Supplement

A.1 Notation and Conventions

Below is a summary of all symbols used in Appendices B and C, and in the main text:

Symbol Definition

P Protein pocket: coords xp € R3NP atom types vp € {0, 1}K*Ne,
M Ligand molecule: coords x; € R3*™MM | atom types vy € {0, 135XV,
m Mask function: m € {0,1}"™ selects atoms to regenerate.
C Context atom set: C' £ M,,—;.

T Target atom set: T 2 M,—o.

c Context indicator bit ¢; € {0,1} (lowercase) for each ligand atom.
c Docking confidence map output by Dy, ¢ € [0, 1)V XN
b Backbone flag b; € {0,1} for each pocket atom.

r Residue-type one-hot vector r € {0, 1} "

K, K’ Number of atom types (K) and residue types (K').
T,{SH,DN,SC} Task indicator and three task modes.

Dy Dataset for task 7 {(P;, M;)}¥,.

| Dy | Number of samples for mask m.

Np, Minimal sample size to achieve risk € under mask m.

S Training set S = {(P;, C;, T3) }iy.

© Model parameters.

Py, Qg, @ Prior and posteriors over © (with g depending on S).
R(6), R(6) Empirical and true risk of model 6.

7%(@), R(Q) Expected empirical /population risks under Q.

H(:), H(- | ) (Conditional) Shannon entropy.

I(59), I(5-19) (Conditional) mutual information.

I, Task mutual information I(P,C;T | ©).

Ipn Mutual information I(P,C;T | ©) for DN task.

Mm. Information density n, = I(P,C;T)/| D).

Nest m Effective samples = |Dy,| I, /Ipn-

KL(-||-) Kullback-Leibler divergence.

ag, @y, oF Diffusion schedule parameters.

At, Vi Loss weights for coordinates and types.

Gy, Dy Generator and docking network.

Loy, Ly, Laock Loss functions for diffusion and docking.

€ Maximum coarse-generation error.

L, Lipschitz constant and radius/confidence level.

E(), E* End-to-end error functional and optimal error.

Table 1: Unified notation across main text and appendices.



A.2 Assumptions H1-H3

We impose the following:

e H1 (Data Independence). Samples {(F;, M;)} are drawn i.i.d. from ¢(P, M). This ensures
Es[R(0)] converges to R(6).

e H2 (Finite Model Capacity). The prior entropy satisfies H(0) < C. Equivalently, KL
divergence K L(Q| Fy) respects a capacity bound C.

e H3 (Mask Independence). The mask m is sampled independently of (P, M), so that mutual
information decompositions I(P,C;T) remain valid.

A.3 Selection of Prior Entropy H(0) and Computation of Capacity Bound C

In this section we derive, from the Minimum Description Length (MDL) principle and Shannon—Fano
arguments, an explicit capacity bound C' that accounts for both average- and maximum-code-length
constraints.

Step 1: Ideal MDL code length. Under the prior density Py(€), the ideal (real-valued) code
length in nats is
00) = —1InPy(6). (1)

Step 2: Kraft-McMillan overhead (1 nat). By the Kraft-McMillan inequality there exists a
prefix code with actual (integer) lengths ¢(6) satisfying

i0) < @) +1 = —InPy®) < i06) < C. (2)

Enforcing £(f) < C thus implies the pointwise bound

—InPy(f) < C—1. (3)
Moreover, averaging over 6 ~ P, gives
H(Py) = Ep[t(9)] < Ep[l(9)] < C, (4)
so that in full generality
C = H(PR)+ 94, 9 €[0,1], (5)

where § quantifies the extra “1 nat” overhead.

Step 3: Shannon—Fano average-length lower bound. Any prefix code (regardless of its
maximum length) must satisfy the average-length bound

Ep[(0)] = H(F). (6)

Step 4: Discrete-support assumption ~for maximum length. The Shannon-Fano bound alone
does not constrain maxy (). To enforce £(f) < C for all #, one assumes either

e A discretized (finite or countable) parameter space, so that “no-excess” codes exist for every
point; or



e A continuous-to-discrete quantization to precision A6, yielding an effective codebook.

In practice, one sets C ~ H(P,) and absorbs lower-order terms into 4.

Step 5: Continuous-prior example. For a Gaussian prior Py = N(0, 0%;) on R?, the differential
entropy is

d
H(Py) = 5 (14 In(270?)). (7)
Interpreting this as an “effective” capacity yields

C =~ g(l +In(27m0?)) + 9, (8)

with § € [0, 1] capturing the discrete-code overhead or quantization error.

Appendix B: Information Decomposition and Context Relevance
Derivation

B.1 Task Mutual Information Decomposition

The mutual information between pocket+context and target is

where H(-) denotes Shannon entropy.

Explanation: By definition I(X;Y) = H(Y) — H(Y | X). Here X = (P,C) and Y = T, so
conditioning on both pocket P and context C' reduces uncertainty in 7" by I(P,C;T).

Furthermore, using the chain rule for mutual information,
I(P,C;T) =1(P;T)+ 1(C;T | P), (2)

which separates the contribution of pocket alone from the additional information provided by context.
Explanation: The chain rule I(X,Y;2Z) = I(X;Z) + I(Y;Z | X) applies with X = P, Y = C, and
Z=T.

B.2 Information Density Decomposition

Recall the information density:

I(P,C;T)
hm = =T (3)
| Dim|
Using the chain rule I(P,C;T) = I(P;T) + km I(P,C;T), rearrange to isolate I(P,C;T):
I(P;T
I(P,C;T)(1 — k) =I1(P;T) = I(P,C;T)= 1(_’K). (4)



Substituting back gives the first form:

_ 1P
T 0 o) (Dl ?

Equivalently, from the same chain rule one may write:

1(P;T) I(P,C;T)
Do Do )

Comments on degenerate cases and variable types:

e Degeneration when k,, = 1: In tasks like scaffold-hopping where context fully determines
the target, 1 — k,,, = 0 creates a division by zero in the first form. One must then note that
I(P;T) = 0 as well (pocket adds no extra information beyond context), restoring a meaningful
finite value.

e Zero-information boundary: If I(P;T) = 0 (the pocket gives no information about the target),
then both sides of the first form vanish, consistent with total mutual information being zero.

e Discrete vs. continuous variables: When P, C, T include continuous components, clarify whether
you use discrete Shannon entropy or differential entropy. Moreover, computing 7, requires a
discretization assumption on the sample set size | D,,|, or an explicit quantization of continuous
samples.

Appendix C: Detailed Proofs of Theorems

C.1 Theorem 1 (Sample Efficiency Ordering)

Let task m have information density

I(P,C;T)

= D “

-~

For a target expected empirical risk E[R] < e, denote by N,,, the minimal sample size achieving that
level. If two tasks mj, ma satisfy 9, > nm,, then

Npy < Np,.

The proof is as follows:

Step 1: Generalization bound via mutual information. For a training set S = {(P;, C;, T3) }I 4,
Russo—Zou gives

EspqiR0O) - RO)] < /21550 ®)

Step 2: Task-dependent growth upper bound with ordering assumption. There exists a
growth function

dm(n)

n

I1(S;0) < gm(n) = nnm + dn(n), Ll 0asn— oo, 9)



Ordering assumption: for any two tasks and every n,

ua(n)  B(m)

(10)

That is, the finite-sample overhead of task my is never smaller than that of msy. (The requirement is

automatically met if all tasks share a common §(n).)

Step 3: Bounding the generalization gap. Insert (9) into (8):

E[R—R] < (/2(nm +222).

n

Step 4: Solving for the minimal sample size. To make (11) < ¢, it suffices that
dm(n) i
n - 2

Because 0,,(n)/n decreases in n, define

N,, = min{n S M + Im(n) ﬁ}

Step 5: Comparing two tasks. With 7,,, > nm,, and the ordering (10), for every n

Oy (10 O (T2
77m1+L<> S nm2+m27()’
n n

so the feasible set {n : 9, + dm, (n)/n < €2/2} is contained in that for msg, implying

Nowy = Niny.

C.2 PAC—Bayes—IB Generalization Bound

Let Py be a prior on parameters © and consider the i.i.d. sample set
Dr = {(P, Mp)}Ly, (P M) ~q.

For any posterior ) obtained from D7, define

R(Q) = Egg[R(9)],
R(Q) = EoqR()],
In = I(P,C;T | ©).

Assumptions

A1l. Random-variable KL-MI structure. We assume the edge-information concentration event

Pr{I(S;0) < NI, > 1-6;.

(11)

(12)

(13)

(14)

(19)

A2. High-probability Catoni form. Catoni’s bound is enforced on the same 1 — § event as above, so

0 =dc + 0.



A3. Discrete or quantised parameter support. Continuous O is assumed quantised so KL remains
finite.

Theorem (PAC—-Bayes—IB). With probability at least 1 — 4§,

R(Q) < R0 \/KL Q||P0 +\/1n$\/[5)' (20)

The proof is as follows:

Step 1: Catoni under event £c. Catoni (2007) yields, on E¢ of probability 1 — ¢,

<7 +\/KL(Q||P0)+IH(2/5C)‘

R(Q) < R(Q) O (21)
Step 2: MI concentration event &. By Assumption Al, event & (prob. 1 — ¢§y) satisfies
I(S;0) < NI, (22)
Step 3: Combine events. On & = Ec N &y (prob. > 1 —9),
KL(Q|Py) + ln52c = (KL(Q||P) — N I,) + N I,, + 11152C (23)
< (KL(QIP) ~ N In) +1n. (24)
Using va + b < \/a+ v/b for a,b > 0,
\/KL Q||P0 2/5C \/KL Q||P0 ~Nln \/mg\/f&)’ (25)

which proves (20).

Remarks

(a) The MI term NI, vanishes only on the high-probability event &. If I(S;0©) = O(log N), the
improvement is significant.

(b) For very small §, the factor In(2/0)/N may dominate; it is advisable to report both (KL —
NI,,)/N and In(2/4)/N.

(c) Continuous parameter spaces must be quantised so KL is finite.

C.3 Risk Monotonicity

Define the effective sample size

Neff,m - |Dm’ IDN



where Ipn = Iy Then for any 6 € (0,1), with probability at least 1 — 4,

5 KL(Q||Po) — Negt,m IDn | In(2/6)
R <R : . 27
@ <RQ+ ¢ N U (27)
The proof is as follows:
Step 1. Recall from Section C.2 that
" RL@IF) - In(2/9)
) < . 2
R(Q) <R(Q \/ UL 5N (28)
Step 2. Substitute the definition N I,;, = Neg m IDN, treating Neg ., as the effective sample size.
This gives
- KL(QHPO)_NeffmIDN ID(Q/(S)
< : . 2
R(Q) < R(Q) + \/ N o (29)
Step 3. Define the risk bound function
KL( P —xl In(2/6
Bla) = R(Q) + f FL@IR) oo | 1n2f8) (30)

A derivative-based argument shows - 4 B(x) < 0 for all > 0, since the numerator inside the square
root decreases linearly in x while the denominator grows linearly. Thus B(x) is strictly decreasing.

Step 4. Therefore, if Negm, > Neff,m,, then
B(Neff,ml) < B(Neff,mg)a (31)

meaning the risk bound for task m; is tighter than for mso. This completes the proof.

C.4 Information—Capacity Lower Bounds

Throughout we write
I, =1(P,C;T) (32)
for the per-sample task mutual information and assume the Kraft—-McMillan capacity condition

~InPy(h) < C, heHo  — Hol < €. (33)
We treat two learning objectives separately to keep denominators and events unambiguous.

C.4.1 Parameter-Identification Risk

V ~ Unif (He), X = (P,C,T)V, V = ¢(X). (34)



Theorem (ID-risk lower bound). For any §; € (0,1),

NI, + In(2/6;)

PV £V] > 1- G

. (35)

Consequently, every h € Hc satisfies the same inequality when Ryp(h) is interpreted as Pr[‘? # V.
The proof is as follows:

Step 1 (MI concentration). By the Russo—Zou edge-information bound there exists an event

Er={I(V;X)<NI,}, Pr(&)>1-6r

Step 2 (Fano on &r). Conditioning on &; and using In|supp(V)| < C,

I(V;X)+1n2 . NI, +1n2

Pr[V > 1-—
r[V#V] > C > c

Replace In2 by In(2/d7) to maintain probability 1 — d;.

C.4.2 Label-Prediction Risk

Assume |T| < oo and set

V=T, X = (P,C)V, V = h(P). (36)

Theorem (prediction-error lower bound).
For any o7 € (0,1),

NI, +1In(2/6)

R(h) = PV #V] W7

v

1

(37)

Proof (sketch). The argument is identical to the ID-risk case, noting that here supp(V') =T so
the denominator becomes In|7].

Remarks.

The two bounds target different error events; denominators must not be interchanged.

Only MI concentration + Fano are used; no PAC—Bayes upper bound appears, eliminating
upper-lower mixing.

Continuous parameter spaces may be quantised first to ensure |H¢| < oo.

Stronger but capacity-free bounds (e.g. Assouad, Le Cam) can supplement prediction error analysis
when C' is absent.



C.5 Coarse-to-Fine Error Decomposition

Let Gy be the coarse generator and Dy the docking network. Define the error functional F(-) and
the optimal error E*. Assume:

[B(Go(P) ~ E*| <. (39)
|E(Dy(P, M) — E(Dg(P, Mp))| < L || My — Ma|, || My — Ma|| <6, (39)
E(Dg(P,M™)) = E*. (40)

Then the end-to-end error satisfies
|E(Dy(P,Gy(P))) — E*| < e+ L. (41)

The proof is as follows:

Step 1 (Triangle decomposition). We apply the triangle inequality to split the total error into
two parts:

|E(Dg(P,Gg(P))) — E*| < |[E(Dy(P,Gy(P))) — E(Dy(P,M*))| + |E(Dy(P, M*)) — E*|.  (42)

*Explanation:* This separates the error due to the docking refinement from the residual at the
optimal pose.

Step 2 (Optimal-pose term). By assumption F(Dy(P, M*)) = E*, we have
|E(Dy(P,M*)) — E*| =0<e. (43)
*Explanation:* The docking network achieves the optimal error at M*.
Step 3 (Lipschitz-bound term). Since ||Gy(P) — M*|| < ¢ and by the local L-Lipschitz condition,
|E(Dy(P, Gol(P))) — E(D(P,M*))| < L|Go(P) — M| < L. (44)
*Explanation:* Small deviations in pose (within §) yield proportionally small changes in error.
Step 4 (Combine bounds). Summing the two contributions from Steps 2 and 3:
|E(Dy(P,Gy(P))) — E*| < e+ L§, (45)

which completes the proof.

Appendix D: Methods Details

1. Soft steric attraction Eg;. Favorable overlap between ligand and pocket heavy atoms within a
broad-distance band encourages near-contact packing.

2. Short-range shape complementarity Fgz. A narrower Gaussian sharpens the contact
preference and improves placement discrimination.

3. Hard steric repulsion F,ep. A quadratic penalty rises steeply for interatomic distances shorter
than an inner cutoff, discouraging clashes.

4. Hydrophobic contact Eyyq. Non-polar atom pairs within a contact shell gain an attractive
bonus.

5. Directional hydrogen bonding Fjq). Donor—acceptor pairs within distance and angular
windows receive an orientation-weighted attraction; broken geometry receives less or no reward.



D.1 Integrating PAC-Bayes Bounds with the Information Bottleneck

The integration of PAC-Bayes bounds with the Information Bottleneck (IB) principle has recently
provided a powerful lens through which to understand and improve deep neural network generalization.
Wang et al. formalized this connection in the PAC-Bayes Information Bottleneck (PIB) framework,
which approximates the “Information in the Weights” (IIW) to balance empirical risk against
information complexity under a PAC-Bayes generalization guarantee [1]. Empirically, PIB-trained
networks exhibit a characteristic two-stage training dynamic: an initial rapid fit phase in which
training error collapses, followed by an information-compression phase during which redundant weight
information is progressively discarded while preserving predictive accuracy. This “fit—compress”
transition correlates closely with improved generalization, as models in the compression stage retain
only task-relevant structure and shed noise that harms out-of-sample performance. Building on these
theoretical insights, the authors derive an optimal-posterior sampling algorithm based on MCMC to
instantiate the PIB objective in large-scale training, demonstrating tangible performance gains in
deep models.

Subsequent work has sought to render IB-based regularization more practical for modern, overpa-
rameterized networks by sidestepping the costly curvature computations required by PIB. Lyu et
al. propose the Recognizable Information Bottleneck (RIB), which replaces second-order mutual-
information bounds with a tractable “functional conditional mutual information” constraint enforced
via a learnable critic [2]. RIB measures the recognizability of hidden representations, i.e., the degree
to which downstream classifiers can distinguish them, and uses this information to regularize net-
works efficiently, thereby minimizing unnecessary representation complexity. Empirical evaluations
across varying batch sizes, degrees of overparameterization, and levels of label noise confirm that
RIB significantly narrows the gap between training and test performance, accurately estimates
generalization error, and reduces overfitting without incurring prohibitive computational overhead.

Overall, these advances underscore the promise of unifying PAC-Bayes generalization theory with
information-theoretic regularization, offering both a principled explanation for deep-learning phe-
nomena and practical algorithms for enhancing model robustness.

D.2 Task Difficulty, Over-Parameterization, and the Information Path to Gener-
alization

Classical bias—variance reasoning predicts that, for a model class of fixed capacity, harder tasks
should exacerbate overfitting. Contemporary theory and empirical evidence increasingly contradict
this view, showing that when task complexity and model capacity rise in tandem, deep networks
can in fact extract more structure from data and thereby reduce overfitting. Boopathy et al. (2023)
formalize this intuition with a model-agnostic metric of generalization difficulty [3]. They define
inductive-bias complexity as the additional prior information that a learner must encode, beyond
what the data itself provides, in order to succeed on a task. Their analysis reveals an exponential
growth of difficulty with the intrinsic dimensionality of the input manifold, contrasted with merely
polynomial growth when high precision is demanded in low-dimensional domains. This framework
quantifies long-standing heuristics (e.g., MNIST < CIFAR-10 < ImageNet in supervised learning;
fully observed < partially observed MDPs in reinforcement learning) and crystallizes the mantra that
sufficiently hard tasks are catalysts for strong generalization: they compel designers and optimizers
to inject stronger inductive biases, prompting networks to capture deeper, task-relevant structure
rather than superficial correlations.
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Several modern phenomena substantiate this claim. The double-descent curve shows that once a
network enters a heavily over-parameterized regime, in which it can interpolate the training set
including noise, test error after peaking can fall to levels lower than those attainable by smaller models
[4]. This implicit regularization resonates with the theory of benign overfitting. In high-dimensional
linear models, Bartlett et al. prove that exact interpolation need not harm risk when noise conditions
are favorable [5]. Zhu et al. extend the guarantee to ReLU networks trained in the “lazy” (kernel)
regime, linking zero-training-error solutions to Lipschitz-smooth decision boundaries and highlighting
deep nets’ superior implicit regularization relative to linear or shallow alternatives [6].

An even more dramatic illustration is grokking. Power et al. observe that on small, highly structured
algorithmic datasets, networks often (i) rapidly drive training loss to zero while test accuracy stays at
chance, (ii) linger in this overfitted state for many iterations, and (iii) suddenly “grok” the underlying
rule, with test accuracy jumping to perfection [7]. Optimization-landscape studies suggest that
training first settles in a memorizing basin and then, after surmounting an energy barrier, converges
to a global solution encoding the true algorithm [8]. The delayed but eventual leap to perfect
generalization reinforces the thesis that difficult, highly structured tasks can serve as a whetstone
that forces networks to abandon shortcut memorization and discover invariant structure.

Practitioners routinely exploit this difficulty-as-regularizer effect. Multi-task learning, for instance,
raises effective task complexity by requiring a common representation to support diverse objectives;
the shared challenge discourages overfitting to any single dataset and typically boosts generalization
across all tasks. These findings collectively challenge conventional wisdom: difficult problems in
over-parameterized regimes may attenuate rather than aggravate overfitting when optimization and
inductive bias align. Consequently, capacity-stressing benchmarks transcend punitive evaluation;
they become a principled method for eliciting information-efficient representations and advancing
robust generalization.

D.3 Model Capacity and Training Stability in Diffusion Models: Recent Theoret-
ical Advances

D.3.1 Task Difficulty, Over-Parameterization, and the Information Path to General-
ization Diffusion models have rapidly ascended to state-of-the-art performance in image, text,
and cross-modal generation, yet their ever-growing capacity and the fragility of large-scale training
have sparked an intense theoretical re-examination. Contemporary work coalesces around three
intertwined questions: Which architectural factors trigger instability? How does capacity shape
memorization and generalization? Which principled training strategies prevent collapse under data
scarcity or recursive self-training? We survey post-2020 progress along these axes and distil a coherent
narrative that bridges network design, statistical physics, and learning-theoretic regularization.

D.3.2 Architectural sources of instability. Most diffusion pipelines rely on a U-Net denoiser
whose long skip connections (LSCs) fuse low- and high-resolution features. Huang et al. provide
the first formal account of how overly large LSC coefficients magnify hidden-state and gradient
oscillations in both forward and backward passes [9]. Their ScaleLong analysis shows that large
skips amplify input perturbations, inducing loss spikes and gradient explosions that are frequently
observed in practice. Constraining the magnitude of LSCs provably shrinks the variance of internal
activations, yielding faster, smoother convergence. Empirically, ScaleLong accelerates training on
CIFAR-10, CelebA-HQ, ImageNet, and COCO by 1.5x across both U-Net and hybrid U-ViT
backbones, thereby demonstrating that judicious architectural scaling can serve as a first line of
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defence against diffusion-specific instabilities.

D.3.3 Capacity, memorization dynamics, and the limits of generalization. The tension
between expressive power and the spectre of memorization becomes acute as diffusion models scale to
billions of parameters. Biroli et al. analyse the reverse-diffusion trajectory in the joint limit of infinite
data dimension and sample size, revealing three dynamical regimes: (i) an early pure-diffusion phase
dominated by noise, (ii) a symmetry-breaking/speciation phase in which trajectories coalesce around
class-level structure, and (iii) an eventual collapse into the basin of attraction of a single training
point [10]. Unless the number of training samples grows exponentially with dimension, the trajectory
almost surely converges to the empirical data manifold, crystallizing a curse of dimensionality for
unconstrained, perfectly trained models. Complementary evidence from Li et al. suggests that
practical diffusion systems avoid this fate because their denoisers implicitly favour global Gaussian
structure [11]. A linear-distillation analysis shows that, in the mid-noise range where semantic content
is synthesized, a distilled linear model (D) and an ideal Gaussian estimator (D¢) approximate
the nonlinear denoiser Dy far better than a hypothetical memory-based d-model. This indicates a
built-in inductive bias toward learning means and principal directions rather than individual samples;
however, the bias weakens as capacity explodes, making explicit regularization indispensable.

D.3.4 Training strategies under limited or self-generated data. When datasets are small,
the flexibility of a standard U-Net can drive near-perfect training fits yet catastrophic generalization.
Zhang et al. formalize this dilemma and propose LD-Diffusion, which (i) projects data onto a
low-dimensional latent space via a pretrained auto-encoder to shrink the hypothesis class, and (ii)
augments training with a mixed adaptive perturbation (MAFP) scheme that diversifies examples
within the compressed space [12]. Capacity contraction, paired with effective data enlargement,
curbs overfitting and yields superior sample quality on low-data image benchmarks. A distinct but
increasingly relevant failure mode is model collapse in self-consuming training loops, where a generator
is repeatedly fine-tuned on its own outputs. Fu et al. introduce the notion of recursive stability
and prove that injecting even a constant fraction of real data at each iteration guarantees bounded
error propagation and prevents degeneracy [13|. Their theory justifies empirical heuristics—periodic
refresh with ground-truth samples or continual real-data collection—that sustain performance across
generations [14].

In summary, recent theoretical advances converge on a coherent message: architectural discipline,
statistical bias, and data strategy must work in concert to secure both stability and generalization
in diffusion models. Careful scaling of skip-connection coefficients suppresses gradient explosions
without curtailing expressivity, while an implicit preference for global Gaussian structure steers
the denoiser away from rote memorization. As dimensionality and parameter counts soar, this bias
proves inadequate, rendering explicit regularization through capacity constraints, early stopping, or
noise injection indispensable. Meanwhile, data-centric interventions such as latent-space compression,
aggressive augmentation, and continual infusion of real samples counteract overfitting in the twin
regimes of limited data and recursive self-training. Together, these insights chart a roadmap for
the next generation of diffusion models, suggesting that future progress lies in unifying principled
architectural design with dynamical analysis and adaptive data management to balance capacity,
robustness, and diversity at scale.
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D.4 Bemis—Murcko-based Workflow

The canonical Bemis-Murcko (B-M) scaffold can be extracted from any organic ligand through
a sequence of precise graph manipulations that subsequently define the conditioning scheme for
modern molecule-generation tasks.

1. Molecular pre-processing. The input structure is first standardised with respect to protona-
tion state, tautomeric form, stereochemistry, and salt or solvent content. A canonical Kekulé
(or fully aromatic) representation is then generated to ensure a unique graph description of the
molecule before further analysis.

2. Partition of the molecular graph. Exhaustive ring-perception algorithms locate every
aromatic or aliphatic ring system. Acyclic paths that connect two ring atoms are labelled as
linkers, whereas all remaining atoms are classified as peripheral side-chains. This tripartite
labelling (rings, linkers, side-chains) is mutually exclusive and exhaustive for the heavy-atom
graph.

3. Side-chain excision. All atoms marked as side-chains, together with their incident bonds,
are removed. The operation retains only the union of ring systems and linkers, yielding the
raw B-M framework that captures the core chemotype while discarding substituent-specific
idiosyncrasies.

4. Junction collapsing. In fused or bridged polycyclic systems, shared ring atoms and bonds
are merged so that each unique topological element appears exactly once. This step guarantees
a one-to-one mapping between the scaffold and its topological graph, eliminating redundant
representations.

5. Canonicalisation and dataset-level deduplication. The resulting scaffold is encoded
as an ordered canonical SMILES or an InChlKey. These identifiers serve both as surrogate
primary keys for scaffold libraries and as hashes to remove duplicates across large compound
collections, enabling efficient scaffold-based diversity analysis.

6. Task-oriented conditioning for generative models. The decomposition naturally defines
three conditioning regimes that underpin widely used design tasks: a) Side-Chain Decoration
(SC). The scaffold is fixed as context, and the model generates chemically compatible side-
chains that optimise binding or physicochemical criteria. b) Scaffold Hopping (SH). Known
side-chains are preserved, while alternative topologically distinct scaffolds that maintain key
pharmacophores are proposed. c¢) De-Novo (DN) Generation. No structural context is provided;
the entire ligand—including scaffold and side-chains—is generated from scratch, allowing
simultaneous exploration of core topology and peripheral decoration.

The workflow embodies the B-M philosophy by focusing exclusively on ring—linker topology, thereby
maximising scaffold comparability across analogue series and exposing a clean interface for conditional
generative objectives. Removing peripheral atoms provides a many-to-one mapping from molecules to
scaffolds, facilitating chemotype clustering and information-rich benchmarking. Junction collapsing
enforces uniqueness, while canonicalisation enables scalable library management and fair evaluation
across SC, SH, and DN tasks.
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D.5 Pocket Occupancy and Interaction-Richness Profiling

We devised a two-part analysis in Figure 3 to quantify how the Side-Chain Decoration (SC), De novo
(DN) and Scaffold Hopping (SH) generators populate a protein pocket and exploit its physicochemical
landscape.

D.5.1 Spatial pocket occupancy. For every molecule we first measured the mean heavy-atom
distance d from each ligand/context atom to its nearest protein atom and the mean contact density c,
i.e. the average number of protein atoms located within a 6 A sphere. The resulting (d, c) pairs were
plotted as 50x50 hexagonal-bin maps using a unified axis extent and a shared, globally normalised
colour scale (blue for SC, green for DN and red for SH). Bins supported by fewer than three samples
were hidden to suppress noise, and each panel was annotated with the task-level means (ugq, tic),
facilitating direct comparison of pocket-proximal atom distributions.

D.5.2 Interaction richness. Complementing the geometric view, we evaluated the involved-atom
ratio a—the average number of protein atoms in contact with one ligand/context atom—and the
interaction-type ratio t—the average number of distinct interaction classes (hydrophobic, hydrogen
bond, water-mediated, salt bridge, 7= stack, cation—m, halogen, metal) supported per atom. Atom
counts were normalised by context length for SC/SH and by total ligand size for DN. The (a,t)
values were visualised with the same hexbin geometry and colour-scale normalisation as above, and
task-level means (pq, p1¢) were overlaid.

The harmonised axes, colour scales and statistical overlays across both figures provide a coherent,
side-by-side assessment of how the three generative regimes occupy pocket space and diversify protein
contacts.

Appendix E: Results and Experimental

E.1 Experimental Setup.

All variants were trained on the same 70617 (SC/SH) or 99900 (DN) pocket-ligand pairs and
evaluated on 100 held-out pockets. One hundred molecules were generated per pocket, subjected to
the pipeline above, and finally ranked with a weighted mean-rank scheme (Friedman test, a = 0.05)
across the four evaluation axes.

E.2 Case Figure

E.2.1 BGLO7 (p-Glucosidase 7, Oryza sativa). BGLOT is a 485-residue member of glycoside-
hydrolase family 1 that follows a classical (5/a)s TIM-barrel topology. The catalytic nucleophile
Glu382 lies on strand 7 and the acid—base Glul76 lies on strand 4. Substrate binding occurs in a
pocket that spans the barrel core and four hypervariable surface loops. Trpl178 and Tyr334 form
an aromatic clamp that stacks with phenolic aglycones. The enzyme hydrolyses -glucosidic bonds
in salicylic-acid glucosides, monolignol glucosides, and oligosaccharides that accumulate during
stress. Crystal structure 7TD6A shows a salicin mimic that adopts a chair conformation and is
anchored by hydrogen bonds from GIn19, His150, and Asn224. Loop A (residues 72-86) and loop B
(residues 330-342) close over the substrate and exclude bulk solvent. Mutating Trp178 to alanine
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reduces catalytic efficiency tenfold, which confirms its role in aglycone recognition. Rice plants that
overexpress BGL0O7 show increased resistance to drought, which highlights its physiological relevance.
The compact aromatic cage and the deep polar groove create complementary anchor points for
heteroaromatic scaffolds generated by IBEX.

E.2.2 RG1 (Raucaffricine 5-D-Glucosidase, Rauvolfia serpentina). RGI1 catalyses the first
committed step of monoterpene-indole-alkaloid biosynthesis and converts raucaffricine to strictosidine.
The enzyme contains 501 residues and retains the family 1 fold but presents an elongated aglycone
channel that can accommodate bulky indole alkaloids. The catalytic dyad consists of Glul98 and
Glu408 and operates through a double-displacement retaining mechanism. His217 and Trp359 form
an aromatic platform that aligns the indole nucleus for nucleophilic attack. Structure 3ZJ6 resolves
a deoxynojirimycin inhibitor that mimics the oxocarbenium transition state and locks loop B in an
open conformation. Alkaloid flux is regulated by conformational changes in loops B and D, which
gate product release toward downstream enzymes. Point mutations that restrict loop motion lower
kcat without affecting Kip, which indicates a rate-limiting product-release step. Selective inhibitors
must avoid clashes with these flexible elements while engaging the deep catalytic gorge. IBEX
samples rigid bicyclic cores that fit this gorge and orient hydrogen-bond donors toward Glul98 and
Glu408.

E.2.3 MurA (UDP-N-acetylglucosamine Enolpyruvyl Transferase, Escherichia coli).
MurA initiates peptidoglycan biosynthesis by transferring an enolpyruvyl group from phosphoenol-
pyruvate (PEP) to UDP-GlecNAc. The 419-residue enzyme folds into two Rossmann-like domains
that hinge together and form a clamshell active site. Cysl115 performs a nucleophilic attack on
the PEP vinyl ether and forms a covalent thiol-ester intermediate. Lys22, Argl20, and Arg397
stabilise the UDP diphosphate through salt bridges and hydrogen bonds. Crystal structure 1lUAE
captures the closed conformation in complex with fosfomycin, which forms an irreversible adduct
with Cys115. MurA alternates between open and closed states during turnover and uses domain
motion to expel product. Allosteric modulation arises when UDP-MurNAc binds a distal site and
shifts the equilibrium toward the open state. Fosfomycin resistance occurs through Cysl115Asp
mutation or by overexpression of FosA, which inactivates the drug. Effective MurA inhibitors must
respect clamshell dynamics and avoid steric clashes near the hinge axis. IBEX generates compact
heteroaryl scaffolds that insert between the Rossmann domains and position phosphonate groups
toward Arg397.

E.2.4 NOS3 (Endothelial Nitric-Oxide Synthase, Homo sapiens). NOS3 converts L-
arginine to nitric oxide and L-citrulline in the vascular endothelium and regulates blood pressure
and platelet aggregation. Fach 1203-residue monomer contains an N-terminal oxygenase domain, a
central calmodulin-binding linker, and a C-terminal reductase domain. The oxygenase domain binds
heme, tetrahydrobiopterin (BHy), and Zn?* and dimerises through a cysteine hinge that coordinates
the zinc ion. Glu361 forms a salt bridge with the guanidinium group of L-arginine and positions
it for hydroxylation. The reductase domain carries FAD and FMN and shuttles electrons from
NADPH to the heme iron when calmodulin binds Ca?*. Crystal structure 3NOS shows BHy stacking
against Trp447 and bridging the dimer interface. Phosphorylation at Ser1177 enhances electron flux
by stabilising an FMN-shifted state, whereas phosphorylation at Thr495 has an inhibitory effect.
Selective eNOS modulators either occupy the BHy pocket or target the FMN-oxygenase docking
surface to bias electron transfer. IBEX generates bicyclic amidines that reach deep into the BH4 slot
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and retain polar contact with Glu361, which illustrates scaffold adaptation to cofactor-rich cavities.

E.3 Results

Table 2: PLIP Interaction metrics for recent generative pipelines.

Model ‘

PLIP Interaction

‘ MAEoa JSDoa MAEpp JSDpp
LiGAN 0.0905 0.0346 0.3416 0.1451
3DSBDD 0.0934 0.0392 0.4231 0.1733
GraphBP 0.1625 0.0462 0.4835 0.2101
Pocket2mol 0.2455 0.0319 0.4152 0.1535
TargetDiff 0.0600 0.0198 0.4687 0.1757
DiffSBDD 0.1461 0.0333 0.5265 0.1777
DiffBP 0.1430 0.0249 0.5639 0.1256
FLAG 0.0277 0.0170 0.3976 0.2762
D3FG 0.0135 0.0638 0.4641 0.1850
DecompDiff 0.0769 0.0215 0.4369 0.1848
MolCARFT 0.0780 0.0214 0.4574 0.1868
VoxBind 0.0533 0.0257 0.4606 0.1850
IBEX 0.0709 0.0176 0.4670 0.1947
IBEX-DN 0.0600 0.0198 0.4687 0.1757
IBEX-SC 0.0430 0.5696 0.4801 0.0263
IBEX-SH 0.0698 0.0198 0.5442 0.1897
IBEX 0.0709 0.0176 0.4670 0.1947

Table 3: Combined model metrics

Methods ‘ chemical property Atom type Ring type Functional Group Static Geometry Clash
‘QED LogP SA LPSK JSD MAE JSD MAE JSD MAE JSDpr JSDpa Ratiocca Ratioem
3DSBDD | 0.48 0.47 0.63 4.72 0.0860 0.8444 0.3188 0.2457 0.2682 0.0494 0.5024 0.3904 0.2482 0.8683
VoxBIND 0.54 2.22 0.65 4.70 0.0942 0.3564 0.2401 0.0301 0.1053 0.0761 0.2701 0.3771 0.0103  0.1890
GraPHBP [044 3.29 0.64 4.73 0.1642 1.2266 0.5061 0.4382 0.6259 0.0705 0.5182 0.5645 0.8634 0.9974
PockeT2MoL| 0.39 2.39 0.65 4.58 0.0916 1.0497 0.3550 0.3545 0.2961 0.0622 0.5433 0.4922 0.0576 0.4499
DirrSBDD | 0.49 -0.15 0.34 4.89 0.0529 0.6316 0.3853 0.3437 0.5520 0.0710 0.3501 0.4588 0.1083 0.6578
DirrBP 0.47 5.27 0.59 4.47 0.2591 1.5491 0.4531 0.4068 0.5346 0.0670  0.3453 0.4621 0.0449 0.4077
D3FG 0.49 1.56 0.66 4.84 0.0644 0.8154 0.1869 0.2204 0.2511 0.0516  0.3727 0.4700 0.2115 0.8571
DecompPDIFF | 0.49 1.22 0.66 4.40 0.0431 0.3197 0.2431 0.2006 0.1916 0.0318 0.2576 0.3473 0.0462 0.5248
TarGeTDIFF | 0.49 1.13 0.60 4.57 0.0533 0.2399 0.2345 0.1559 0.2876 0.0441 0.2659 0.3769 0.0483  0.4920
MoLCRrAFT | 0.48 0.87 0.66 4.39 0.0490 0.3208 0.2469 0.0264 0.1196 0.0477 0.2250 0.2683 0.0264 0.2691
Table 4: Combined model metrics and molecular properties
Model w/0 Dock ‘ Vina Dock Chemical Property Atom Type Ring Type Functional Group Static Geometry Clash Rank
|Eyina IMP MPBG LBE|QED LogP SA LPSK| JSD MAE| JSD MAE| JsD MAE|ISDg;, JSDpa |Ratiocea Ratioem |
IBEX-SH TestSet | -8.07 63.50 14.87 0.3809]0.60 2.73 0.63 4.82 |0.1575 0.8195[0.2129 0.1464/0.3068  0.0377| 0.2887 0.4834| 0.1017 0.6512| 1
IBEX-SC TestSet | -6.1224.64 -11.76 0.3375/0.37 0.71 0.64 4.49 |0.1204 1.0509|0.5029 0.4133|0.5671  0.0643| 0.3689 0.5275| 0.0439 0.4408| 3
IBEX-DN TestSet | -7.46 52.32  5.98 0.3567|0.49 1.13 0.60 4.57 |0.0533 0.2399|0.2345 0.1559|0.2876  0.1559| 0.2658 0.4666| 0.0483 0.4920| 2
IBEX-SH TrainSet | -8.09 53.17  1.31 0.3961| 0.61 2.61 0.64 4.85 |0.1560 0.7539|0.2065 0.1419]0.3105  0.0395| 0.2930 0.4874| 0.1043 0.6263| 1
IBEX-SC TrainSet | -6.45 15.74 -18.70 0.3547| 0.38 0.94 0.64 4.47 |0.1394 1.1179(0.5192 0.4123(0.5713  0.0654| 0.3711 0.5349| 0.0453 0.4167| 3
IBEX-DN TrainSet| -7.94 45.49 -0.26 0.3872| 0.51 1.39 0.61 4.61 |0.0384 0.2080[0.2259 0.1465/0.2678  0.0420| 0.2691 0.4671| 0.0597 0.5311| 2
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