Decoupled Search for the Masses: A Novel Task Transformation for Classical Planning – Appendix

Primary Keywords: None

The presented material contains the full proofs of our paper.

Lemma 1. Let Π be a SAS⁺ planning task and \mathcal{F} be a factoring for Π . Then $\Pi_{\mathcal{F}}^{dec}$ is a well-formed FDR planning task.

Proof. The initial state and the goal are consistent by con struction, because the original initial and goal states of Π are inherently consistent, and therefore their projection onto the center variables maintains that consistency. All other variables are assigned exactly one value or none.

- The preconditions and unconditional effects of operators remain consistent because their projections onto the center variables remain consistent, and all other variables appear only in combination with the 1 value. Looking at the conditional effects in isolation, each condition and effect refers exclusively to a single value for each considered variable –
- 15 either 0 or 1. When these conditional effects are considered together, they do not assign conflicting values to the same variable, because the conditions for assigning a value of 0 or 1 to a variable are mutually exclusive.

Regarding the axioms \mathcal{A}^{dec} , a single layer forms a valid stratification, because no secondary variable appears in any axiom body condition with the default value of 0.

Lemma 2. Let $s^{\mathcal{D}} \in S^{\mathcal{F}}$ be a decoupled state and $s^{L} \in S^{\mathcal{L}}$ a leaf state. Then $s^{L} \in \text{leaves}^{*}(s^{\mathcal{D}})$ iff $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^{L}}) = 1$.

Proof.

- ²⁵ " \Rightarrow ": $s^{L} \in \text{leaves}^{*}(s^{\mathcal{D}})$ is true iff (a) $s^{L} \in \text{leaves}(s^{\mathcal{D}})$ or (b) $s^{L} \notin \text{leaves}(s^{\mathcal{D}})$ but s^{L} can be reached with leaf-only operators from a leaf state t^{L} that is reached in $s^{\mathcal{D}}$: (a) By the definition of φ , it holds that $\varphi(s^{\mathcal{D}})(v_{s^{L}}) = 1$. Further, with the frame axioms, $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^{L}}) = 1$.
- (b) By definition of φ , the center variables between $s^{\mathcal{D}}$ and $\varphi(s^{\mathcal{D}})$ match. Further, $t^{L} \in \text{leaves}(s^{\mathcal{D}})$ iff $\varphi(s^{\mathcal{D}})(v_{t^{L}}) = 1$. Thus, by construction, the $\mathcal{A}_{\mathcal{O}_{\varphi}^{L}}$ axioms, which embody the leaf-only operators, will also derive $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^{L}}) = 1$.
- derive $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^L}) = 1$. 35 " \Leftarrow ": $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^L}) = 1$ iff: (a) $\mathcal{A}(\varphi(s^{\mathcal{D}}))(v_{s^L}) = 1$ by the frame axioms, or (b) $\mathcal{A}(\varphi(s^{\mathcal{D}}))(v_{s^L}) = 0$ but s^L can be derived with the $\mathcal{A}_{\mathcal{O}_{\alpha}^L}$ -axioms.

(a) By definition of φ , it holds that v_{s^L} iff $s^L \in \text{leaves}(s^D)$, which implies $s^L \in \text{leaves}^*(s^D)$.

40 (b) $\varphi(s^{\mathcal{D}})$ and $s^{\mathcal{D}}$ match in the center variables. Furthermore, it holds that if $\varphi(s^{\mathcal{D}})(v_{t^L}) = 1$ then $t^L \in$

leaves $(s^{\mathcal{D}})$. Thus, the leaf-only operators corresponding to the axioms in $\mathcal{A}_{\mathcal{O}_{\mathcal{Q}}^{L}}$ that make $d_{s^{L}}$ true in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$ must be applicable in $s^{\mathcal{D}}$, which implies that $s^{L} \in$ leaves^{*} $(s^{\mathcal{D}})$.

We next prove the following auxiliary Lemma 3 to prove Theorem 1.

Lemma 3. Function $\varphi: S^{\mathcal{F}} \to S^{dec}$ is bijective.

Proof. We need to show that φ is injective and surjective.

 φ is injective, since no two different decoupled states can map to the same state. If two decoupled states $s_1^{\mathcal{D}}$ and $s_2^{\mathcal{D}}$ differ in their center state, center $(s_1^{\mathcal{D}}) \neq$ center $(s_2^{\mathcal{D}})$, then the resulting states will also differ in their center variables, $\varphi(s_1^{\mathcal{D}})[C] \neq \varphi(s_2^{\mathcal{D}})[C]$. Additionally, if these two states have a different set of leaf states, then there is at least one leaf state s^L that is reached in only one of the two decoupled states. Consequently, $\varphi(s_1^{\mathcal{D}})(s^L) \neq \varphi(s_2^{\mathcal{D}})(s^L)$.

pled states. Consequently, $\varphi(s_1^{\mathcal{D}})(s^L) \neq \varphi(s_2^{\mathcal{D}})(s^L)$. φ is surjective, since for every state $s \in S^{dec}$, there exists a decoupled state $s^{\mathcal{D}} \in S^{\mathcal{F}}$ such that $\varphi(s^{\mathcal{D}}) = s$. Given a state $s \in S^{dec}$, we can construct a decoupled state $s^{\mathcal{D}}$ with center $(s^{\mathcal{D}}) = s[C]$ and leaves $(s^{\mathcal{D}}) = \{s^L \mid s(v_{s^L}) = 1\}$. Then $\varphi(s^{\mathcal{D}}) = s'$, where $s'[C] = \text{center}(s^{\mathcal{D}}) = s[C]$ and $s'(v_{s^L}) = 1$ if $s^L \in \text{leaves}(s^{\mathcal{D}})$ (so if $s(v_{s^L}) = 1$) and 0 otherwise. So $s'(v_{s^L}) = s(v_{s^L})$, which shows that $\varphi(s^{\mathcal{D}}) = s^{\mathcal{D}} = s^{\mathcal{D}} = s^{\mathcal{D}}$

Theorem 1. Let $\Pi = \langle \mathcal{V}, \mathcal{I}, \mathcal{G}, \mathcal{O} \rangle$ be a SAS⁺ planning task and \mathcal{F} be a factoring for Π . Then the FDR state space of $\Pi_{\mathcal{F}}^{dec}$ and the decoupled state space of Π are isomorphic, *i.e.*, $\Theta(\Pi_{\mathcal{F}}^{dec}) \sim \Theta^{\mathcal{D}}(\Pi, \mathcal{F})$.

Proof. Let
$$\Theta^{\mathcal{D}}(\Pi, \mathcal{F}) = \langle S^{\mathcal{F}}, \mathcal{O}^{G}, T^{\mathcal{F}}, \mathcal{I}^{\mathcal{F}}, S^{\mathcal{F}}_{\mathcal{G}} \rangle$$
 and $\Theta(\Pi^{dec}_{\mathcal{F}}) = \langle S^{dec}, \mathcal{O}^{dec}, T^{dec}, \mathcal{I}^{dec}, S^{dec}_{\mathcal{G}} \rangle.$

We consider the function φ which we have shown to be bijective in Lemma 3. We need to show that 1. $\varphi(\mathcal{I}^{\mathcal{F}}) = \mathcal{I}^{dec}$, 2. $s^{\mathcal{D}} \in S_{\mathcal{G}}^{\mathcal{F}}$ iff $\varphi(s^{\mathcal{D}}) \in S_{\mathcal{G}}^{dec}$, and 3. $s^{\mathcal{D}} \xrightarrow{o} t^{\mathcal{D}} \in T^{\mathcal{F}}$ iff $\varphi(s^{\mathcal{D}}) \xrightarrow{o^{dec}} \varphi(t^{\mathcal{D}}) \in T^{dec}$.

1. Let $\varphi(\mathcal{I}^{\mathcal{F}}) = s$. It holds that $s[C] = \operatorname{center}(\mathcal{I}^{\mathcal{F}}) = \mathcal{I}[C] = \mathcal{I}^{dec}[C]$. Furthermore, $s(v_{s^L}) = 1$ iff $s^L \in \operatorname{leaves}(\mathcal{I}^{\mathcal{F}})$. Since $s^L \in \operatorname{leaves}(\mathcal{I}^{\mathcal{F}})$ iff $s^L = \mathcal{I}[L]$ and

45

50

55

70

75

- $\mathcal{I}^{dec}(v_{s^L}) = 1$ iff $s^L = \mathcal{I}[L]$ it holds that $s(v_{s^L}) =$ 80 $\mathcal{I}^{dec}(v_{s^L})$ for all $s^L \in S^{\mathcal{L}}$. Hence, $\varphi(\mathcal{I}^{\mathcal{F}}) = \mathcal{I}^{dec}$.
 - 2. " \Rightarrow ": Let $s^{\mathcal{D}} \in S^{\mathcal{F}}_{\mathcal{G}}$. It follows that: (a) $\mathcal{G}[C] \subseteq$ center $(s^{\mathcal{D}})$, thus $\mathcal{G}[C] \subseteq s[C]$; (b) For every leaf $L \in \mathcal{L}$ there exists $s^L \in \mathsf{leaves}^*(s^{\mathcal{D}})$ such that $\mathcal{G}[L] \subseteq s^L$. By
- Lemma 2, this implies the truth of the corresponding d_{sL} 85 variable in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$, which further implies the truth of the derived variable $d_{\mathcal{G}[L]}$ for all $L \in \mathcal{L}$ due to the $\mathcal{A}_{\mathcal{G}}^{L}$ axioms. Therefore, $\varphi(s^{\mathcal{D}}) \in S^{dec}_{\mathcal{G}}$.

" \leftarrow ": Let $\varphi(s^{\mathcal{D}}) \in S^{dec}_{\mathcal{G}}$. It follows that: (a) $\mathcal{G}[C] \subseteq$ $\varphi(s^{\mathcal{D}})[C]$, thus $\mathcal{G}[C] \subseteq \mathsf{center}(s^{\mathcal{D}})$; (b) all derived vari-

- 90 ables $d_{\mathcal{G}[L]}$ are true in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$, implying that there is at least one d_{s^L} variable where $\mathcal{G}[L] \subseteq s^L$ that is true in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$. Hence, by Lemma 2, such a leaf state s^L must be contained in leaves^{*}($s^{\mathcal{D}}$). Therefore, $\varphi(s^{\mathcal{D}}) \in S_{\mathcal{G}}^{\mathcal{F}}$.
- 3. " \Rightarrow ": Let $s^{\mathcal{D}} \xrightarrow{o} t^{\mathcal{D}} \in T^{\mathcal{F}}$. Then $o \in \mathcal{O}^G$ and thus $o^{dec} \in$ 95 \mathcal{O}^{dec} . We need to show that $\varphi(s^{\mathcal{D}}) \xrightarrow{o^{dec}} \varphi(t^{\mathcal{D}}) \in T^{dec}$. Applicability: Since *o* is applicable in $s^{\mathcal{D}}$, it holds that $pre(o)[C] \subseteq center(s^{\mathcal{D}})$, and for each leaf L there exists a reached leaf state s^L such that $pre(o)[L] \subseteq s^L$. Since o^{dec} has the same center preconditions as 100 o, and center($s^{\mathcal{D}}$) = $\varphi(s^{\mathcal{D}})[C]$, we know that $pre(o^{dec})[C] \subseteq \varphi(s^{\mathcal{D}})$. By Lemma 2 it holds that $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^{L}}) = 1$ for all $s^{L} \in \mathsf{leaves}^{*}(s^{\mathcal{D}})$. Together with the \mathcal{A}_{pre}^{L} -axioms, this implies that all $d_{pre(o)[L]}$ variables are true in 105 $\mathcal{A}(\varphi(s^{\hat{\mathcal{D}}}))$, and thus o^{dec} is applicable in $\varphi(s^{\mathcal{D}})$.

Successor: We show that
$$\varphi(t^{\mathcal{D}}) = \varphi(s^{\mathcal{D}}) \llbracket o^d$$

 $\varphi(t^{\mathcal{D}})[C] = \varphi(s^{\mathcal{D}}[[o]])[C] = \varphi(s^{\mathcal{D}})[[o^{dec}]][C]$, since the preconditions and effects on the center variables are the same in o and o^{dec} , and φ is the identity function when projected onto the center variables.

The construction of the conditional effects establishes that a variable v_{tL} is true in $\varphi(s^{\mathcal{D}}) \llbracket o^{dec} \rrbracket$ iff there exists a leaf state s^L such that $s^L \in preimg(t^L, o)$ and Its a leaf state s' such that $s' \in pretring(t', \delta)$ and d_{s^L} is true in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$. By Lemma 2 we know that $s^L \in \text{leaves}^*(s^{\mathcal{D}})$ iff d_{s^L} is true in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$, and $t^L \in \text{leaves}(t^{\mathcal{D}})$ iff there exists $s^L \in preimg(t^L, \delta)$. Consequently, v_{t^L} is true in $\varphi(s^{\mathcal{D}})[\![\sigma^{dec}]\!]$ iff $t^L \in \text{leaves}(t^{\mathcal{D}})$. Thus, $\varphi(t^{\mathcal{D}})[L] = \varphi(s^{\mathcal{D}}[\![\sigma^{dec}]\!])[L]$ for all $L \in \mathcal{L}$.

Hence,
$$\varphi(s^{\mathcal{D}}) \xrightarrow{o^{dec}} \varphi(t^{\mathcal{D}}) \in T^{dec}$$
.

"⇐": Let $\varphi(s^{\mathcal{D}}) \xrightarrow{o^{dec}} \varphi(t^{\mathcal{D}}) \in T^{dec}$. Then $o^{dec} \in \mathcal{O}^{dec}$ and thus $o \in \mathcal{O}^G$. We need to show that $s^{\mathcal{D}} \xrightarrow{o} t^{\mathcal{D}} \in T^{\mathcal{F}}$. Applicability: Given the applicability of o^{dec} in $\varphi(s^{\mathcal{D}})$,

it follows that $pre(o)[C] \subseteq \varphi(s^{\mathcal{D}})$ and for each leaf L where $pre(o)[L] \neq \emptyset$, it holds that $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{pre(o)[L]}) = 1.$

Considering that o has the same center preconditions as o^{dec} , and that $\varphi(s^{\mathcal{D}})[C] = \operatorname{center}(s^{\mathcal{D}})$, we see that $pre(o)[C] \subseteq \operatorname{center}(s^{\mathcal{D}})$.

Since all $d_{pre(o)[L]}$ variables are true, this implies the truth of at least one d_{s^L} variable for each such L in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$. By construction, it holds that $pre(o)[L] \subseteq$ s^{L} for such s^{L} . By Lemma 2, if $\mathcal{A}(\varphi(s^{\mathcal{D}}))(d_{s^{L}})$, then $s^{L} \in |\mathsf{eaves}^{*}(s^{\mathcal{D}})$, which consequently proves the applicability of o in $s^{\mathcal{D}}$.

Successor: We show that $t^{\mathcal{D}} = s^{\mathcal{D}}\llbracket o \rrbracket$. $\operatorname{center}(t^{\mathcal{D}}) = \varphi(t^{\mathcal{D}})[C] = \varphi(s^{\mathcal{D}})\llbracket o^{dec} \rrbracket [C] =$ center $(s^{\mathcal{D}}[\![o]\!])$, since the preconditions and effects on the center variables are the same in o^{dec} and o, and φ 140 is the identity function when projected onto the center variables.

By the definition of φ , it holds that $s^L \in \text{leaves}(s^D)$ iff v_{s^L} is true in $\varphi(s^{\hat{D}})$. Furthermore, we know that a variable v_{t^L} is true in $\varphi(t^{\mathcal{D}})$ iff there exists a 145 variable d_{s^L} which is true in $\mathcal{A}(\varphi(s^{\mathcal{D}}))$ such that $s^L \in preimg(t^L, o)$. Since leaves $(t^{\mathcal{D}})$ includes exactly the states t^L where $s^L \in \text{leaves}(s^{\mathcal{D}})$ and $s^L \in preimg(t^L, o)$, it follows that $leaves(t^D) =$ leaves $(s^{\mathcal{D}} \llbracket o \rrbracket)$. 150

Hence, $s^{\mathcal{D}} \xrightarrow{o} t^{\mathcal{D}} \in T^{\mathcal{F}}$.

110

115

120

125

130

135