
Stable and low-precision training for large-scale
vision-language models

Mitchell Wortsman∗1 Tim Dettmers∗1 Luke Zettlemoyer12 Ari Morcos†2

Ali Farhadi†1 Ludwig Schmidt†134

Abstract

We introduce new methods for 1) accelerating and 2) stabilizing training for large
language-vision models. 1) For acceleration, we introduce SwitchBack, a linear
layer for int8 quantized training which provides a speed-up of 13-25% while
matching the performance of bfloat16 training within 0.1 percentage points for
the 1B parameter CLIP ViT-Huge—the largest int8 training to date. Our main
focus is int8 as GPU support for float8 is rare, though we also analyze float8
training through simulation. While SwitchBack proves effective for float8, we
show that standard techniques are also successful if the network is trained and
initialized so that large feature magnitudes are discouraged, which we accomplish
via layer-scale initialized with zeros. 2) For stability, we analyze loss spikes and
find they consistently occur 1-8 iterations after the squared gradients become under-
estimated by their AdamW second moment estimator. As a result, we recommend
an AdamW-Adafactor hybrid which avoids loss spikes when training a CLIP
ViT-Huge model and outperforms gradient clipping at the scales we test.

1 Introduction
Large models trained on large datasets have recently led to multiple breakthroughs in machine
learning such as GPT-3 [5] and PaLM [11]. While many components are necessary for successful
large-scale training, two critical elements are training speed and stability. To enable further progress,
we must ensure that 1) training is fast—the model should be able to see a lot of data even if it is large,
and 2) training is stable—large models should not suffer from loss spikes which degrade performance.
We study these two directions in the context of contrastive language-image pre-training (CLIP) [46].
We examine CLIP-style models because of their importance in computer vision: CLIP-style models
reach state-of-the-art performance on a wide range of image classification tasks [46, 64, 44, 7]
and underlie image generation methods such as DALLE·2 [49] and Stable Diffusion [51]. Our
contributions towards fast training and stable training are as follows.

Towards fast training, we introduce SwitchBack, a linear layer for quantized training with int8
precision which matches the performance of the bfloat16 [63] baseline within 0.1 percentage points
for CLIP ViT-Huge—a larger model than considered in the original CLIP paper. Linear layers account
for the majority of the compute in standard transformer models, usually more than 90%, comprising
the key, query, value, and out projection of the attention blocks as well as the multilayer perceptron.
We perform all linear layers in low-precision (int8) while retaining other layers, such as layer norms,
in higher precision. With this setup, we observe end-to-end speedups between 13 and 25% for CLIP
ViT-Huge training: 25% compared to a standard linear layer implemented using the PyTorch [43]
autograd python module and 13% compared to the standard PyTorch layer which include background
CUDA/C++ optimizations which are difficult to replicate for custom layers.

1University of Washington. 2Meta AI Research, FAIR Team. 3Allen Institute for AI. 4LAION. ∗Equal
contribution. †Equal senior contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ViT-Base ViT-Large ViT-Huge
Model size

40

45

50

55

Ze
ro

-s
ho

t I
m

ag
eN

et
 a

cc
ur

ac
y

bfloat16 baseline
LLM.int8() baseline
SwitchBack int8

ViT-Base ViT-Large ViT-Huge
Model size

0

10

20

30

40

50

60

Ze
ro

-s
ho

t I
m

ag
eN

et
 a

cc
ur

ac
y

bfloat16 baseline
fp8 tensor-wise baseline
SwitchBack fp8

Figure 1: We introduce SwitchBack, a linear layer for low-precision training. (Left) SwitchBack for int8
training matches the zero-shot ImageNet [15] accuracy of standard bfloat16 training within 0.1 percentage point
for CLIP ViT-Huge [46, 20] and outperforms LLM.int8() [17]. (Right) For float8 (fp8) training [40], a baseline
which uses tensor-wise quantization diverges for large models while SwitchBack matches the baseline. In these
large-model, small-data experiments, our focus is on comparing methods and not final model accuracy, so we
use short runs which makes it feasible to run many experiments.

SwitchBack starts from the observation that quantization noise grows with the inner dimension in
a matrix multiplication. For CLIP training, the weight gradient computation involves a large inner
dimension because CLIP training requires a large batch size [44]. Hence SwitchBack uses 16 bit
precision matrix multiplication for the weight gradient computation while using int8 multiplications
for the forward pass and layer input gradient computations. This approach leads to large accuracy
improvements compared to LLM.int8() [17] (Figure 1). We will provide open-source Triton [57]
kernels for Switchback to enable future work on efficient quantization schemes.

Besides int8 training, we also study large-scale 8-bit float (fp8) [40] training. We do not have
access to hardware that supports fp8 data types, which is currently more rare than int8, so we use
an accurate simulation of fp8 computation. SwitchBack also outperforms straightforward 8-bit float
(fp8) baselines because tensor-wise quantized baselines diverge at >420M scale (Figure 1). However,
we demonstrate that these methods can achieve high accuracy if the network is trained while keeping
feature magnitudes small, which we accomplish via layer-scale [58] initialized with zeros.

Towards stable training, we find that loss spikes occur in CLIP training when the AdamW [37]
second moment estimator becomes out-of-date in the patch embedding [20] layer. In particular, the
learning signal changes so that the moving averages of squared gradients underestimates their true
magnitude. Indeed, in the absence of stability interventions, we show that loss spikes can be predicted
by examining this ratio of the squared gradients to their moving average. We therefore recommend an
AdamW-AdaFactor [54] hybrid, which we refer to as StableAdamW as it removes instabilities at the
scales we consider and outperforms gradient clipping. Concretely, StableAdamW is AdamW with the
update clipping technique introduced in AdaFactor. Update clipping tracks the average ratio of the
gradient square to the second moment estimator and lowers the learning rate when the ratio is large.

The remainder of this paper is organized as follows: Section 2 focuses on low-precision training
while Section 3 stabilizes training by reducing loss spikes.

2 8-bit training
This section develops and compares methods for eight-bit training of languge-vision transformer
models. First, Section 2.1 discusses preliminaries and related work. Next, Section 2.2 introduces and
tests SwitchBack, a linear layer for int8 and float8 training. Finally, Section 2.3 develops alternatives
to SwitchBack which can be used for float8.

2.1 Preliminaries and related work
Neural networks today typically use 16-bit operations for training [39] in either the float16 or bfloat16
format [63]. Floating point formats use a subset of bits to represent the exponent while the remainder
specifies the fraction (often referred to as the mantissa). The float16 format uses 5 bits for the exponent
while bfloat16 uses 8 and therefore covers a larger range—float16 has a range of (5.96 · 10−8, 65504)
while bfloat16 has a range of (10−38, 3 · 1038). Most floating point formats also have denormalized
numbers which allow for a “soft underflow" which gets exponentially closer to 0.0f for each additional

2

Algorithm 1: PyTorch code for SwitchBack

class SwitchBackMatmul(autograd.Function):
@staticmethod
def forward(ctx, X, W):

ctx.save_for_backward = X, W

X_int8, state_X = row-wise_quantize(X)
W_int8, state_W = tensor-wise_quantize(W)

return matmul_int8_and_dequanitze(
X_int8, W_int8.t(), state_X, state_W

)

@staticmethod
def backward(ctx, G):

X, W = ctx.save_for_backward

G_rowwise = rowwise_quantize(G)
W_int8, state_W = tensor-

wise_quantize_transpose(W)

X_gradient = matmul_int8_and_dequanitze(
G_int8, W_int8.t(), state_X, state_W

)
W_gradient = matmul_fp16(G.t(), X)

return X_gradient, W_gradient

Algorithm 2: StableAdamW ({αt}, β1, β2, ϵ)

v0, u0 = 0
for t = 1 to T do
gt = ∇f(θt)
// apply correction term to debias EMA.
β̂1 = β1 · 1−βt−1

1

1−βt
1

β̂2 = β2 · 1−βt−1
2

1−βt
2

// update moving averages
vt = β̂1vt−1 + (1− β̂1)gt
ut = β̂2ut−1 + (1− β̂2)g

2
t

// for implementation convenience
// operations below occur independently

for each tensor
RMSt =

√
E [g2t /ut]

// update parameters
ηt = αt/max (1,RMSt)
θt = θt−1 − ηtλθt−1 − ηtvt/

(√
ut + ϵ

)

bit in the mantissa. To prevent underflows float16 mixed precision training [39] has been developed
which works as follows. The loss of a mini-batch is multiplied by a loss scalar to scale the loss
and following backpropagation gradients into the representable range of fp16. This loss scaling is
undone by rescaling the weight gradients before the optimizer updates fp32 main weights with the
fp16 gradients. In PyTorch [43], the loss scalar is initialized to 65536. Everytime an Inf/NaN is
encountered, the update is skipped and the loss scalar is halved. If no Inf/NaN are encountered for 2k
iterations, the scalar is doubled.

When the loss scalar becomes too low in float16 training the loss slowly diverges. This was observed
by Cherti et al. [9] when training ViT-Huge CLIP models and remedied by switching to bfloat16.
Another instance of float16 creating issues at scale was the training of OPT [73] and BLOOM models
[52]. Indeed, many obstacles faced during the OPT project could have been alleviated by using
bfloat16 [72]. Similarly, all float16 training runs for BLOOM ended in divergence, only after using
bfloat16 was the training stable. However, fast bfloat16 support is only available on TPUs, or GPUs
developed with or after the NVIDIA Ampere series (2021 or later).

While 16 bit training is the standard today, hardware support for 8 bit operations are becoming more
common. Hopper GPUs support float8 (fp8) [40] and Ampere GPUs support int8. However, it is
currently (2023) very difficult to attain Hopper GPUs. Moreover, while int8 and int4 are used for
inference [17, 65, 16], and there is earlier work exploring 8 bit training for convnets [61, 78, 10], these
formats are not commonly used for training transformer models at scale. The CLIP ViT-Huge models
we train have 1B parameters including the image and text towers which is 40x larger than a standard
ResNet-50 (23M) [28], and quantization is more challenging for large tensors [17]. Additional related
work on quantization of large scale models (larger than BERT-large) and low-precision training and
be found in Appendix A.

2.2 SwitchBack
2.2.1 Method
Overview. A linear layer consists of three matrix multiplications—one in the forward pass to
compute outputs and two in the backwards pass to compute gradients for the input and weights. Our
SwitchBack layer uses 8 bit precision for the first two matrix multiplies but switches back to higher
precision for the weight gradient.

We compute the weight gradient in higher precision because this matrix multiplication involves dot
products between vectors which have a length of batch size times sequence length. As CLIP training
requires large batch sizes [46, 44], this inner dimension of batch size times sequence length is much
larger than for the other matrix multiplies. As we show in Appendix D, variance due to quantization

3

increases with the inner dimension of the matrix multiply. This modification is what differentiates
SwitchBack from LLM.int8(), allowing SwitchBack to match the bfloat16 baseline (Figure 1).

Notation. A standard linear layer is comprised of inputs X ∈ Rb×n, weights W ∈ Rm×n, and
outputs Y ∈ Rb×m. In the forward pass, outputs are computed as Y = XW⊤. In the backwards
pass the layer receives gradients of the loss with respect to Y , which we denote Ẏ . Then, gradients to
inputs Ẋ are computed via Ẋ = Ẏ W while gradients to the weights Ẇ are computed via Ẇ = Ẏ ⊤X .
For linear layers in a transformer [60], b is batch size times sequence length, while n and m are small
multiples of the embedding dimension.

Quantization. For the matrix multiplies in 8 bit precision we use quantization. There are a multiple
quantization techniques to choose from and we will release code for all these alternatives. However,
we find the best trade-off of simplicity and performance is from using i) row-wise quantization [31]
for the inputs and gradients and ii) tensor-wise quantization for the weights. Additional information
on quantization methods is provided by Dettmers et al. [17] but we summarize below. Using int8
as an example, which can represent integers from −127 to 127, we now define row-wise and tensor
wise quantization. For a matrix X with rows x1, ..., xb, row-wise quantization Qrow and tensor-wise
quantization Qtensor are given respectively by

Qrow


x1

...
xn


 = round




127
absmax(x1)

· x1

...
127

absmax(xb)
· xb


 , Qtensor (X) = round

(
127

absmax (X)
·X

)
(1)

where absmax is the maximum of the absolute value.

Importantly, when applying Qrow we also save the row-wise absolute maximums so that we can
use them later for dequantization. We refer to this as the quantization state, or state, for short, so
staterow(X) = [absmax(x1), ..., absmax(xb)]

⊤ ∈ Rb×1. Equivalently, for tensor-wise quantization
we only need to store the tensor-wise absolute maximum so statetensor(X) = absmax(X) ∈ R.

Since only the matrix multiply occurs in int8 precision we need to dequantize the outputs back to the
original floating point precision. The forward pass with quantization and dequantization becomes

statetensor(W)

1272
· staterow(X) ∗Qrow (X)Qtensor (W)

⊤︸ ︷︷ ︸
int8 matmul

(2)

where ∗ denotes elementwise-multiplication, which in this case is broadcasted so that row i of the
matrix Qrow (X)Qtensor (W)

⊤ is multiplied by element i of staterow(X).

As mentioned previously, we use row-wise quantization for the inputs and gradients and tensor-wise
quantization for the weights. We find that using row-wise quantization for both matrices increases
complexity at a negligible or no performance increase. As such, we use this simpler approach.

The last detail in our algorithm is hardware specific. NVIDIA GPUs, which we use in this work, do
not implement the int8/float8 operation AB for matrices A and B and only ABT is implemented. As
such, it is necessary to transpose the weight matrix in the backward pass. To reduce the overhead of
transposition and quantization we fuse both operations, meaning we load the required data once from
slow DRAM into fast SRAM/shared memory and then perform both operation in this cached memory –
this is critical for achieving speedups. We call this operation tensor-wise_quantize_transpose,
which is a fused tensor-wise quantize and transpose operation. Putting the pieces together, the result
is Algorithm 1.

Variants. While Algorithm 1 is the most straightforward version of SwitchBack, we also present two
alternative versions—SwitchBackM and SwitchBackQ—and will release triton [57] implementations
for all three. Appendix C contains pseudocode. SwitchBackM (Algorithm 3) is a memory efficient
version of SwitchBack which only saves 8 bit tensors for the backwards pass—we recommend its
use when memory is limited. The small downside of SwitchBackM is that it requires an additional
dequantize operation during the backwards pass which increases the runtime overhead. For CLIP ViT-
Huge we observed only a negligible accuracy differences between SwitchBack and SwitchBackM. In
addition, we present SwitchBackQ (Algorithm 4) which uses row-wise and column-wise quantization
for the weights instead of tensor-wise. While we did not observe this to improve accuracy at the
scales we consider, it’s possible that it will perform better than SwitchBack at larger scale.

4

float8. While the explanation so far has used int8 as an example, the code for SwitchBack and float8
(fp8) is nearly identical. The only modification is that operations such as round(127x/absmax(x))
are replaced by float8cast(x/absmax(x)) where we simulate float8cast by rounding to the exact
values of the float8 data type. This simulation improves on the simulation of [40] which only clips
the input tensors into the representable range of the float8 data type, but not the exact values of the
float8 data type. This simulation theoretically matches float8 training, but we are unable to perform
real float8 training because we lack the hardware that supports float8 arithmetic. As such, we perform
arithmetic in 16-bit with exact float8 values. For our int8 experiments we conduct the multiplications
in int8 using A100 GPUs—we perform real int8 training without any simulation.

2.2.2 Experimental setup
To evaluate SwitchBack we train CLIP [46] visual transformer [20] models on LAION-2B [53].
Typically CLIP training, especially at ViT-Huge scale, is prohibitively expensive. Our goal is not
high final accuracy but rather to contrast different methods for low-precision training. To enable
running multiple experiments, we therefore only train for a small number of samples seen—380
million images—and use patch-dropout 0.5 [35]. We note that the experiment is still very expensive,
corresponding to roughly 300 epochs of ImageNet training in terms of samples seen, or approximately
2.9e20 FLOPs per training run. After training on LAION-2B we evaluate the models zero-shot on
ImageNet [15] using the 80 prompt templates from CLIP [46].

We use batch size 16384 (per-gpu batch size of 256) and train for a total of 20k iterations. The first 5k
iterations are linear warmup while the remaining 15k are cosine decay. Training and evaluation are
conducted with the OpenCLIP library [29] with learning rate 2e-3, weight decay 0.2, and batch-size
16384 using the optimizer described in Section 3.5.

2.2.3 Results
We test two main questions: (1) can we replicate 16-bit performance with SwitchBack and (2) can we
get speedups. To test (1) we train CLIP models with SwitchBack across multiple scales with both
int8 and float8 precision (Figure 1). To test (2) we profile operations in an individual linear layer and
also measure end-to-end training speed. Loss curves for the training runs in Figure 1 are shown in
Appendix Figure 9.

Accuracy. We find that SwitchBack can match standard 16-bit training performance and outperform
baselines for both a) int8 precision and b) float8 precision.

For our int8 experiments (Figure 1, right), we contrast the performance of i) the standard baseline
which uses mixed-precision bfloat16, ii) the matrix multiplication kernels from LLM.int8() [17],
which is equivalent to SwitchBackQ (Algorithm 4) if the weight gradient multiplication was also
performed in int8 using row- and column-wise quantization, and iii) SwitchBack. SwitchBack has
a negligible accuracy drop of 0.1 percentage points compared to the bfloat16 baseline for CLIP
ViT-Huge. In contrast, there is a drop of 5.9 percentage points when training with LLM.int8().
Section D details our hypothesis for why LLM.int8() fails to replicate 16-bit performance for CLIP
training.

For our simulated float8 training experiments (Figure 1, right), we contrast the performance of
i) the standard baseline which uses mixed-precision bfloat16, ii) a baseline which uses tensor-
wise quantization for all matrices, that is the weights, inputs, and gradients, and iii) SwitchBack.
SwitchBack has a negligible accuracy drop of 0.1 percentage points from the bfloat16 baseline for
CLIP ViT-Huge. In contrast, training diverges for the baseline that uses tensor-wise quantization for
all matrices.

Speed. By writing custom triton kernels [57] we achieve end-to-end speedups from 13-25% for CLIP
ViT-Huge training. 25% compared to a standard linear layer implemented using the PyTorch [43]
autograd python module and 13% compared to the standard PyTorch layer which include optimiza-
tions that are difficult to replicate for custom layers. Moreover, we find that the overhead due to
quantization operations decreases with scale and is ∼10% for CLIP ViT-Huge. A detailed analysis of
our speed-ups is in Appendix B.

2.3 Float8 training by reducing feature magnitude
We find that SwitchBack is necessary for high accuracy int8 training. However, this section develops
other interventions which enable float8 training without SwitchBack. We show that high accuracy can
be achieved via float8 training with tensor-wise quantization for the inputs, weights, and gradients, so

5

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

2

4

6

8

10

Lo
ss

ViT-Large model

i) bfloat16 baseline
ii) fp8 tensor quantize
iii) fp8 tensor + grad clip

iv) fp8 tensor + KQ Layernorm
v) fp8 tensor + zero-init layerscale

0.5

1.0

0 10 20 30
Transformer block index

0

1

2

3

4

5

Av
er

ag
e

fe
at

ur
e

m
ag

ni
tu

de standard at init
standard final
zero-init layer scale at init
zero-init layer scale final

Figure 2: (Left) Training CLIP ViT-Large models with simulated fp8 precision using tensor-wise quantization
for the inputs, weights, and gradients. All methods we try diverge except for using zero-init layerscale [58],
which multiplies the output of each self-attention or mlp block with a learnable vector initialized to zero. (Right)
Examining feature magnitudes (i.e., the average absolute value of the output for transformer block k) for CLIP
ViT-Huge at the beginning (init) and end of training. This suggest why zero-init layer scale enables float8
training—zero-init layer scale prevents high feature magnitudes which may cause issues for low precision
training [17]. Without the intervention, the average feature magnitude becomes large for later blocks.

long as the network is initialized and trained in a way which discourages large feature magnitudes.
We accomplish via layer-scale [58] initialized to zero.

We use the bitsandbytes library [18] to simulate float8 training using the fp8 types from Micikevicius
et al. [40]. We use tensor-wise quantization for the inputs, weights, and gradients, so that all
operations occur in simulated float8. In our simulation, we represent each value only with the exact
values representable by float8, but we perform computations in float16 precision. We believe that
tensor-wise quantization approximates the removal of quantize operations entirely. This is because,
as we show in Appendix C.2 (Figure 11), the maximum of these tensors tends to evolve smoothly.
Consequently, using a moving average for a maximum which is divided directly in the matmul is
similar to tensor-wise quantization.

Layer-scale, introduced by Touvron et al. [58], scales each self-attention and MLP block output hidden
state by a learnable vector of shape embed_dim. A pre-norm transformer block with layer-scale
tensors γ1 and γ2 is defined as

x′
k = xk + γ1 ∗ self_attention(norm1(xk)), xk+1 = x′

k + γ2 ∗mlp(norm2(x
′
k)), (3)

where ∗ is broadcasted elementwise multiplication.

Typically, layers are initialized so that they approximately preserve the variance of their inputs, and
inputs have approximately unit variance [26, 27]. However, when combined with residual connections
this can lead to higher norms in deeper networks.

Consequently, researchers have proposed initialization and scaling schemes which remedy this issue
[1, 71, 4, 19]. Layer-scale with initialization 0 is an example of one such scheme—at initialization
the transformer is an identity function. While γ1, γ2 are typically initialized as vectors of 10−4 or
10−6, we use 0 for simplicity.

Figure 2 (right) demonstrates that the layer-scale intervention is successful at controlling the average
magnitude output. Without the intervention, the average feature magnitude E[abs(xk)] becomes high
for later blocks. Previous work [17] has shown that large feature magnitudes result in issues for low
precision training.

Results for simulated fp8 training are shown in Figure 2 (left) for ViT-Large. We find that all fp8
runs diverge except for when we use layer-scale initialized to zero. Concretely, Figure 2 compares i)
the baseline which uses bfloat16 training, ii) using fp8 with tensor-wise quantization and no further
modifications, which slowly diverges, iii) adding gradient clipping to ii), which also diverges, iv)
adding KQ layernorm [14] to ii), which also diverges, and v) using zero-init layerscale, which trains
without diverging. While there is a difference still between fp8 and bfloat16 training, this is primarily
because of layerscale. Moreover, we believe that with hyperparameter tuning layerscale would match
standard training in terms of accuracy.

6

0 5000 10000 15000 20000
Iteration

0

2

4

6

8

10

Lo
ss

ViT-Base model

0 5000 10000 15000 20000
Iteration

0

2

4

6

8

10

Lo
ss

ViT-Large model

beta2 = 0.99 beta2 = 0.98 beta2 = 0.95 beta2 = 0.9 beta2 = 0.5

0 5000 10000 15000 20000
Iteration

0

2

4

6

8

10

Lo
ss

ViT-Huge model

Figure 3: Loss spikes increase with model size for fixed learning rate and batch size. Reducing AdamW β2

from its default in PyTorch of 0.999 mitigates loss spikes. Reducing β2 too much slows training.

3 Stability

We now switch focus from accelerating learning by reducing precision to addressing instabilities
which can arise during training. Section 3.1 reviews preliminaries and related work while Section 3.2
details the experimental setup. Next, Section 3.3 examines trends for training instability, finding loss
spikes to increase with model scale but decrease with lower AdamW β2. Then, Section 3.4 finds
that loss spikes arise in our setting due to an out-of-date AdamW second moment estimator leading
Section 3.5 to adopt and tests a fix developed in the context of AdaFactor [54]. Appendix Section G
connects this section on stability with the previous section on low-precision training.

3.1 Preliminaries and related work

Loss spikes can emerge when scaling up models [8, 25, 14, 68, 70, 54, 73]. These instabilities
may slow learning, or even destabilize training completely. Various solutions have been proposed,
including freezing the embedding layer [8], adding additional layer normalization [14, 25], or
reparametrizing the weights [68].

In our work we investigate instabilities which arise during CLIP training. Unlike the instabilities
observed in [14, 68] which lead to a slow divergence, we study fast loss spikes. Our results indicate
that these spikes arise when the second moment estimator is out of date for early layers.

While our analysis and methods build directly on Shazeer and Stern [54] (AdaFactor), there are
important differences. In contrast with Shazeer and Stern [54], who only observe instabilities without
warmup, we observe instabilities despite a long warmup period. Moreover, in contrast with Shazeer
and Stern [54] we find that an out-of-date second moment estimator is primarily an issue for the
(patch) embedding layer, and measure how well loss spikes are predicted by this event. Finally, we
note that researchers have moved away from AdaFactor in its original formulation for large-scale
training [47, 11, 69], finding AdaFactor to under-perform AdamW [47]. We believe this is due to the
factored second moment or absence of first moment. This is why our focus is AdamW [37] which is
the de facto standard optimizer for transformers.

After the initial version of this paper we became aware of Cohen et al. [12] which offers a general
and principled treatment of fast loss spikes, and which we recommend to readers. Moreover, we
direct the readers attention to the concurrent work of [41].

3.2 Experimental setup

As in Section 2, we train ViT CLIP models on LAION [53] using OpenCLIP [29] and evaluate them
zero-shot on ImageNet. Since we are not interested in final performance and instead interested in
studying instability—even for very large models—we use a short run which allows us to conduct
multiple experiments. Concretly, we use patch-dropout 0.5 [35] and 20k iterations. The first 5k
iterations are linear warmup while the remainder are cosine decay [36]. We follow the CLIP
paper [46] in that i) we do not use gradient clipping unless otherwise mentioned, though we do clip
the logit_scale parameter, and ii) we add a layer-norm after the patch embedding and before the main
transformer. Unless otherwise mentioned, experiments use batch size 16384 (per-gpu batch size of
256), learning rate 2e-3 and weight decay 0.2. We initially tried adding a layer-norm before the patch
embedding as in [34], but removed this as we found it to hurt performance at CLIP ViT-Huge scale.

7

2500 2600 2700 2800 2900 3000

5.0

7.5

Lo
ss

2500 2600 2700 2800 2900 3000
 Iteration

1
2
3
4

RM
S

visual.conv1.weight

RMS spike preceeding loss spike beta2 = 0.98 beta2 = 0.9

Figure 4: The learning signal can change so that the AdamW second moment estimator ut is out-of-date and
underestimates the squared gradients g2t . This can be detected if the aggregate quantity RMSt =

√
E [g2t /ut] is

far from 1. This figure observes a predictive relationship between the event of an RMS spike and a loss spike—
we observe a spike in RMSt 1-8 iterations before a loss spike. For lower β2, RMSt does not deviate far from 1.
This result looks at RMSt for the patch embedding layer only. This predictive relationship is further examined
in Figures 15 to 20 of Appendix E.

3.3 Loss spikes increase with model size, batch size, and learning rate
We begin our studying of loss spikes by observing how their presence varies when changing model
size, batch size, and learning rate. The following sections build on these observations—in particular
the finding that lowering the AdamW β2 hyperparameter removes spikes entirely.

We find that loss spikes increase when increasing model size, batch size, or learning rate. The first
result is shown in Figure 3 while the second two analagous results are in Appendix Figures 12 and 13.
Importantly, these figures show that loss spikes can be avoided by reducing the β2 hyperparameter
for in AdamW. On the other hand, if β2 is reduced too much then learning is slowed which results in
worse performance [50].

3.4 On β2 and an out-of-date second moment estimator
Based on the observation in the previous section that lowering β2 reduces spikes, this section traces
the cause of loss spikes to an out-of-date second moment estimator in the patch embedding layer.

Overview. Adaptive optimizers such as AdaGrad [22], Adam [33], or AdaFactor [54] scale the
update differently for each individual parameter. This is often conceptualized a per-parameter learning
rate. For instance, in Adam/AdamW, per-parameter updates are scaled by the inverse root of the
exponential moving average of squared gradients (see the code for AdamW in Algorithm 2, ignoring
for now the modifications in pink which we discuss in Section 3.5).

This adaptivity can be a very useful tool for accelerating training, but can also cause issues when the
learning signal changes. Concretely, exponential moving averages can become out of date causing
updates to be scaled by a value that is too large. This issue is discussed in Section 5 of Shazeer and
Stern [54], and we summarize below.

As in Algorithm 2, let ut = {ut,j}nj=1 denote the exponential moving average (EMA) of squared
gradients g2t = {g2t,j}nj=1 for neural network parameters θ ∈ Rn. Ignoring the bias correction term1,
at each iteration t, ut is updated as β2ut−1 + (1− β2)g

2
t where β2 is referred to as the decay for the

EMA. Then, the update is scaled by 1/
(√

ut + ϵ
)
, where ϵ is a small value added numerical stability.

Often the ratio vt/
(√

ut + ϵ
)

is thought of as signal-to-noise ratio of the gradient over time.

However, this method can break down when the learning signal changes and ut ceases to be a good
estimator for the running average of g2t . Consider the case where the gradient magnitudes have
been historically very small for some parameters so 1/

(√
ut + ϵ

)
is large for those parameters. If,

then, at iteration t those parameters suddenly receive a larger gradient signal the update can be
catastrophically big. We refer to the scenario as the stuck-in-the-past scenario.

Overall, if β2 is too small then convergence may be slowed [50]. If β2 is too large then ut can become
out-of-date and no longer a good estimator for g2t , resulting in per-parameter scaling that is too large.

1In practice, the EMA is debiased with a correction term. Algorithm 2 follows AdaFactor section 7.1 in
applying the correction term to β1, β2. Adam is often written with the correction term applied to vt, ut but they
are equivalent [54].

8

0 2500 5000 7500 1000012500150001750020000
Iteration

0

2

4

6

8

10

Lo
ss

ViT-Huge, Beta2 = 0.99

default
+ grad clipping
+ update clipping (= StableAdamW)

0.5 0.8 0.9 0.95 0.98 0.99 0.995
Beta2

55.0

55.5

56.0

56.5

57.0

57.5

58.0

Ze
ro

-s
ho

t I
m

ag
eN

et
 a

cc
ur

ac
y ViT-Huge

default
+ grad clipping
+ update clipping (= StableAdamW)

Figure 5: Adding update clipping to AdamW mitigates loss spikes and outperforms other interventions such as
gradient clipping with norm 1. Code for the AdamW-AdaFactor hybrid we recommend of AdamW + update
clipping is in Algorithm 2. The left plot shows loss curves for β2 = 0.99 while the right displays accuracy
ablating over β2.

Measurement. We now discuss measurement of the aforementioned stuck-in-the-past scenario and
search for a predictive relationship between this event and a loss spike. We follow Shazeer and Stern
[54] and measure the following root-mean-square quantity, RMSt =

√
E [g2t /ut]. If ut is a good

estimator for g2t then the aggregate quantity RMSt will be around 1. The stuck-in-the-past scenario
described above corresponds to an RMSt ≫ 1.

As illustrated in Figure 3 we observe instability for high β2 in our experiments even though we
have 5k iterations of warm-up. While Shazeer and Stern [54] first recognize the out-of-date second
moment estimator issue, in their experimental setting they only observe instability without warm-up.

We now aim to establish a predictive relationship between the stuck-in-the-past scenario and loss
spikes. We present initial results in Figure 4, where we examine RMSt for the the visual transformer
patch embedding layer, visual.conv1.weight. This means that the expectation is computed over
parameters in visual.conv1.weight only. This figure illustrates a few important findings: i) loss spikes
tend to follow 1-8 iterations after an RMS spike, ii) loss spikes slow learning as recovery time is
required, and iii), RMSt stays around 1 for lower β2.

As this is just one example, we further elaborate on the predictive relationship between an RMS spike
in the embedding layer in Section E through Figures 15, 16, 17, 18, 19, and 20. For analysis purposes,
we define a heuristic to characterize loss and RMS spikes in visual.conv1.weight. We then show that
28 out of 30 detected loss spikes follow an RMS spike by 1-8 iterations, while the probability that a
loss spike follows an RMS spike by chance is only 1%. Moreover, we find that the same predictive
relationship does not exist for the RMS in other transformer layers.

3.5 StableAdamW: AdamW with update clipping from AdaFactor
This Section develops and tests StableAdamW (Algorithm 2), an AdamW-Adafactor hybrid.

To stabilize training, the AdaFactor optimizer divides the learning rate for iteration t by
1/max(RMSt, 1).2 They refer to this as update clipping. The effect is to slow training when
ut is no longer a good estimator for g2t .

As discussed in Section 3.4, our stability issues can be traced to an out-of-date ut which is what
led Shazeer and Stern [54] to update clipping, even though their stability issues are also solved with
warm-up. Therefore, we port update clipping to the standard AdamW optimizer with d = 1 and refer
to the resulting AdamW-Adafactor hybrid as StableAdamW (Algorithm 2). A modification we make
is to compute and divide learning rate by max(RMSt, 1) independently for each tensor, which is for
implementation convenience. This means that the expectation will be computed independently for
each layer to produce a different RMSt.

We now test how StableAdamW compares with other stability interventions such as gradient clipping3

or lowering β2. These results, presented in Figure 5 find that StableAdamW (i.e., AdamW + update
clipping) outperforms these aforementioned interventions for CLIP ViT-Huge. While gradient
clipping and update clipping both remove instability, update clipping performs better in terms of
zero-shot ImageNet accuracy. With update or gradient clipping, higher β2 such as 0.99 tends to

2They actually introduce a hyperparameter d and use 1/max(RMSt/d, 1), but recommend setting d = 1.
3We clip at global norm 1. We observed instability when trying 2 instead of 1. We did not tune this further,

but note that 1.0 is standard in, e.g., PaLM [11], and Scaling Vision Transformers [69].

9

perform better. Appendix F provides further commentary and implementation considerations for
StableAdamW.

4 Limitations, broader impacts, and conclusion
We believe the main limitation of our work is that it is non-exhaustive. For instance, we only simulate
float8 training and our experiments focus solely on CLIP-style training. In terms of broader impact,
our work may enable additional CLIP models, whose broader impact is examined extensively by
Section 7 of Radford et al. [46]. Finally, we believe that our findings on accelerating and stabilizing
large multi-modal model training will be broadly useful to the community.

Acknowledgements
For insightful discussions we thank Romain Beaumont, Yair Carmon, Mehdi Cherti, Brian Che-
ung, Alex Fang, Gabriel Ilharco, Jenia Jitsev, LAION, Sarah Pratt, Christoph Schuhmann, Ross
Whightman, and Sho Yaida. We thank Emad Mostaque and stability.ai for compute resources.

This work is in part supported by NSF IIS 1652052, IIS 17303166, DARPA N66001-19-2-4031,
DARPA W911NF-15-1-0543 and gifts from Allen Institute for Artificial Intelligence.

References
[1] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley.

Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial Intelligence, pages
1352–1361. PMLR, 2021.

[2] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael R. Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. ArXiv, abs/2012.15701, 2021.

[3] Charlie Blake, Douglas Orr, and Carlo Luschi. Unit scaling: Out-of-the-box low-precision training. arXiv
preprint arXiv:2303.11257, 2023.

[4] Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale image
recognition without normalization. In International Conference on Machine Learning, pages 1059–1071.
PMLR, 2021.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, et al.
Language models are few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS),
2020. https://arxiv.org/abs/2005.14165.

[6] Léopold Cambier, Anahita Bhiwandiwalla, Ting Gong, Oguz H. Elibol, Mehran Nekuii, and Hanlin Tang.
Shifted and squeezed 8-bit floating point format for low-precision training of deep neural networks. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=Bkxe2AVtPS.

[7] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv preprint
arXiv:2302.06675, 2023.

[8] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9640–9649, 2021.

[9] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive
language-image learning. arXiv preprint arXiv:2212.07143, 2022.

[10] Minsik Cho, Keivan A Vahid, Saurabh Adya, and Mohammad Rastegari. Dkm: Differentiable k-means
clustering layer for neural network compression. arXiv preprint arXiv:2108.12659, 2021.

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[12] Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal
Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive gradient methods at
the edge of stability. arXiv preprint arXiv:2207.14484, 2022.

10

https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=Bkxe2AVtPS

[13] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 3123–3131, 2015. URL https://proceedings.neurips.cc/paper/2015/
hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html.

[14] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision transformers to 22
billion parameters. arXiv preprint arXiv:2302.05442, 2023.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Conference on Computer Vision and Pattern Recognition, 2009. https://ieeexplore.
ieee.org/document/5206848.

[16] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. arXiv
preprint arXiv:2212.09720, 2022.

[17] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication
for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

[18] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise quantiza-
tion. 9th International Conference on Learning Representations, ICLR, 2022.

[19] Emily Dinan, Sho Yaida, and Susan Zhang. Effective theory of transformers at initialization. arXiv preprint
arXiv:2304.02034, 2023.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations (ICLR), 2021. https://arxiv.org/abs/2010.
11929.

[21] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block floating
point. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Mon-
tréal, Canada, pages 451–461, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html.

[22] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[23] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Herve Jegou, and Armand
Joulin. Training with quantization noise for extreme model compression. arXiv preprint arXiv:2004.07320,
2020.

[24] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[25] Justin Gilmer, Andrea Schioppa, and Jeremy Cohen. Intriguing properties of transformer training instabili-
ties. To appear.

[26] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https://arxiv.org/abs/
1512.03385.

[29] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig
Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/zenodo.5143773. If you use this
software, please cite it as below.

11

https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Abstract.html
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.5281/zenodo.5143773

[30] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. arxiv e-prints, art. arXiv preprint arXiv:1712.05877, 2017.

[31] Daya Khudia, Jianyu Huang, Protonu Basu, Summer Deng, Haixin Liu, Jongsoo Park, and Mikhail
Smelyanskiy. Fbgemm: Enabling high-performance low-precision deep learning inference. arXiv preprint
arXiv:2101.05615, 2021.

[32] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-only
bert quantization. In International conference on machine learning, pages 5506–5518. PMLR, 2021.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2014. https://arxiv.org/abs/1412.6980.

[34] Manoj Kumar, Mostafa Dehghani, and Neil Houlsby. Dual patchnorm. arXiv preprint arXiv:2302.01327,
2023.

[35] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling language-image
pre-training via masking. arXiv preprint arXiv:2212.00794, 2022.

[36] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations (ICLR), 2016. https://arxiv.org/abs/1608.03983.

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations (ICLR), 2019. https://openreview.net/forum?id=Bkg6RiCqY7.

[38] Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul. Mixed precision training with
8-bit floating point. CoRR, abs/1905.12334, 2019. URL http://arxiv.org/abs/1905.12334.

[39] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

[40] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats for deep learning. arXiv
preprint arXiv:2209.05433, 2022.

[41] Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh Koura,
Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in large-scale machine
learning. arXiv preprint arXiv:2304.09871, 2023.

[42] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. nuqmm:
Quantized matmul for efficient inference of large-scale generative language models. arXiv preprint
arXiv:2206.09557, 2022.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS),
2019. https://arxiv.org/abs/1912.01703.

[44] Hieu Pham, Zihang Dai, Golnaz Ghiasi, Hanxiao Liu, Adams Wei Yu, Minh-Thang Luong, Mingxing Tan,
and Quoc V. Le. Combined scaling for zero-shot transfer learning, 2021. https://arxiv.org/abs/
2111.10050.

[45] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. CoRR, abs/2004.03333, 2020. URL https://arxiv.org/abs/2004.03333.

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In International Conference on Machine
Learning (ICML), 2021. https://arxiv.org/abs/2103.00020.

[47] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

[48] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning,
pages 8821–8831. PMLR, 2021.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1608.03983
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1905.12334
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2111.10050
https://arxiv.org/abs/2111.10050
https://arxiv.org/abs/2004.03333
https://arxiv.org/abs/2103.00020

[49] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[50] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237, 2019.

[51] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022.

[52] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter
open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

[53] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402, 2022.

[54] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[55] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 8815–8821, 2020.

[56] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point (HFP8)
training and inference for deep neural networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 4901–4910, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html.

[57] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pages 10–19, 2019.

[58] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper
with image transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 32–42, 2021.

[59] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[61] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf.

[62] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training deep
neural networks with 8-bit floating point numbers. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages 7686–7695, 2018. URL https://proceedings.
neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html.

[63] Shibo Wang and Pankaj Kanwar. Bfloat16: The secret to high performance on cloud
tpus. 2019. https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus.

13

https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

[64] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: aver-
aging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International Conference on Machine Learning, pages 23965–23998. PMLR, 2022.

[65] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate and
efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438, 2022.

[66] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. arXiv preprint
arXiv:2206.01861, 2022.

[67] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi
Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint arXiv:2210.02414,
2022.

[68] Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe Zhang,
Jiatao Gu, and Josh Susskind. Stabilizing transformer training by preventing attention entropy collapse.
arXiv preprint arXiv:2303.06296, 2023.

[69] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers, 2021.
https://arxiv.org/abs/2106.04560.

[70] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. arXiv preprint arXiv:2303.15343, 2023.

[71] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

[72] Susan Zhang. Open pretrained transformers lecture, 2023. https://www.youtube.com/watch?v=
p9IxoSkvZ-M.

[73] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[74] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu. Ternarybert:
Distillation-aware ultra-low bit bert. In EMNLP, 2020.

[75] Changsheng Zhao, Ting Hua, Yilin Shen, Qian Lou, and Hongxia Jin. Automatic mixed-precision
quantization search of bert. arXiv preprint arXiv:2112.14938, 2021.

[76] Kang Zhao, Sida Huang, Pan Pan, Yinghan Li, Yingya Zhang, Zhenyu Gu, and Yinghui Xu. Distribution
adaptive int8 quantization for training cnns. In Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence, 2021.

[77] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
S1_pAu9xl.

[78] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang, and Junjie
Yan. Towards unified int8 training for convolutional neural network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1969–1979, 2020.

14

https://arxiv.org/abs/2106.04560
https://www.youtube.com/watch?v=p9IxoSkvZ-M
https://www.youtube.com/watch?v=p9IxoSkvZ-M
https://openreview.net/forum?id=S1_pAu9xl
https://openreview.net/forum?id=S1_pAu9xl

1024 2048 4096
dim

0

10

20

30

40

50

tim
e

(m
s)

 Linear layer, batch * sequence length = 32kStandard fp16 (sum of parts)
SwitchBack int8 (sum of parts)
Average fp16 matmul
Average int8 matmul
Average quantize operation

1024 2048 4096
dim

5

10

15

20

25

30

35

%
 sp

ee
du

p

 Linear layer summary, varying dimensions

batch * sequence length = 16384
batch * sequence length = 32768
batch * sequence length = 65536
batch * sequence length = 131072

Figure 6: (Left) Individually profiling operations which constitute a forward and backward pass in a linear layer
for i) SwitchBack using triton kernels and ii) an fp16 baseline using torch.matmul. Times are averaged over a
linear layer from dim to 4 · dim and a linear layer from 4 · dim to dim—representative of the linear layers in a
transformer MLP. (Right) The % speedup of SwitchBack over a standard fp16 linear layer when all operations
in Figure 6 (left) are summed.

A Additional Related Work on Quantization
The literature on training neural networks in low-bit precision is vast. The main differentiating
factor of our work is that we train relatively large models – in fact, we train the largest 8-bit vision
transformers to date.

The literature agrees that quantization of very large networks is more difficult than for smaller
networks [18, 17, 65, 24]. As such, we divide our related work into three parts: (1) large-scale
low-precision neural network (larger than BERT-large), and (2) low-precision training of smaller
networks.

Large-scale Low-precision Neural Networks. Our work is currently the only work that does
low-precision (8-bit and below) training of very large networks with more than 230M parameters.
Other related work studies inference at scale. SmoothQuant [65], ZeroQuant [66], NuQmm [42], and
LLM.int8() [17] study inference with Int8 matrix multiplication. Another line of work studies large
models inference with more than 250M parameters by considering 16-bit inputs and k-bit weights
[16, 24, 67].

Small Scale Low-precision Training Training of small-scale low-precision neural networks can
take many shapes and forms, such as quantization for integer only devices, quantization for mobile
device, or quantization to accelerate training. One way to break up these directions is through the
data type used and the neural network trained. One major direction is to quantize convolutional
neural networks often for fast and memory efficient usage on edge devices [77, 6, 13, 78, 23, 76, 30].
Further work in this area is discussed in the survey by [45]. Another line of work is centered around
8-bit float data types which can be used to accelerate training of neural networks [21, 56, 62, 38, 3].
Lastly, a common application is to finetune (similar to training) BERT models to particular datasets.
This not only decreases the model footprint and increases inference speed but adjusts the model to
new data [2, 32, 74, 55, 75].

B Achieving speed-ups with SwitchBack
We now test the speedups offered by SwitchBack by first examining individual operations and then
end-to-end training.

We profile all of the operations which constitute a forward and backward pass for a single linear layer
in Figure 6 (left) for both SwitchBack and the baseline. For SwitchBack we profile our custom triton
kernels and for the baseline we profile torch.matmul. Overall, we observe that int8 multiplies occupy
just over half the time as standard fp16 matmuls, and that quantize operations are roughly an order
of magnitude less time than a matmul. Note that our int8 matmuls are fused with the dequantize
operation.

Figure 6 (right) displays the % speedup of SwitchBack over a standard fp16 layer when all operations
in Figure 6 (left) are summed. Overall, the advantage of SwitchBack is greater for larger dim and
batch_size ∗ sequence_length. Overall, the speedup ranges from 5% to 35%. We see a bump at
dim = 1280 because standard PyTorch matmuls do not have optimized kernels for matrices of this

15

1024 2048 4096
dim

10

15

20

25

Qu
an

tiz
at

io
n

ov
er

he
ad

batch * sequence length = 16384
batch * sequence length = 32768
batch * sequence length = 65536
batch * sequence length = 131072

ViT-Base ViT-Large ViT-Huge
0

5

10

15

20

25

%
 sp

ee
du

p

speedup over baseline (torch.autograd Linear)
speedup over pytorch optimized linear

Figure 7: (Left) Measuring the % of time occupied by quantize operations for a SwitchBack linear layer,
which is usually less than 20% and decreases with dim. (Right) Benchmarking speedups for end-to-end CLIP
training on a single node (with 4 A100 GPUs, per-GPU batch size 256, and gradient checkpointing) for various
model sizes when replacing all linear operations in the transformer with SwitchBack (i.e., key, query, value,
and out projections as well as the MLP). speedups reported over i) a custom linear layer implemented with
torch.autograd (Algorithm 5), which matches our implementation of SwitchBack that uses torch.autograd,
and ii) using the standard PyTorch nn.Linear which includes additional background C++/CUDA optimizations
which we do not replicate. LLM.int8() [17] does not provide speed-ups over the torch.autograd or nn.Linear
baseline at this scale—we compare the speed of SwitchBack and LLM.int8() in Figure 8.

ViT-Base ViT-Large ViT-Huge
54.0

54.1

54.2

54.3

54.4

54.5

54.6

54.7

54.8

%
 sp

ee
du

p

speedup over LLM.int8()

Figure 8: Benchmarking speedups of SwitchBack compared to LLM.int8() [17] for end-to-end CLIP training on
a single node (with 4 A100 GPUs, per-GPU batch size 128, and gradient checkpointing) for various model sizes
when replacing all linear operations in the transformer (i.e., key, query, value, and out projections as well as the
MLP).

size while we use triton’s autotune feature which provides fine-grained optimized kernels for matrices
of any size. Our kernels are easy to modify as they are written in Triton [57], and the code to run the
benchmarks and produce Figure 6 is open sourced. In doing so, we invite the community to further
improve the kernels and provide a benchmark for measuring this progress. Due to computational
constraints we have not tested dim > 4096 and it’s possible the kernels require additional tuning to
perform well at that scale.

One downside of SwitchBack is that it requires quantize operations. However, it is already evident
from Figure 6 that quantize operations occupy a small amount of time compared to matmuls. This is
highlighted by Figure 7 (left) which displays the fraction of time occupied by quantize operations
relative to matmuls for SwitchBack linear layers. Quantize operations occupy at most 25% of the
time, this fraction decreases to around 10% or below for large dim.

We now conduct end-to-end speed tests for CLIP training on a single node with 4x A100 GPUs
(Figure 7, right). This is in contrast with the speedup measurements so far in this which have
measured individual layers independently. We benchmark speedups relative to using i) a baseline
linear layer which we implement in PyTorch with torch.autograd.linear (Algorithm 5) and ii) the
PyTorch optimized linear layer nn.Linear. In both cases the speedups increase when going from CLIP
ViT-Base to CLIP ViT-Huge. However, there is an additional ∼12.5% speedup when comparing
SwitchBack to the baseline linear layer which uses torch.autograd. We believe this comparison
is fair because SwitchBack is also implemented using torch.autograd, while the standard PyTorch
nn.Linear layer has additional C++ and CUDA optimizations that we do not implement. We hope to
collaborate with the PyTorch team to realize the additional ∼12.5% speedup. Finally, we note that
the kernels from LLM.int8() [17] do not provide speedups over fp16 at the scale we consider.

16

C Additional code and figures
C.1 Additional Code
This Section provides additional pseudocode:

• Algorithm 3 is the memory effecient variant of SwitchBack.

• Algorithm 4 is the variant of SwitchBack which uses row- and column-wise quantization for
the weights. For SwitchBackQ, the forward pass is given by

1

1272
staterow(X)staterow(W)⊤ ∗Qrow (X)Qrow (W)

⊤︸ ︷︷ ︸
int8 matmul

(4)

where ∗ is an elementwise product. Again, we append _transpose to a function in
Algorithm 4 to mean that the operation is fused with a transpose.

• Algorithm 5 is a standard linear layer implemented with torch.autograd.

Algorithm 3 Memory efficient SwitchBackM

class SwitchBackMMatmul(autograd.Function):
@staticmethod
def forward(ctx, X, W):

X [b, n] inputs
W [n, m] weights

X_int8, state_X = row-wise_quantize(X)
del X
W_int8, state_W = tensor-wise_quantize(W)

save tensors in ctx
ctx.save = X_int8, state_X, W_int8, state_W

Return output
return matmul_int8_and_dequanitze(

X_int8, W_int8.t(), state_X, state_W
)

@staticmethod
def backward(ctx, G):

G [b, m] gradient to output

Recover tensors from ctx
X_int8, state_X, W_int8, state_W = ctx.save

X = dequantize_row-wise(X_int8, state_X)
del X_int8
W_gradient = matmul_fp16(G.t(), X)
del X

G_int8 = row-wise_quantize(G)
del G
W_int8 = W_int8.t().contiguous()

Use 8bit matmul only for X_gradient
X_gradient = matmul_int8_and_dequanitze(

G_int8, W_int8.t(), state_X, state_W
)

return X_gradient, W_gradient

class SwitchBackMLinear(nn.Linear):
def forward(self, X):

return SwitchBackMMatmul.apply(X, self.weight)

17

Algorithm 4 SwitchBack with row-wise and column-wise quantization for the weights SwitchBackQ

class SwitchBackQMatmul(autograd.Function):
@staticmethod
def forward(ctx, X, W):

X [b, n] inputs
W [n, m] weights

save tensors in ctx
ctx.save_for_backward = X, W

X_int8, state_X = row-wise_quantize(X)
W_int8, state_W = row-wise_quantize(W)

Return output
return matmul_int8_and_dequanitze(

X_int8, W_int8.t(), state_X, state_W
)

@staticmethod
def backward(ctx, G):

G [b, m] gradient to output

Recover tensors from ctx
X, W = ctx.save_for_backward

G_rowwise = rowwise_quantize(G)
W_int8, state_W = column-wise_quantize_transpose(W)

Use 8bit matmul only for X_gradient
X_gradient = matmul_int8_and_dequanitze(

G_int8, W_int8.t(), state_X, state_W
)
W_gradient = matmul_fp16(G.t(), X)

return X_gradient, W_gradient

class SwitchBackQLinear(nn.Linear):
def forward(self, X):

return SwitchBackQMatmul.apply(X, self.weight)

Algorithm 5 A standard linear layer implemented with torch.autograd

class StandardLinearMatmul(autograd.Function):
@staticmethod
def forward(ctx, X, W):

X [b, n] inputs
W [n, m] weights

save tensors in ctx
ctx.save_for_backward = X, W

Return output
return torch.matmul(X, W.t())

@staticmethod
def backward(ctx, G):

G [b, m] gradient to output

Recover tensors from ctx
X, W = ctx.save_for_backward

X_gradient = torch.matmul(G, W)
W_gradient = torch.matmul(G.t(), X)

return X_gradient, W_gradient

class StandardLinear(nn.Linear):
def forward(self, X):

return StandardLinearMatmul.apply(X, self.weight)

18

C.2 Additional Figures
This section presents additional figures.

• Figure 9 shows the loss curves throughout training for the models in Figure 1.

• Figure 10 presents a more fine-grained version of Figure 6.

• Figure 11 shows the mean and max for the gradient and activation (i.e., feature) throughout
training.

• Figures 12 and 13 respectively examine the effect of batch size and learning rate on loss
spikes. They find that loss spikes increase with high batch size and learning rate, but can be
mitigated by reducing AdamW β2. However, reducing β2 by too much can slow learning.

• Figure 14 shows that using a schedule for β2 of the form 1− iteration−λ does not improve
accuracy.

0 5000 10000 15000 20000
Iteration

1

2

3

4

5

6

Lo
ss

ViT-Base model

0 5000 10000 15000 20000
Iteration

0

1

2

3

4

5

6

Lo
ss

ViT-Huge model

bfloat16 baseline
LLM.int8() baseline

SwitchBack int8

0 5000 10000 15000 20000
Iteration

1

2

3

4

5

6

Lo
ss

ViT-Base model

0 5000 10000 15000 20000
Iteration

0

1

2

3

4

5

6

Lo
ss

ViT-Huge model

bfloat16 baseline
fp8 tensor-wise baseline

SwitchBack fp8

Figure 9: Loss curves for the CLIP ViT-Base and CLIP ViT-Huge models evaluated in Figure 1. The left two
plots display results for int8 training while the right two plots display results for float8 (fp8) training.

19

1024 2048 4096
dim

0

10

20

30

40

50

tim
e

(m
s)

 Linear layer, batch * sequence length = 32kStandard fp16 (sum of parts)
SwitchBack int8 (sum of parts)
Matmul XW (standard)
Matmul GW (standard)
Matmul G^TX (both)
Int8 Matmul XW (switchback)
Int8 Matmul GW (switchback)
Row-wise quantize X (switchback)
Row-wise quantize G (switchback)
Tensor quantize W (switchback)
Tensor quantize and
transpose W (switchback)

1024 2048 4096
dim

5

10

15

20

25

30

35

%
 sp

ee
du

p

 Linear layer summary, varying dimensions

batch * sequence length = 16384
batch * sequence length = 32768
batch * sequence length = 65536
batch * sequence length = 131072

Figure 10: A more fine-grained version of Figure 6.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 9

10 7

10 5

10 3

M
LP

 w
ei

gh
t g

ra
di

en
t

ViT-Huge, no layer scale

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 1

100

101

102

103

Tr
an

sf
or

m
er

 b
lo

ck
 o

ut
pu

t

ViT-Huge, no layer scale

Block .0 max
Block .0 mean

Block 10 max
Block 10 mean

Block 20 max
Block 20 mean

Block 30 max
Block 30 mean

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 9

10 7

10 5

10 3

M
LP

 w
ei

gh
t g

ra
di

en
t

ViT-Huge, layer scale init 0

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 1

100

101

102

103

Tr
an

sf
or

m
er

 b
lo

ck
 o

ut
pu

t

ViT-Huge, layer scale init 0

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 9

10 7

10 5

10 3

M
LP

 w
ei

gh
t g

ra
di

en
t

ViT-Large, no layer scale

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 1

100

101

102

103

Tr
an

sf
or

m
er

 b
lo

ck
 o

ut
pu

t

ViT-Large, no layer scale

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 9

10 7

10 5

10 3

M
LP

 w
ei

gh
t g

ra
di

en
t

ViT-Large, layer scale init 0

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 1

100

101

102

103

Tr
an

sf
or

m
er

 b
lo

ck
 o

ut
pu

t

ViT-Large, layer scale init 0

Figure 11: The mean and max for (left) the gradient to the MLP weight and (right) the output of a transformer
block throughout training. Different rows correspond to different choice of model size and layer scale.

20

0 5000 10000 15000 20000
Iteration

2

4

6

8

10

Lo
ss

Base model, batch size = 4096

0 5000 10000 15000 20000
Iteration

2

4

6

8

10

Lo
ss

Base model, batch size = 16384

beta2 = 0.99 beta2 = 0.98 beta2 = 0.95 beta2 = 0.9 beta2 = 0.5

0 5000 10000 15000 20000
Iteration

2

4

6

8

10

Lo
ss

Base model, batch size = 65536

Figure 12: Loss spikes increase with batch size for fixed learning rate and model size. Reducing AdamW β2

from its default in PyTorch of 0.999 mitigates loss spikes. Reducing β2 too much slows training.

0 5000 10000 15000 20000
Iteration

2

4

6

8

10

Lo
ss

Base model, LR = 5e-4

0 5000 10000 15000 20000
Iteration

2

4

6

8

10

Lo
ss

Base model, LR = 2e-3

beta2 = 0.99 beta2 = 0.98 beta2 = 0.95 beta2 = 0.9 beta2 = 0.5

0 5000 10000 15000 20000
Iteration

2

4

6

8

10

Lo
ss

Base model, LR = 5e-3

Figure 13: Loss spikes increase with learning rate for fixed batch size and model size. Reducing AdamW β2

from its default in PyTorch of 0.999 mitigates loss spikes. Reducing β2 too much slows training.

0.98 0.985 0.99 0.995
Beta2

55.0

55.5

56.0

56.5

57.0

57.5

58.0

Ze
ro

-s
ho

t I
m

ag
eN

et
 a

cc
ur

ac
y ViT-Huge

+ update clipping
+ update clipping + beta2 warmup

Figure 14: We try a schedule for β2 which is used in AdaFactor [54] and PaLM [11] and refer to the experiment
as β2 warmup. This means that β2 at iteration k is 1− iteration−λ. In this Figure we try λ = 0.45, 0.5, 0.65
and show on the x-axis β2 at the final iteration. This β2 warm-up does not improve accuracy in our setting.

21

D Analysis
Consider a matrix multiplication UV for U ∈ Rn×k and V ∈ Rk×m. This matmul consists of
computing inner products between vectors of length k.

This section shows that error due to quantization increases with k. This suggests why SwitchBack
may achieve high accuracy, as we avoid quantizing matmuls for which k is very large. For the weight
gradient computation, which we leave in high precision, k is batch size times sequence length, which
is often ≈ 32000 in our experiments. For the other operations which comprise a matmul, k is less
than 4 · embed_dim which is ≤ 8000 in our experiments. These dimensions are standard for CLIP
training experiments [46, 9].

D.1 Analyzing variance due to quantization for inner products
This section measures the variance due to quantization for the inner product between u and v. Let u,
v be vectors of length k vectors with each element drawn i.i.d. from a distribution with mean 0. Let
ui have variance σ2

u and vi have variance σ2
v .

Next, let û and v̂ be the quantized versions of u and v, respectively. We model quantization error as
ûi = ui + ϵi and v̂i = vi + ξi where ϵi, ξi are i.i.d. mean centered random variables with variance
σ2
q .

The aim of this section is to show that variance due to quantization grows with k. Our analysis is
conservative because we do not assume the variance of ϵi, ξi increase with k, though in practice we
believe they would as the absmax of u and v increases with k.

We first examine the variance of ûiv̂i. By using that all random variable are mean centered, this
variance is given by,

Var(ûiv̂i) = E
[
(ûiv̂i)

2
]

(5)

= E
[
((ui + ϵi) · (vi + ξi))

2
]

(6)

= E
[
(uivi + ϵivi + ξiui + ϵiξi)

2
]

(7)

= E
[
u2
i v

2
i + ϵ2i v

2
i + ξ2i u

2
i + ϵ2i ξ

2
i

]
(8)

= Var(uivi) + σ2
q (σ

2
u + σ2

v + σ2
q). (9)

Next, we use linearity of variance for independent random variables to calculate Var (⟨û, v̂⟩). This is
given by,

Var (⟨û, v̂⟩) =
k∑

i=1

Var(ûiv̂i) (10)

=

k∑
i=1

Var(uivi) +

k∑
i=1

σ2
q (σ

2
u + σ2

v + σ2
q) (11)

= Var (⟨u, v⟩) + k · σ2
q (σ

2
u + σ2

v + σ2
q). (12)

D.2 Takeaways
We have shown that for inner products with length k vectors, variance due to quantization increases
with k. This means the variance of output units/features due to quantization increases with k which
can thought of making the outputs more noisy. Noise compounds throughout the network and will
eventually drown out useful signal—for large k the network features or gradient will no longer lead
to effective learning.

D.3 Why LLM.int8() fails: LLMs vs CLIP models
This Section details our hypothesis for why SwitchBack outperforms LLM.int8() for CLIP training,
which is conditioned on the analysis in Section D.1 being a good model for training.

From our analysis we have shown that the variance in the output features increases with the size
of the inner products of a quantized matrix multiplication compared to the full precision matrix
multiplication. As such, we may have different failure modes for transformers pretrained on text,
such as GPT-3 [5] or LLaMA [59], compared to CLIP models [46].

22

Pretrained large language models (LLMs) tend to have larger weight matrices relative to their
batch sizes when compared to CLIP models. CLIP models perform best when the batch size is
large [46, 44, 9]. As a consequence, LLMs and CLIP models have their most noisy operations for
different matrix multiplications. LLMs are most noisy in the forward pass XWT and during layer-to-
layer back propagation ẎkWk = Ẋk−1 where inner product dimension are large, for example, they
are 32768 and 8192 for the output projection of LLaMA 65B, 32768 and 8192. While the weight
gradient inner product size is determined by the per-GPU batch size, which is 2048 for LLaMA [59]
(4M tokens per full batch distributed across 2048 GPUs). As such, if the quantization produces the
same variance in quantization errors, then the weight gradient in LLM int8 training is between 4x
and 16x less noisy if the analysis in Section D.1 is a good model for training.

For CLIP training with ViT-Huge, we have a batch size of 65536 per GPU (256x images of size
224x224 inputs with patch size 14x14, leading to 16x16 patches for each images, resulting in 65536
patches per GPU). The dimensions for the weight matrices are 1280× 5120. As such, analogous to
above for the LLaMA LLM, the weight gradient in CLIP models is between 51.2x to 12.8x more noisy
compared to the forward and layer-to-layer backpropagation operations if the analysis in Section D.1
is a good model for training. Notice that the CLIP weight gradient is twice as noisy compared to the
most noisy LLaMA 65B operations if we assume that all quantization operations have the same error
variance.

As such, low-precision LLM training and CLIP requires high-precision quantization routines for
different parts of the training.

This also gives the reason why we believe LLM.int8() fails despite replicating inference performance
– the weight gradient in CLIP training is a highly noisy operation which might not give enough signal
to SGD to converge to a local minimum.

E RMS Spikes precede Loss Spikes
This section further elaborate on the predictive relationship between an RMS spike in the embedding
layer and a loss spike as in Figure 4.

We define a heuristic to characterize loss and RMS spikes which we use for analysis. We determined
these heuristics by checking if they qualitatively coincided with what appeared to be a loss spike. We
display results in this Section so that the reader can also evaluate if these heuristics appear reasonable.

We define RMS spikes events as {t : RMSt ≥ 2.3} while loss spike events are defined as the set of t
where loss at time t exceeds the running mean by 3.2 times the running standard deviation. Finally,
we ignore the first 1000 iterations when learning rate is low.

We also deduplicate the RMS and loss spikes iterations as follows: multiple spikes over a short time
interval of 10 iterations are only counted as one spike and start at the earliest time. Moreover, we
only count a loss spike if there are multiple deviations in an interval of 10, which indicates that loss
has meaningfully spiked.

Our results are as follows:

• Figure 15 observes that out of 15 total loss spikes for ViT-Huge across different β2,
14 out of 15 come 1-8 iterations after an RMS spike in the patch embedding layer
(module.conv1.weight). With only 76 total RMS spike events, the probability that a loss
spike follows 1-8 iterations after an RMS spike by chance is < 1%.

• Figure 16 repeats this analysis for ViT-Large, wherein 13 out of 15 loss spikes follow an
RMS spike by 1-8 iterations. The probability that a loss spike follows an RMS spike by
chance is 1.0%.

• Figure 17 zooms in on Figure 15 to show additional detail.

• Figures 18 and 19 examine the cases where loss spikes fail to be detected in Figures 15 and
16, finding them to mainly be issues with the heuristic identifying loss spikes, i.e., false
positive loss spikes.

• Finally, Figure 20 repeats Figure 15 but examines the RMS of a random layer in the middle
of the transformer—not the patch embedding layer. In this case, none of the loss spikes
follow RMS spikes.

23

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 25)

ViT-Huge, Beta2 = 0.99

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (7 out of 7)
Loss spike not 1-8 iterations
after RMS spike (0 out of 7)

ViT-Huge, Beta2 = 0.99

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 41)

ViT-Huge, Beta2 = 0.98

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (7 out of 8)
Loss spike not 1-8 iterations
after RMS spike (1 out of 8)

ViT-Huge, Beta2 = 0.98

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 10)

ViT-Huge, Beta2 = 0.95

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (0 out of 0)
Loss spike not 1-8 iterations
after RMS spike (0 out of 0)

ViT-Huge, Beta2 = 0.95

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 0)

ViT-Huge, Beta2 = 0.9

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (0 out of 0)
Loss spike not 1-8 iterations
after RMS spike (0 out of 0)

ViT-Huge, Beta2 = 0.9

Figure 15: Observing a predictive relation between RMS spikes and loss spikes. For CLIP ViT-Huge and
multiple β2 values, we use heuristics (Appendix E) to automatically identify loss spikes which we use for
analysis. Out of 15 total loss spikes, 14 follow an RMS spike in the patch embedding layer (RMS > 2.3) by 1-8
iterations. We show loss spikes which are identified by our heuristic. We use green if they follow an RMS spike
and otherwise use red. An RMS Spike indicates that the second moment estimator is out of date (see Section 3.4
and Shazeer and Stern [54]). The chance that a loss spike follows 1-8 iterations after an RMS spike by chance is
< 1%.

24

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 52)

ViT-Large, Beta2 = 0.99

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (9 out of 10)
Loss spike not 1-8 iterations
after RMS spike (1 out of 10)

ViT-Large, Beta2 = 0.99

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 29)

ViT-Large, Beta2 = 0.98

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (4 out of 4)
Loss spike not 1-8 iterations
after RMS spike (0 out of 4)

ViT-Large, Beta2 = 0.98

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 15)

ViT-Large, Beta2 = 0.95

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (0 out of 1)
Loss spike not 1-8 iterations
after RMS spike (1 out of 1)

ViT-Large, Beta2 = 0.95

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike (total 1)

ViT-Large, Beta2 = 0.9

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (0 out of 0)
Loss spike not 1-8 iterations
after RMS spike (0 out of 0)

ViT-Large, Beta2 = 0.9

Figure 16: Observing a predictive relation between RMS spikes and loss spikes. For CLIP ViT-Large and
multiple β2 values, we use heuristics (Appendix E) to automatically identify loss spikes which we use for
analysis. Out of 15 total loss spikes, 13 follow an RMS spike in the patch embedding layer (RMS > 2.3) by 1-8
iterations. We show loss spikes which are identified by our heuristic. We use green if they follow an RMS spike
and otherwise use red. An RMS Spike indicates that the second moment estimator is out of date (see Section 3.4
and Shazeer and Stern [54]). The chance that a loss spike follows 1-8 iterations after an RMS spike by chance is
1.0%.

25

2800 3000 3200 3400 3600 3800 4000 4200
Iteration

0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike

ViT-Huge, Beta2 = 0.99

2800 3000 3200 3400 3600 3800 4000 4200
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike
Loss spike not 1-8 iterations
after RMS spike

ViT-Huge, Beta2 = 0.99

Figure 17: Zooming in on a section of Figure 15.

4000 4050 4100 4150 4200 4250 4300 4350
Iteration

0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike

ViT-Huge, Beta2 = 0.98

4000 4050 4100 4150 4200 4250 4300 4350
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike
Loss spike not 1-8 iterations
after RMS spike

ViT-Huge, Beta2 = 0.98

Figure 18: Examining the “failure” case in Figure 15. We believe this is not really a failure as the non-predicted
red loss spike does not really appear to be a spike at all. However, adjusting our heuristic led to the issue of true
spikes not being identified.

5600 5650 5700 5750 5800 5850 5900 5950 6000
0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike

ViT-Large, Beta2 = 0.99

5600 5650 5700 5750 5800 5850 5900 5950 6000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike
Loss spike not 1-8 iterations
after RMS spike

ViT-Large, Beta2 = 0.99

4500 4550 4600 4650 4700 4750
Iteration

0

2

4

RM
S

RMS (visual.conv1.weight)
RMS spike

ViT-Large, Beta2 = 0.95

4500 4550 4600 4650 4700 4750
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike
Loss spike not 1-8 iterations
after RMS spike

ViT-Large, Beta2 = 0.95

Figure 19: Examining the “failure” cases in Figure 16. We believe these to primarily issues with our heuristic,
but adjusting our heuristic led to other issues such as true spikes not being identified.

26

0 2500 5000 7500 10000 12500 15000 17500 20000
0

2

4

RM
S

RMS (block.20.attn.in_proj)
RMS spike (total 7)

ViT-Huge, Beta2 = 0.99

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (0 out of 7)
Loss spike not 1-8 iterations
after RMS spike (7 out of 7)

ViT-Huge, Beta2 = 0.99

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

0

2

4

RM
S

RMS (block.20.attn.in_proj)
RMS spike (total 4)

ViT-Huge, Beta2 = 0.98

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0
2.5
5.0
7.5

10.0

Lo
ss

Loss
Loss spike 1-8 iterations
after RMS spike (0 out of 8)
Loss spike not 1-8 iterations
after RMS spike (8 out of 8)

ViT-Huge, Beta2 = 0.98

Figure 20: This figure repeats part of Figure 15 but examines the RMS of a random layer in the middle of
the transformer—blocks.20.attn.in_proj—not the patch embedding layer. RMS spikes no longer precede loss
spikes.

F StableAdamW continued
F.1 Q&A
This Section asks and answers a series of questions the reader may have concerning Section 3.5.

• First, why not just use AdaFactor? The answer is that the community has moved away from
AdaFactor [11] as they find that AdaFactor under-performs AdamW at scale [47]. We believe
this is likely due to the factored moments, and not other features such as update-clipping.
The goal of this work is to advocate using a hybrid. We tried porting other features from
AdaFactor to AdamW such as the β2 schedule but did not find them to help (Figure 14).
Moreover, while PaLM uses an AdaFactor-AdamW hybrid, we believe they don’t use update
clipping.

• Another question is, why not use an optimizer such as Lion [7] which does not divide
updates by any value, and is therefore immune to the stuck-in-the-past scenario. We believe
this may be a promising path forward. However, while we observe that Lion outperforms
AdamW at small scale, Lion still slightly under-performs AdamW for CLIP ViT-Huge scale
in our experiments.

• A final question is, why consider g2t in the numerator for computing RMSt and not v2t ? We
also tried v2t and found the performance worse.

F.2 Implementation considerations
To prevent divide by 0 issues when computing RMSt we compute RMSt =√
E [g2t /maximum(ut, ϵ2)] where ϵ is the AdamW hyperparamer for which we use 1e-6

and maximum is an elementwise maximum. This is instead of RMSt =
√
E [g2t /ut].

G Loss spikes and the loss scalar
This Section ties the low precision training results 2 with our investigation into stability. Overall we

find that loss spikes can co-occur with large activations and gradients. Large activations and gradients
may cause issues during low precision training due to a more limited representible range. Therefore,
reducing loss spikes is an important step for successful low precision training.

27

2900 2925 2950 2975 3000
Iteration

1.8

2.0

2.2

2.4

2.6

Lo
ss

2900 2925 2950 2975 3000
Iteration

27

28

Lo
ss

 sc
al

er

2900 2925 2950 2975 3000
Iteration

15

20

25

30

35

Fe
at

ur
e

m
ax

visual.transformer.resblocks.20

2900 2925 2950 2975 3000
Iteration

0

2

4

6

RM
S

visual.conv1.weight

2900 2925 2950 2975 3000
Iteration

10 2

10 1

100

Gr
ad

 a
bs

m
ax

visual.class_embedding

2900 2925 2950 2975 3000
Iteration

10 2

10 1

100

Gr
ad

 a
bs

m
ax

visual.transformer.resblocks.0.attn.in_proj_weight

RMS spike in embedding layer which preceeds loss spike Inf gradient causing grad scaler decrease

Figure 21: Avoiding loss spikes is helpful for low precision training. As shown in this figure, loss spikes can
coincide with with activation spikes and gradient spikes. Large activations/gradients can cause issues during low
precision training due to a more limited representible range [17].

Supporting data is illustrated by Figure 21, in which an RMS spike precedes a loss spikes which
coincides with spikes in the activations (i.e., features) and gradients. As we’ve previously seen
(Figure 2), high feature magnitudes can pose challenges for low-precision training. Moreover, the
spikes in the gradient are so large that Inf/NaN values occur, which results in the loss scalar [40]
dropping many times. There are a few takeaways from this observation.First, reducing loss spikes is
an important step to enabling low-precision training. Second, spikes in gradient magnitude can be
transient and therefore we may be adjusting the loss scalar too often—if using the PyTorch default
loss scalar, thousands of iterations would be required before the loss scalar recovered to its value
before this event. Finally, the layers highlighted in this figure are the main layers where Inf/NaN are
encountered. Concretely, while we only track every tenth block, we never observe any Inf/NaN for
any transformer block greater than 0. However, with the PyTorch default loss scalar an Inf/NaN in a
single layer will skip the update for the whole network.

This motivates the loss scalar that we use in our experiments when one is required (except for in
Figure 21). We use a loss scalar which i) checks for Inf/NaN at the individual tensor level and skips
the update at the tensor level—not globally, and ii) remains fixed at its initial value.

This scalar allows fp16 mixed precision training for CLIP models at ViT-Huge scale where previously
the scalar became too low and training diverged [9]. We also believe an adaptive block-wise scalar
as in Ramesh et al. [48] would remedy this issue. One interesting remark is that often when we
observe an Inf/NaN, it is in the patch embedding layer. Therefore, in the case where Inf/NaN’s happen
frequently it recovers the stability solution of Chen et al. [8] which is to freeze the embedding layer.
As a final remark, we note that loss spikes do not always cause the loss scalar to drop, and emphasize
the loss scalar can drop for various other reasons than spikes. Figure 21 is just an existence example
that loss spikes can result in activation spikes and Inf/NaN gradients.

28

	Introduction
	8-bit training
	Preliminaries and related work
	SwitchBack
	Method
	Experimental setup
	Results

	Float8 training by reducing feature magnitude

	Stability
	Preliminaries and related work
	Experimental setup
	Loss spikes increase with model size, batch size, and learning rate
	On 2 and an out-of-date second moment estimator
	StableAdamW: AdamW with update clipping from AdaFactor

	Limitations, broader impacts, and conclusion
	Additional Related Work on Quantization
	Achieving speed-ups with SwitchBack
	Additional code and figures
	Additional Code
	Additional Figures

	Analysis
	Analyzing variance due to quantization for inner products
	Takeaways
	Why LLM.int8() fails: LLMs vs CLIP models

	RMS Spikes precede Loss Spikes
	StableAdamW continued
	Q&A
	Implementation considerations

	Loss spikes and the loss scalar

