.

7. Mutual Information regularization Defense method (MID) (Zou et al., 2023) defends against
attacks by limiting the information of label contained in local embedding.

Detailed hyper-parameters of these defenses can be found in Appendix H.4.

H EXPERIMENTAL SETTINGS

We mainly use NVIDIA GeForce RTX 3090 for all the benchmark experiments except for tree-based
VFL related experiments for which we use Intel(R) Xeon(R) CPU E5-2650 v2 instead. All the
experiments are repeated 5 times with different random seeds. The stopping criterion is determined as
reaching a predefined number of epochs, while ensuring convergence at the same time. The reported
results include both the mean values and the corresponding standard deviations. Other experimental
settings are listed below.

H.1 MODELS AND DATASETS

We construct our benchmark experiments on the following 9 datasets. The local models used for
each dataset are listed in Tab. 10. Additionally, for the splitVFL setting, we employ a 1-layer MLP
model as the global model for datasets other than Cora, for which a 1-layer graph convolution layer is
adopted to pair with the GCN it adopts as local model, while a non-trainable global softmax function
is used for the aggVFL setting.

• MNIST (Yann LeCun). The MNIST dataset comprises handwritten digits and consists of
a training set with 60, 000 examples, along with a test set containing 10, 000 examples,
distributed across 10 classes. All samples have been standardized in size and centered within
32× 32 pixel grayscale images. In our experiments, we utilize the entire dataset, and each
sample is horizontally divided into equal halves and assigned to respective parties.

25



Published as a conference paper at ICLR 2024

Table 10: Summary of evaluated datasets under NN-based VFL. In "#Samples" column, the values
denote the number of training and testing samples separately. In "Feature Partition" column, if the
number of features is equal among each party, we present only one number; ’[]’ marks the number of
features after extending discrete feature to one-hot features; ’/’ is used to separate the feature partition
for 2-party VFL and 4-party VFL, otherwise the number stands for the feature partition of 2-party
VFL. In "#Parameters / #Nodes" column, the value denotes the number of trainable parameters for
each local model for neural network or logistic regression local model and denotes the number of
nodes in total of each side for tree-based local model. I and C stands for the number of input features
specified in Appendix H.1 and #Class respectively. (p) and (a) refer to passive and active party
respectively.

Dataset #Class #Samples
Feature
Partition

Local Model
(active & passive party) #Parameters / #Nodes

MNIST (Yann LeCun) 10 60000; 10000 392 MLP-2 (I-32-C) 12.9K
CIFAR10 (Krizhevsky &Hinton, 2009) 10 50000; 10000 512 / 258 Resnet18 11.17M

CIFAR100 (Krizhevsky &Hinton, 2009) 100 50000; 10000 512 / 258 Resnet18 11.17M
NUSWIDE (Chua et al., 2009) 5 60000; 40000 1000 (p), 634 (a) MLP-2 (I-32-C) 32.2K (p), 20.5K (a)

Breast Cancer (Street et al., 1993) 2 454; 114 15 MLP-2 (I-32-C) 2.3K
Diabetes (Kahn) 2 614; 154 4 Logistic Regression 10

Adult Income (Becker &Kohavi, 1996) 2 34153; 14637 7 [15 (p), 93 (a)] MLP-4 (I-64-128-64-C) 17.7K (p), 22.7K (a)
Criteo (Guo et al., 2017) 2 183362; 1650263 13 (p), 26 (a) Wide&Deep (Cheng et al., 2016) 1040.1M (p), 73.2K (a)
Avazu (Qu et al., 2018) 2 727722; 80857 9 (p), 13 (a) Wide&Deep (Cheng et al., 2016) 144.1M (p), 208.1M (a)

Cora (McCallum et al., 2000) 7 140; 1000 716 2-layer GCN (Kipf &Welling, 2017) 23.2K
News20-S5 (Lang, 1995) 5 4000; 1000 49658 MLP-5 3.2M

Credit (Dua &Graff, 2017) 2 24000; 6000 12 (p), 11 (a)
Logistic Regression 26 (p), 24 (a)

MLP-4 (I-100-50-20-C) 7.4K (p), 7.3K (a)
RandomForest / XGBoost 580 / 620

Nursery (Dua &Graff, 2017) 5 10368; 2592 4
Logistic Regression 40 (p), 65 (a)

MLP-3 (I-200-100-C) 22.2K (p), 23.2K (a)
RandomForest / XGBoost 402 / 415

• CIFAR10 (Krizhevsky &Hinton, 2009). The CIFAR10 dataset consists of 60, 000 colour
images, each of size 32× 32, of 10 classes, with 6, 000 images per class: 5, 000 for training
and 1, 000 for testing. All the data are used in our experiments. Each sample is horizontally
split in to equal halves and assigned to respective parties under 2-party VFL setting, or is
equally split into 4 parts of size 16 × 16 and assigned to respective parties under 4-party
VFL setting.

• CIFAR100 (Krizhevsky &Hinton, 2009). Similar to CIFAR10 dataset, CIFAR100 dataset
consists of 60, 000 32× 32 colour images, but are distributed across 100 classes containing
600 images each: 500 for training and 100 for testing. All the data are used in our experi-
ments. Each sample is horizontally split in to equal halves and assigned to each party under
2-party VFL setting, or is equally split into 4 parts of size 16 × 16 and assigned to each
party under 4-party VFL setting.

• NUSWIDE (Chua et al., 2009). NUSWIDE dataset is a web image dataset that includes:
(1) 269, 648 images and the associated tags from Flickr; (2) 5 types of low-level features
extracted from the images and 1 bag of words feature of 500 dimension; (3) ground-truth
label for 81 concepts. In our experiments, we use all the 5 low-level image features, that
is a total of 634 features, for the active party and use the top 1000 frequent tags associated
to the images for the passive party. We use only data from ’buildings’, ’grass’, ’animal’,
’water’ and ’person’ in our experiments. For binary classification tasks, we use only data
from ’clouds’ and ’person’.

• Breast Cancer (Street et al., 1993). Breast Cancer dataset is a tabular dataset consists of
30 statistical descriptions of 568 breast tumors which are categorized as either malignant
(cancerous) or benign(non-cancerous). In our experiments, we use 20% of the whole dataset
samples for testing and the rest for training. Each party possesses 15 statistical description
features.

• Diabetes (Kahn). The Diabetes dataset comprises 768 samples, each accompanied by 8
diagnostic measurements corresponding to individual patients, along with the diagnosis
indicating whether the patient has diabetes. We also use 20% of the whole dataset samples
for testing and the rest for training. Each party possesses 4 diagnostic measurements.

• Adult Income (Becker &Kohavi, 1996). The Adult Income dataset consists of 14 distinct fea-
tures, including demographic information such as age, education, and occupation, collected
from a dataset of 48, 790 individuals. The primary task associated with this dataset is to
predict whether a person earns an annual income exceeding 50K. We use 30% of the whole

26



Published as a conference paper at ICLR 2024

dataset samples for testing and the rest for training. Category features are first changed to
one-hot features before sending into the model for prediction. Passive party obtains the
6 non-category features as well as a category feature ’workclass’, while the active party
controls the rest 7 category features. After extending the categorical discrete features, 15
and 93 features are kept separately at each party.

• Criteo (Guo et al., 2017) The Criteo dataset contains real world click-through data of display
advertisements served by Criteo of 7 days and whether the advertisement has been clicked or
not. The primary task is to predict whether clicktion is done. Only 1, 833, 625 samples from
the whole dataset is used in our experiments with 90% used for training and the rest 10%
used for testing following previous work (Fu et al., 2022c). Each sample has 26 anonymous
categorical features assigned to passive party and 13 continuous features assigned to active
party also following previous work (Fu et al., 2022c).

• Avazu (Qu et al., 2018) The Avazu dataset contains 11 days real world click-through
data from Avazu. The primary task is also to predict whether clicktion is done. We use
only 808, 579 samples from the whole dataset in our experiments with 90% for training
and rest 10% for testing following previous work (Fu et al., 2022c). Each sample has 9
anonymous categorical features assigned to passive party and 13 categorical features that
are not anonymous assigned to active party also following previous work (Fu et al., 2022c).

• Cora (McCallum et al., 2000) The Cora dataset is a citation network dataset with nodes
representing computer science research papers and edges representing citations between
them. The task is to predict the category of a node, which falls into one of the following 7
categories: ’Neural_Networks’, ’Probabilistic_Methods’, ’Genetic_Algorithms’, ’Theory’,
’Case_Based’, ’Reinforcement_Learning’ and ’Rule_Learning’. A total of 2708 nodes are
provided in the dataset, with 140 nodes with labels and are used as training data. We use
1000 of the rest for testing. A total of 1432 features are provided for each node and we split
them equally and signed to each party.

• News20-S5 (Lang, 1995) The News20 dataset, also the 20 Newsgroups dataset, is a collection
of approximately 20, 000 newsgroup documents, partitioned (nearly) evenly across 20 differ-
ent newsgroups. We use only the first 5 categories, namely ’alt.atheism’, ’comp.graphics’,
’comp.os.ms-windows.misc’, ’comp.sys.ibm.pc.hardware’ and ’comp.sys.mac.hardware’ for
our experiments, resulting in a total of 5, 000 samples. We use 80% of the data for training
and the rest 20% for testing. Each party controls 49, 658 features in our setting.

• Credit (Dua &Graff, 2017). Credit dataset comprises 30, 000 samples, each with 23 features,
including attributes like age and education level. The primary objective here is to predict
the likelihood of default payment. For our experimentation, we allocate 20% of the entire
dataset for testing, while the remaining 80% is designated for training. While the passive
party owns the 12 features related to the amount of bill statement and previous statement,
the active party possesses the other 11 features related background information and repay
statement.

• Nursery (Dua &Graff, 2017). Nursery dataset consists of 12, 960 samples of 8 features with
the task of predicting the recommendation level of applications for nursery schools. We also
use 20% of the whole dataset samples for testing and the rest for training. While the active
party owns 4 features related to family structure and financial standings, the passive party
has other 4 features.

H.2 VFL MAIN TASK TRAINING HYPER-PARAMETERS

We introduce the hyper-parameters uesd for MP evaluations and benchmarks showed in Tabs. 3 to 7
and 13 in the following.

For NN-based VFL, the learning rate and training epochs use for reporting the MP listed in Tabs. 3, 4,
6, 7 and 13 are included in Tabs. 11 and 12. A batchsize of 1024 is used throughout all the experiments
(except for MNIST, Criteo, Avazau and News20-S5 which uses a batchsize of 2048, 8192, 8192, 128
respectively) and is not listed in the table. For tree-based VFL, for reporting the MP listed in Tab. 5,
each party is equipped with a number of 5 trees each of depth 6 under all circumstances. Note that
learning rate is only utilized for XGBoost and is set to 0.003 in the experiments.

27



Published as a conference paper at ICLR 2024

Table 11: Hyper-parameters for Tabs. 3, 4, 7 and 13. LR is short for learning rate.

Dataset aggVFL, FedSGD aggVFL, FedBCD splitVFL, FedSGD splitVFL, FedBCD
LR epochs LR epochs LR epochs LR epochs

MNIST 0.01 30 0.005 30 0.01 30 0.005 30
CIFAR10 (2-party) 0.001 30 - - 0.001 30 - -
CIFAR10 (4-party) 0.001 30 - - 0.001 1024 - -

CIFAR100 (2-party) 0.01 30 - - 0.01 30 - -
CIFAR100 (4-party) 0.001 40 - - 0.001 40 - -

NUSWIDE 0.003 10 0.003 10 0.006 10 0.003 10
Breast Cancer 0.05 50 0.005 50 0.05 50 0.005 50

Diabetes 0.05 80 0.01 80 0.05 80 0.01 80
Adult Income 0.01 50 0.001 50 0.01 50 0.001 50

Criteo 0.0001 5 - - 0.0001 5 - -
Avazu 0.0001 10 - - 0.0001 10 - -
Cora 0.01 20 - - 0.01 20 - -

News20-S5 0.001 80 - - 0.002 80 -
Credit (LR) 0.6 300 - - 0.6 300 - -
Credit (NN) 0.01 40 - - 0.01 40 - -

Nursery (LR) 0.5 40 - - 0.5 40 - -
Nursery (NN) 0.01 40 - - 0.01 40 - -

Table 12: Hyper-parameters for Tab. 6. Note that the hyper-parameters for the FedSGD and FedBCD
in Tab. 6 are the same as that in Tab. 3.

Dataset Quantize Top-k CELU-VFL
LR epochs LR epochs LR epochs ξ

MNIST 0.03 30 0.05 30 0.008 30 0.5
NUSWIDE 0.003 10 0.003 10 0.008 10 0.8

H.3 ATTACK HYPER-PARAMETERS

Our evaluated attacks can be categorized into Label Inference (LI) attacks, Feature Reconstruction
(FR) attacks, Targeted Backdoor (TB) attacks and Non-targeted Backdoor (NTB) attacks. Each
attack is launched separately on the VFL systems trained with the hyper-parameters listed above in
Appendix H.2. Specific hyper-parameters for each attack is listed in below if exist.

• For LI attacks, attacker is the passive party. In NS (Li et al., 2022b), DS (Li et al., 2022b)
and DLI (Li et al., 2022b; Zou et al., 2022), no other attack related hyper-parameter needs
to be specified. However, for MNIST dataset, in order to achieve a higher MP, we use a
learning rate of 0.001 for VFL model training under binary classification tasks (DS attack).
In BLI (Zou et al., 2022), learning rate and number of training epoch for the inference model
are set to 0.05 and 10000 respectively. In AMC and PMC (Fu et al., 2022a), we randomly
take 4 training samples from each class to form the auxiliary labeled dataset for training of
the "completion model". Both the trained local model and the classification head used to
complete the model are fine-tuned using the auxiliary labeled dataset and some non-labeled
data from the training dataset. Number of "completion model" training epochs, learning rate
and training batchsize are set to 25, 0.002, 16 separately for MNIST and CIFAR10 datasets
and are set to 20, 0.002, 16 separately for NUSWIDE dataset. Note that for better attack
stability, we change the VFL main task learning epoch to 100 for PMC and AMC under all
the 3 datasets.

• For FR attacks, attacker is the active party. In GRN (Luo et al., 2021), following the original
paper, the reconstruction model is trained for 60 epochs with a batchsize of 1024 for all
datasets, as well as a learning rate of 0.005 for MNIST dataset and 0.0001 for CIFAR10
dataset. While in TBM (Li et al., 2022a), the reconstruction model is trained for 50 epochs
with a learning rate of 0.0001 and a batchsize of 32. Note that, since TBM requires auxiliary
data with the same distribution as the training data, we use 10% of the training data to form
the auxiliary dataset and train the VFL model using only the rest 90% following the original
work (Li et al., 2022a).

28



Published as a conference paper at ICLR 2024

• For TB attacks, LRB (Zou et al., 2022) is evaluated with the passive party being the attacker.
Target class is randomly selected for each training. Following previous work (Zou et al.,
2022), 1% of the data is randomly selected and attached with specific trigger of 4 pixels to
form backdoor samples for MNIST and CIFAR10 datasets, while samples that have value 1
at the last bit of the tag data, which take up less than 1% of the whole dataset, are treated as
backdoor samples for NUSWIDE dataset.

• For NTB attacks, attack is done by the passive party at inference time. In NSB (Zou et al.,
2023), 1% of the testing samples are randomly selected and added with random noise
sampled from N (0, 2) by the attacker party. In MF (Liu et al., 2021b), a missing rate of
0.25 is evaluated which means during inference, a quarter of the intermediate local model
output from the passive attacker is replaced with 0 before transmitted to the active party for
aggregation.

H.4 DEFENSE HYPER-PARAMETERS

To ensure a comprehensive benchmark, we evaluate a total of 8 defense methods using our proposed
benchmark pipeline. For each defense method, we systematically test different parameters to ensure a
thorough and adequate evaluation. When defenses are applied to a VFL under a particular attack, all
the hyper-parameters are not changed compared to that when that attack is applied. Detailed defense
related experimental hyper-parameter settings are listed below:

• In L-DP or G-DP (Dwork, 2006; Li et al., 2022b; Zou et al., 2022), gradients are first
2-norm clipped with 0.2 when the defense is applied at the active party. When passive party
applies this defense, noises are added to normalized local prediction results. Then noise
with "diversity" scale parameter or standard deviation ranging from 0.0001 to 1.0 is added
to clipped gradients.

• In GS (Aji &Heafield, 2017; Fu et al., 2022a; Zou et al., 2022), drop rate ranging from
95.0% to 99.5% are evaluated in the experiments.

• In GPer (Yang et al., 2022a), we conduct tests with various standard deviations for the noise
variable u with the value of range 0.0001 to 0.1.

• In dCor (Sun et al., 2022; Vepakomma et al., 2019), we set distance correlation regularizer
coefficient λ from 0.0001 to 0.3 and record the corresponding results.

• In CAE (Zou et al., 2022), we consider various confusional levels with λ2 value ranging
from 0.0 to 1.0 while in DCAE (Zou et al., 2023), we select the same set of confusional
levels and fix the bin number for gradient discrete to 12.

• In MID (Zou et al., 2023), we test the scenario where both active party and passive party
apply MID, which suit the real world application since both sides need to protect themselves
against potential attacks. Hyper-parameter λ that signifies the strength of the defense ranges
from 0.0 to 1000.0.

H.5 C-DCS CALCULATION DETAIL

T-DCS values and C-DCS values are all calculated with respect to 1 single dataset. All T-DCS scores,
i.e. T -DCSLI2 , T -DCSLI10 , T -DCSLI5 , T -DCSLI , T -DCSFR, T -DCSTB , T -DCSNTB are
calculated by averaging the DCS values of each evaluated attack belonging to that type
under the particular dataset. Then C-DCS values are calculated with Eq. (3) using only
T -DCSLI , T -DCSFR, T -DCSTB , T -DCSNTB .

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 ADDITIONAL MAIN TASK PERFORMANCE RESULTS

We place the comparison results of MP and communication rounds (#Rounds) of NN-based VFL
with different local models in Tab. 13 here in the appendix. Together with Tab. 5, we compare
the performance of linear regression, tree and neural network model architecture under 2 different
datasets.

29



Published as a conference paper at ICLR 2024

Table 13: Comparison of MP and communication rounds using different local models in NN-based
VFL with FedSGD communication protocol. We mainly follow (Ye et al., 2022b) for the selection of
MLP model architecture.

Credit Nursery
Linear Regression Neural Network (MLP-4) Linear Regression Neural Network (MLP-3)

aggVFL MP 0.820±0.001 0.826±0.001 0.938±0.001 0.999±0.001
#Rounds 22±10 56±20 58±19 77±13

splitVFL MP 0.821±0.000 0.826±0.001 0.931±0.005 0.999±0.001
#Rounds 21±6 85±20 52±4 102±19

Table 14 presents the MP and running times with and without encryption. The number of epochs for
Credit with LR is reduced to 40 since the training with HE takes a lot of time. The MP is different
from those of Table 13 since the experiment of Table 14 uses the logit-loss even for multi-class
classification. In terms of MP, a slight performance degradation occurs due to the approximation
error caused by Taylor Expansion. The increase in running time due to encryption is more than 1000
times, as we do not currently support GPU for matrix operations on encrypted values.

Table 14: MP and execution time under aggVFL with Homomorphic Encryption.
Dataset Linear Regression (w/o encryption) Linear Regression (w/ encryption)

Credit MP 0.821 ± 0.000 0.805 ± 0.002
Exec.Time [s] 3 ± 0 11149 ± 357

Nursery MP 0.918 ± 0.001 0.912 ± 0.001
Exec.Time [s] 1 ± 0 2971 ± 57

I.2 ADDITIONAL ATTACK AND DEFENSE PERFORMANCE WITH MORE DATASETS

Due to space limit, we place the plot for MPs and APs under MNIST (Fig. 11) and NUSWIDE
(Fig. 12) datasets in this section with detailed analysis of the results. A brief summary of the below
analysis is already included in Sec. 6.2.

I.2.1 MP AND AP

MID defense is capable of achieving a relatively lower AP while maintaining a similar MP compared
to most other defenses, demonstrating its effectiveness in defending against a wide spectrum of attacks
by reducing the information of label Y and local feature Xp kept in Hp with a mutual information
(MI) regularizer.

dCor targets at attacks that explore the information contained in Hp for deducing Y or Xp by
limiting the distance correlation between Hp and Y or Xp for defending against attacks launched
by passive or active party respectively. This defense ideology is similar to that of MID, which
directly regularized the mutual information between Y and Hp. MID performs better than dCor on
gradient-based LI attacks like DS, DLI and BLI, likely due to the fact that limiting the MI between
Hp and Y simultaneously limits the dependency between the correlated gradient gp at passive party
and Y , which is better than reducing the distance correlation between Hp and Y . Additionally, when
compared to other attacks, dCor appears less effective in limiting AP under NTB attacks across all
the 3 datasets which is reasonable since this defense is not designed for defending against attacks that
introduce information loss into transmitted data.

CAE and DCAE focus on disguising label by mapping real one-hot labels to soft-fake labels. CAE
consistently performs well across all datasets when defending against DLI, BLI and LRB attacks,
which utilize merely the information of the current sample without any auxiliary information or data.
For PMC and AMC attacks that rely on auxiliary label information, DCAE is more effective with the
help of information reduction from quantization of gradients. The limited effectiveness of DCAE
against DS attack can be attributed to the fact that the quantization is not effective in perturbing the
direction of the gradient, while DS attack relies on the cosine similarity between the gradient of each
sample and a known sample. These 2 attacks are not designed for FR and NTB attacks.

GS is a defense that injects information loss by sparsifying gradients, i.e. setting gradient elements
with small absolute value to 0.0, during training. As it is the gradients, which is directly related
to labels but not input features, that GS modifies to defend against potential attacks, we do not
benchmark its performance on FR attacks following previous works (Luo et al., 2021; Li et al.,

30



Published as a conference paper at ICLR 2024

2022a). GS shows a strong defense ability for most of the LI attacks but exhibits less than satisfactory
defense results against LRB attack, which replace the gradients of selected samples with those related
to target labels to alter their labels. This is likely due to the fact that GS still preserves the gradient
elements with larger absolute values which are responsible for learning the triggered patterns injected
by the backdoor attack.

DP-G and DP-L are defenses that inject noise to gradients or local model output to defend against
attacks launched by passive or active party respectively. They show similar trend and display a clear
trade off between MP and AP in all the attacks.

GPer targets at defending label inference attacks so we apply it only on label related attacks, i.e. LI
and LRB attacks. GPer guarantees label-DP by perturbing the gradients and performs similarly to
DP-G and DP-L in defending against these attacks, consistent with the original work (Yang et al.,
2022a) which shows that GPer performs the same as adding isotropical noise to gradients.

Figure 11: MPs and APs for different attacks under defenses [MNIST dataset, aggVFL, FedSGD]

I.2.2 VISUALIZATION OF TBM ATTACK

We show the visualization of reconstructed features of TBM attack under various defenses with
MNIST dataset in Fig. 13. All the defense hyper-parameters selected are the most effective one with
highest DCS among the particular defense method, demonstrated in Fig. 11 (sub-figure for TBM)
and Tab. 15. It’s clear from Fig. 13 that, although the reconstructed images are noisy when defense
exits, the contour can still be seen easily. This implies the difficulty for defending against TBM attack
which exploits auxiliary i.i.d. data for feature reconstruction guidance.

I.2.3 DCS, T-DCS AND C-DCS RANKING

We also place the full T-DCS and C-DCS table for MNIST (Tab. 15), CIFAR10 (Tab. 16), NUSWIDE
(Tab. 17) datasets here due to limit of space. Basic analysis has already been included in Sec. 6.2.
The overall relative rankings of all the defenses are still similar to that of other datasets.

We also show the change in C-DCS ranking under different β for CIFAR10 and NUSWIDE here due
to space limit. Similar results can be seen from Figs. 14 and 15 while the ranking fluctuates more

31



Published as a conference paper at ICLR 2024

Figure 12: MPs and APs for different attacks under defenses [NUSWIDE dataset, aggVFL, FedSGD]

Figure 13: Visualization of the feature reconstruction results of TBM attack for MNIST dataset.
All the defense hyper-parameters selected are the most effective ones with highest DCS among the
particular defense method.

under NUSWIDE dataset compared to the other 2 datasets, probably because of the larger drop of
MP for all the defenses when applied to NUSWIDE dataset.

32



Published as a conference paper at ICLR 2024

Figure 14: Change of C-DCS ranking with the change of β. [CIFAR10 dataset, aggVFL, FedSGD]

Figure 15: Change of C-DCS ranking with the change of β. [NUSWIDE dataset, aggVFL, FedSGD]

Figure 16: DCS gap for each attack-defense point [MNIST dataset, splitVFL/aggVFL, FedSGD]

33



Published as a conference paper at ICLR 2024

Table 15: T-DCS and C-DCS for All Defenses [MNIST dataset, aggVFL, FedSGD]
Defense
Name

Defense
Parameter T -DCSLI2 T -DCSLI10 T -DCSLI T -DCSFR T -DCSTB T -DCSNTB C-DCS Ranking

MID 100 0.7371 0.8810 0.8523 0.6184 0.9070 0.9093 0.8217 1
MID 1.0 0.7395 0.8731 0.8464 0.6186 0.9080 0.9070 0.8200 2
MID 10000 0.6989 0.8939 0.8549 0.6145 0.9071 0.9026 0.8197 3
L-DP 0.1 0.7407 0.8566 0.8334 0.6190 0.8957 0.8855 0.8084 4
MID 0.1 0.6937 0.8577 0.8249 0.6205 0.8964 0.8885 0.8076 5
L-DP 0.01 0.7244 0.8577 0.8310 0.6029 0.8920 0.8918 0.8044 6
MID 0.01 0.7411 0.8185 0.8031 0.6169 0.8504 0.8948 0.7913 7
G-DP 0.1 0.7392 0.8528 0.8301 0.6220 0.8913 0.8208 0.7910 8
G-DP 0.01 0.7350 0.8461 0.8238 0.6026 0.8813 0.8167 0.7811 9
MID 0.0 0.7335 0.8058 0.7913 0.6095 0.7862 0.8676 0.7636 10
MID 1e-06 0.7382 0.8048 0.7914 0.6125 0.7798 0.8680 0.7629 11
MID 1e-08 0.7382 0.8063 0.7927 0.6110 0.7714 0.8669 0.7605 12
MID 0.0001 0.6564 0.8037 0.7742 0.6168 0.7720 0.8653 0.7571 13
L-DP 0.001 0.7061 0.7720 0.7588 0.6022 0.7911 0.8725 0.7562 14
dCor 0.3 0.5901 0.7999 0.7579 0.6083 0.8277 0.8241 0.7545 15
dCor 0.1 0.5881 0.7241 0.6969 0.6046 0.8234 0.8203 0.7363 16
G-DP 0.001 0.7038 0.7564 0.7458 0.6021 0.7677 0.8200 0.7339 17
dCor 0.01 0.5858 0.6305 0.6216 0.6022 0.7999 0.8189 0.7106 18
L-DP 0.0001 0.5858 0.6727 0.6553 0.6020 0.6533 0.8238 0.6836 19
G-DP 0.0001 0.5858 0.6632 0.6477 0.6026 0.6640 0.8196 0.6835 20
dCor 0.0001 0.5858 0.6258 0.6178 0.6020 0.6645 0.8161 0.6751 21
GS 99.5 0.7388 0.8873 0.8576 - 0.7189 0.8454 - -
GS 99.0 0.7388 0.8780 0.8502 - 0.7038 0.8313 - -
GS 97.0 0.7388 0.7573 0.7536 - 0.6825 0.8305 - -
GS 95.0 0.7388 0.7232 0.7263 - 0.6732 0.8268 - -

CAE 1.0 0.5858 0.7960 0.7539 - 0.7632 - - -
CAE 0.1 0.5858 0.8144 0.7687 - 0.7124 - - -
CAE 0.5 0.5858 0.7937 0.7521 - 0.7280 - - -
CAE 0.0 0.5858 0.8218 0.7746 - 0.6837 - - -

DCAE 1.0 0.5858 0.9021 0.8389 - 0.7648 - - -
DCAE 0.5 0.5858 0.9039 0.8402 - 0.7396 - - -
DCAE 0.1 0.5858 0.8990 0.8364 - 0.7299 - - -
DCAE 0.0 0.5858 0.9094 0.8447 - 0.7111 - - -
GPer 10.0 0.5903 0.7016 0.6794 - 0.8031 - - -
GPer 1.0 0.7306 0.8097 0.7939 - 0.9045 - - -
GPer 0.1 0.7357 0.8546 0.8308 - 0.8926 - - -
GPer 0.01 0.7360 0.8525 0.8292 - 0.8857 - - -

Table 16: T-DCS and C-DCS for All Defenses [CIFAR10 dataset, aggVFL, FedSGD]
Defense
Name

Defense
Parameter T -DCSLI2 T -DCSLI10 T -DCSLI T -DCSFR T -DCSTB T -DCSNTB C-DCS Ranking

MID 0.01 0.7232 0.9172 0.8784 0.6035 0.8942 0.9286 0.8262 1
MID 1.0 0.7260 0.9173 0.8791 0.6039 0.8931 0.9286 0.8262 2
MID 100 0.7270 0.9161 0.8783 0.6039 0.8931 0.9280 0.8258 3
MID 10000 0.7276 0.9159 0.8782 0.6016 0.8945 0.9284 0.8257 4
MID 0.1 0.7001 0.9175 0.8740 0.6016 0.8906 0.9284 0.8237 5
MID 1e-06 0.7132 0.8600 0.8306 0.6024 0.9123 0.9323 0.8194 6
MID 1e-08 0.7132 0.8594 0.8301 0.6023 0.9123 0.9313 0.8190 7
MID 0.0 0.7132 0.8552 0.8268 0.6023 0.9121 0.9289 0.8175 8
MID 0.0001 0.7118 0.8575 0.8283 0.6034 0.9061 0.9302 0.8170 9
G-DP 0.01 0.7316 0.8965 0.8635 0.6019 0.8809 0.9152 0.8154 10
L-DP 0.01 0.7365 0.8987 0.8663 0.6021 0.8751 0.9146 0.8145 11
L-DP 0.001 0.7041 0.8787 0.8437 0.6023 0.8892 0.9211 0.8141 12
G-DP 0.1 0.7324 0.8947 0.8622 0.6097 0.8670 0.9083 0.8118 13
G-DP 0.001 0.6704 0.8713 0.8311 0.6023 0.8879 0.9241 0.8114 14
L-DP 0.1 0.7353 0.8919 0.8606 0.6034 0.8696 0.9058 0.8098 15
dCor 0.3 0.6116 0.8109 0.7710 0.6012 0.8883 0.9245 0.7963 16
dCor 0.1 0.5879 0.7695 0.7332 0.6030 0.8962 0.9175 0.7875 17
L-DP 0.0001 0.5876 0.7611 0.7264 0.6023 0.9049 0.9083 0.7855 18
G-DP 0.0001 0.5868 0.7487 0.7163 0.6025 0.9046 0.8993 0.7807 19
dCor 0.0001 0.5858 0.6578 0.6434 0.6031 0.9162 0.9558 0.7796 20
dCor 0.01 0.5859 0.6839 0.6643 0.6042 0.9162 0.8982 0.7708 21
GS 99.5 0.7387 0.8956 0.8642 - 0.8877 0.9276 - -
GS 99.0 0.7388 0.8810 0.8526 - 0.8888 0.9282 - -
GS 97.0 0.7388 0.8367 0.8171 - 0.8882 0.9286 - -
GS 95.0 0.7388 0.8049 0.7916 - 0.8895 0.9295 - -

CAE 1.0 0.5918 0.8592 0.8057 - 0.8482 - - -
CAE 0.5 0.5860 0.8633 0.8079 - 0.8557 - - -
CAE 0.1 0.5858 0.8498 0.7970 - 0.9179 - - -
CAE 0.0 0.5858 0.8419 0.7907 - 0.9214 - - -

DCAE 1.0 0.6080 0.8678 0.8159 - 0.8464 - - -
DCAE 0.5 0.6131 0.8780 0.8250 - 0.8556 - - -
DCAE 0.1 0.6090 0.8977 0.8400 - 0.9039 - - -
DCAE 0.0 0.6090 0.9038 0.8449 - 0.9066 - - -
GPer 10.0 0.6422 0.8082 0.7750 - 0.8937 - - -
GPer 1.0 0.6976 0.8913 0.8526 - 0.8838 - - -
GPer 0.1 0.7385 0.8946 0.8634 - 0.8715 - - -
GPer 0.01 0.7392 0.8931 0.8623 - 0.8700 - - -

34



Published as a conference paper at ICLR 2024

Table 17: T-DCS and C-DCS for All Defenses [NUSWIDE dataset, aggVFL, FedSGD]
Defense
Name

Defense
Parameter T -DCSLI2 T -DCSLI5 T -DCSLI T -DCSFR T -DCSTB T -DCSNTB C-DCS Ranking

MID 10000 0.7358 0.8559 0.8159 0.5833 0.7333 0.8707 0.7508 1
MID 1.0 0.7476 0.8472 0.8140 0.5833 0.7331 0.8700 0.7501 2
MID 100 0.7320 0.8536 0.8130 0.5833 0.7326 0.8711 0.7500 3
G-DP 0.1 0.7375 0.8262 0.7966 0.5863 0.7282 0.8675 0.7447 4
L-DP 0.1 0.7389 0.8177 0.7915 0.5863 0.7258 0.8603 0.7410 5
MID 0.1 0.7516 0.8259 0.8011 0.5833 0.7172 0.8563 0.7395 6
MID 0.01 0.7280 0.8092 0.7822 0.5844 0.7151 0.8627 0.7361 7
MID 0.0001 0.7144 0.8097 0.7779 0.5856 0.7040 0.8680 0.7339 8
dCor 0.3 0.7641 0.8411 0.8155 0.5834 0.7289 0.8051 0.7332 9
G-DP 0.01 0.7391 0.7600 0.7530 0.5863 0.7061 0.8549 0.7251 10
L-DP 0.01 0.7395 0.7525 0.7482 0.5863 0.7148 0.8485 0.7244 11
MID 1e-06 0.7022 0.8201 0.7808 0.5860 0.6880 0.8408 0.7239 12
dCor 0.1 0.7442 0.7617 0.7559 0.5841 0.7259 0.8279 0.7234 13
MID 1e-08 0.7066 0.8147 0.7787 0.5862 0.6593 0.8410 0.7163 14
MID 0.0 0.6599 0.8097 0.7598 0.5862 0.6590 0.8414 0.7116 15
L-DP 0.001 0.7291 0.7234 0.7253 0.5863 0.6424 0.8329 0.6967 16
G-DP 0.001 0.7175 0.7237 0.7216 0.5863 0.6379 0.8334 0.6948 17
dCor 0.01 0.7445 0.7021 0.7162 0.5863 0.6336 0.8295 0.6914 18
L-DP 0.0001 0.6783 0.6470 0.6574 0.5863 0.6313 0.8293 0.6761 19
G-DP 0.0001 0.6495 0.6381 0.6419 0.5863 0.6309 0.8290 0.6720 20
dCor 0.0001 0.6496 0.6340 0.6392 0.5864 0.6307 0.8287 0.6712 21
GS 99.5 0.7381 0.8142 0.7888 - 0.6456 0.8415 - -
GS 99.0 0.7404 0.8060 0.7841 - 0.6415 0.8408 - -
GS 97.0 0.7414 0.7672 0.7586 - 0.6376 0.8392 - -
GS 95.0 0.7423 0.7399 0.7407 - 0.6375 0.8385 - -

CAE 1.0 0.6863 0.7822 0.7502 - 0.6830 - - -
CAE 0.5 0.6808 0.7848 0.7501 - 0.6733 - - -
CAE 0.1 0.6808 0.8249 0.7768 - 0.6734 - - -
CAE 0.0 0.6808 0.8212 0.7744 - 0.6807 - - -

DCAE 1.0 0.6716 0.8156 0.7676 - 0.6771 - - -
DCAE 0.5 0.6672 0.8108 0.7629 - 0.6668 - - -
DCAE 0.1 0.6669 0.8651 0.7991 - 0.6746 - - -
DCAE 0.0 0.6669 0.8660 0.7996 - 0.6816 - - -
GPer 10.0 0.6877 0.6722 0.6773 - 0.6222 - - -
GPer 1.0 0.7230 0.7460 0.7383 - 0.6315 - - -
GPer 0.1 0.7395 0.8007 0.7803 - 0.7042 - - -
GPer 0.01 0.7386 0.8412 0.8070 - 0.7193 - - -

Table 18: T-DCS and C-DCS for All Defenses [MNIST dataset, splitVFL, FedSGD]
Defense
Name

Defense
Parameter T -DCSLI2 T -DCSLI10 T -DCSLI T -DCSFR T -DCSTB T -DCSNTB C-DCS Ranking

MID 1.0 0.7380 0.8846 0.8553 0.6065 0.9051 0.9237 0.8226 1
L-DP 0.1 0.7398 0.8700 0.8439 0.6156 0.9092 0.9203 0.8222 2
G-DP 0.1 0.7350 0.8654 0.8393 0.6139 0.9058 0.9271 0.8215 3
MID 10000 0.7372 0.8921 0.8611 0.6064 0.9071 0.9062 0.8202 4
MID 100 0.7371 0.8896 0.8591 0.6082 0.9085 0.9034 0.8198 5
L-DP 0.01 0.7381 0.8603 0.8359 0.6026 0.9099 0.9147 0.8158 6
MID 0.1 0.7398 0.8652 0.8401 0.6241 0.9113 0.8871 0.8156 7
G-DP 0.01 0.7393 0.8562 0.8328 0.6031 0.9060 0.9170 0.8147 8
dCor 0.3 0.5934 0.8876 0.8288 0.6194 0.9072 0.8732 0.8071 9
L-DP 0.001 0.7189 0.8365 0.8130 0.6038 0.8682 0.8663 0.7878 10
MID 0.01 0.7364 0.8455 0.8237 0.6140 0.8421 0.8536 0.7834 11
G-DP 0.001 0.7404 0.8269 0.8096 0.6041 0.8109 0.8775 0.7755 12
dCor 0.1 0.5983 0.8519 0.8012 0.6133 0.8519 0.8212 0.7719 13
MID 1e-06 0.7388 0.8140 0.7990 0.6173 0.7641 0.8394 0.7549 14
MID 1e-08 0.7388 0.8158 0.8004 0.6135 0.7615 0.8421 0.7544 15
MID 0.0 0.7388 0.8147 0.7995 0.6146 0.7524 0.8456 0.7530 16
dCor 0.01 0.5870 0.8020 0.7590 0.6048 0.8111 0.8174 0.7481 17
MID 0.0001 0.7388 0.8137 0.7988 0.6182 0.7324 0.8312 0.7451 18
L-DP 0.0001 0.6472 0.8041 0.7727 0.6046 0.7699 0.8268 0.7435 19
G-DP 0.0001 0.6253 0.7972 0.7628 0.6036 0.7586 0.8212 0.7365 20
dCor 0.0001 0.5858 0.7906 0.7496 0.6053 0.7538 0.8164 0.7313 21
GS 95.0 0.7388 0.8080 0.7941 - 0.7380 0.8345 - -
GS 97.0 0.7388 0.8133 0.7984 - 0.7355 0.8428 - -
GS 99.0 0.7388 0.8334 0.8145 - 0.7590 0.8558 - -
GS 99.5 0.7388 0.8487 0.8267 - 0.7872 0.8636 - -

CAE 1.0 0.5858 0.8252 0.7773 - 0.7741 - - -
CAE 0.5 0.5858 0.8282 0.7797 - 0.7439 - - -
CAE 0.1 0.5858 0.8365 0.7863 - 0.7535 - - -
CAE 0.0 0.5858 0.8410 0.7899 - 0.7574 - - -

DCAE 1.0 0.5858 0.7824 0.7431 - 0.7882 - - -
DCAE 0.5 0.5858 0.7862 0.7461 - 0.7882 - - -
DCAE 0.1 0.5858 0.7773 0.7390 - 0.7882 - - -
DCAE 0.0 0.5858 0.7758 0.7378 - 0.7882 - - -
GPer 10.0 0.5916 0.8037 0.7613 - 0.8490 - - -
GPer 1.0 0.7295 0.8460 0.8227 - 0.9064 - - -
GPer 0.1 0.7369 0.8632 0.8379 - 0.9039 - - -
GPer 0.01 0.7365 0.8712 0.8442 - 0.9025 - - -

35



Published as a conference paper at ICLR 2024

Table 19: T-DCS and C-DCS for All Defenses [MNIST dataset, aggVFL, FedBCD(Q=5)]
Defense
Name

Defense
Parameter T -DCSLI2 T -DCSLI10 T -DCSLI T -DCSFR T -DCSTB T -DCSNTB C-DCS Ranking

MID 1.0 0.6707 0.8794 0.8376 0.6166 0.9034 0.9397 0.8243 1
MID 10000 0.6917 0.8729 0.8366 0.6133 0.9034 0.9417 0.8238 2
MID 100 0.6908 0.8750 0.8381 0.6087 0.9039 0.9347 0.8214 3
MID 0.1 0.6121 0.8730 0.8208 0.6199 0.9030 0.9413 0.8212 4
L-DP 0.1 0.7403 0.8369 0.8176 0.6525 0.8669 0.8506 0.7969 5
G-DP 0.1 0.7385 0.8402 0.8199 0.6262 0.8704 0.8532 0.7924 6
G-DP 0.01 0.7404 0.8376 0.8182 0.6037 0.8976 0.8464 0.7915 7
L-DP 0.01 0.7387 0.8331 0.8142 0.6055 0.8959 0.8472 0.7907 8
MID 0.01 0.6119 0.8357 0.7910 0.6166 0.8075 0.9118 0.7817 9
L-DP 0.001 0.6821 0.7915 0.7696 0.6033 0.8447 0.8668 0.7711 10
G-DP 0.001 0.7132 0.7836 0.7696 0.6051 0.8032 0.8527 0.7576 11
dCor 0.3 0.5900 0.8329 0.7843 0.6071 0.8000 0.8154 0.7517 12
MID 1e-06 0.6156 0.8089 0.7702 0.6144 0.7441 0.8727 0.7504 13
MID 0.0001 0.6155 0.8110 0.7719 0.6217 0.7166 0.8753 0.7464 14
MID 0.0 0.6156 0.8072 0.7689 0.6176 0.7396 0.8542 0.7451 15
MID 1e-08 0.6156 0.8092 0.7705 0.6224 0.7237 0.8522 0.7422 16
dCor 0.1 0.5960 0.7971 0.7569 0.6077 0.6955 0.8115 0.7179 17
L-DP 0.0001 0.5858 0.7246 0.6969 0.6044 0.7083 0.8241 0.7084 18
G-DP 0.0001 0.5858 0.7194 0.6927 0.6034 0.6963 0.8196 0.7030 19
dCor 0.01 0.5858 0.6900 0.6691 0.6052 0.6894 0.8121 0.6940 20
dCor 0.0001 0.5858 0.6763 0.6582 0.6055 0.6714 0.8086 0.6859 21
GS 99.5 0.7388 0.9005 0.8682 - 0.7086 0.8587 - -
GS 99.0 0.7388 0.8896 0.8594 - 0.7093 0.8506 - -
GS 97.0 0.7388 0.7718 0.7652 - 0.6683 0.8483 - -
GS 95.0 0.7388 0.7458 0.7444 - 0.6585 0.8359 - -

CAE 1.0 0.5858 0.9319 0.8627 - 0.7450 - - -
CAE 0.5 0.5858 0.9367 0.8665 - 0.8109 - - -
CAE 0.1 0.5858 0.9664 0.8903 - 0.6757 - - -
CAE 0.0 0.5858 0.9681 0.8917 - 0.6724 - - -

DCAE 1.0 0.5858 0.8734 0.8159 - 0.7311 - - -
DCAE 0.5 0.5858 0.8776 0.8192 - 0.8041 - - -
DCAE 0.1 0.5858 0.8867 0.8265 - 0.6619 - - -
DCAE 0.0 0.5858 0.8919 0.8307 - 0.6896 - - -
GPer 10.0 0.5901 0.7562 0.7230 - 0.7515 - - -
GPer 1.0 0.7317 0.8216 0.8036 - 0.8848 - - -
GPer 0.1 0.7341 0.8398 0.8186 - 0.8829 - - -
GPer 0.01 0.7366 0.8381 0.8178 - 0.8683 - - -

Figure 17: DCS gap Distribution, y-axis represents density [NUSWIDE dataset, splitVFL/aggVFL,
FedSGD]

I.2.4 ADDITIONAL RESULTS ON SPLITVFL AND AGGVFL COMPARISON

We further expand the discussion of the conclusions on the comparison between splitVFL and
aggVFL as well as the comparison between FedBCD and FedSGD given in Sec. 6.2 here due to space
limitations.

The conclusion that when no defense is applied, a splitVFL system is less vulnerable to attacks than
aggVFL is also evident by the results under NUSWIDE dataset, with all the black square points in
Fig. 18 appearing above or close to the red horizontal line at a value of 0.0 and the blue histograms
appearing mostly at the right of the vertical line at a value of 0.0 in Fig. 17, indicating a positive
DCS gap. This shows that a global trainable model can be beneficial to model robustness and safety.
Specifically, the DCS gap is pronounced for attacks that directly exploit the gradients, i.e., DLI and
BLI attacks.

The conclusion that splitVFL has an overall positive effect on boosting defense performance against
attacks is also shown from Figs. 5 and 17 in which most DCS gaps for defenses are positive, especially

36



Published as a conference paper at ICLR 2024

Figure 18: DCS gap for each attack-defense point [NUSWIDE dataset, splitVFL/aggVFL, FedSGD]

for LI, FR and TB attacks. This implies that splitVFL architecture exhibits greater robustness against
potential attacks. However, not all defenses are enhanced in splitVFL setting. For example, in Fig. 16,
MID results in minor negative DCS gaps in several attacks like GRN and NSB, so is GS in MC
attacks.

The DCS ranking under splitVFL setting with FedSGD communication protocol using MNIST
dataset is also included in Tab. 18, which is quite similar to that in Tab. 15 under aggVFL setting with
FedSGD communication protocol using MNIST dataset. This indicates the robustness of our DCS
evaluation metrics as well as the inner consistency of defense abilities under different settings.

I.2.5 ADDITIONAL RESULTS ON FEDBCD AND FEDSGD COMPARISON

The conclusion given in Sec. 6.2 that a system is less vulnerable to attacks under FedBCD setting
when no defense method is applied is also evident from Fig. 19, with all the black square points,
except the one for MF attack, appear on or above the red horizontal line at a value of 0.0. Also,
the vulnerability of a system under FedBCD setting to attacks differs between different attacks.
Specifically, as shown in Figs. 6 and 19, evaluating with MNIST dataset, VFL trained with FedBCD
is much less vulnerable to BLI attack, which exploits batch-level gradient to recover labels. This is
because gradients from earlier epochs of an un-trained model shared under FedSGD reveal more
information about labels compared to FedBCD which only shares gradients every Q > 1 iterations.
Similar results can be seen from Figs. 20 and 21 that compares the DCS between FedSGD and
FedBCD under aggVFL setting with NUSWIDE dataset.

The DCS ranking using FedBCD communication protocol under aggVFL setting using MNIST dataset
is also included in Tab. 19, which is quite similar to that in Tab. 15 using FedSGD communication
protocol under aggVFL setting using MNIST dataset. This also indicates the robustness of our DCS
evaluation metrics as well as the inner consistency of defense abilities under different settings.

I.2.6 CONSISTENCY OF C-DCS RANKING.

We conduct a comparative analysis of the C-DCS rankings that are presented in Tabs. 15 to 19 across
multiple datasets, communication protocols, and model partition strategies. The mean and standard

37



Published as a conference paper at ICLR 2024

Figure 19: DCS gap for each attack-defense point [MNIST dataset, aggVFL, FedBCD/FedSGD]

Figure 20: DCS gap Distribution, y-axis represents density [NUSWIDE dataset, aggVFL, Fed-
BCD/FedSGD]

deviation of the 5 rankings for each defense are calculated and visualized in Fig. 22. Remarkably,
despite the diversity in datasets, communication methods, and model partitioning, the variations in
the rankings remain at a low level. This suggests that the C-DCS rankings are generally consistent
across various datasets, communication protocol and model partition settings, and that the relative
performance of different defense methods is relatively stable under different datasets and settings.

J SOCIAL IMPACT OF THE WORK

Our work introduces an extensible and lightweight VFL platform for research which will for sure
facilitate the research considering VFL. Moreover, our work encourages not only the development
of stronger defense methods, but also the development of new attacks for practical VFL scenarios.
These attacks can be used for either benign or malicious purpose. Developing stronger defense or
exploring related regulations and laws are possible approaches for alleviating the potential negative
impacts.

38



Published as a conference paper at ICLR 2024

Figure 21: DCS gap for each attack-defense point [NUSWIDE dataset, aggVFL, FedBCD/FedSGD]

Figure 22: C-DCS ranking comparison across 3 datasets, 2 communication protocols and 2 dataset
partition strategies presented in Tabs. 15 to 19.

39


	Introduction
	Related Work
	VFL Framework
	Overview of VFLAIR
	VFL Benchmark
	VFL Settings, Models and Datasets
	Attacks and Defenses
	Evaluation Metrics

	Evaluation Results
	VFL Main Task Performance
	Attack and Defense Performance

	Conclusions and Limitations
	Reproducibility Statement
	Related Work
	VFL Framework
	Quick Guide to Use and Extend VFLAIR
	VFLAIR Workflow
	Detail Definition of Attack Performance and Attack Performance for Ideal Defenses
	Evaluated Attacks
	Label Inference (LI) Attacks
	Feature Reconstruction Attacks
	Targeted Backdoor Attacks
	Non-targeted Backdoor Attack

	Evaluated Defenses
	Experimental Settings
	Models and Datasets
	VFL Main Task Training Hyper-parameters
	Attack Hyper-parameters
	Defense Hyper-parameters
	C-DCS Calculation Detail

	Additional Experimental Results
	Additional Main Task Performance Results
	Additional Attack and Defense Performance with More Datasets
	MP and AP
	Visualization of TBM Attack
	DCS, T-DCS and C-DCS ranking
	Additional Results on splitVFL and aggVFL Comparison
	Additional Results on FedBCD and FedSGD Comparison
	Consistency of C-DCS ranking.


	Social Impact of the work

