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ABSTRACT
Quality assessment and aesthetics assessment aim to evaluate the
perceived quality and aesthetics of visual content. Current learning-
based methods suffer greatly from the scarcity of labeled data and
usually perform sub-optimally in terms of generalization. Although
masked image modeling (MIM) has achieved noteworthy advance-
ments across various high-level tasks (e.g. , classification, detection
etc. ). In this work, we take on a novel perspective to investigate
its capabilities in terms of quality- and aesthetics-awareness. To this
end, we propose Quality- and aesthectics-aware PreTraining (QPT
V2), the first pretraining framework based on MIM that offers a
unified solution to quality and asthectics assessment. To perceive
the high-level semantics and fine-grained details, pretraining data
is curated. To comprehensively encompass quality- and aesthetics-
related factors, degradation is introduced. To capture multi-scale
quality and aesthetic information, model structure is modified. Ex-
tensive experimental results on 11 downstream benchmarks clearly
show the superior performance of QPT V2 in comparison with cur-
rent state-of-the-art approaches and other pretraining paradigms.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision tasks; Scene understanding;

KEYWORDS
visual scoring, quality and aesthetics assessment, self-supervised
learning, masked image modeling

1 INTRODUCTION
The aims of Image Quality Assessment (IQA), Visual Quality As-
sessment (VQA), and Image Aesthetics Assessment (IAA) are to
appraise the quality and aesthetics of visual content, serving as crit-
ical components across a multitude of vision applications including
video enhancement, transcoding, and transmission [34, 65, 105].
While being studied separately for a considerable period, these tasks
present strong resemblance in various aspects. All these tasks share
the same core objective, that is, to mimic the Human Visual System
(HVS), so as to generate accurate scores aligned with human per-
ception [27, 82, 83]. Moreover, the proliferation of User-Generated
Content (UGC) [73, 77, 110] and AI-Generated Content (AIGC)
[5, 93, 102, 103] has become a trend in recent years, which greatly
contributed to the exponential growth of image and video data [3].
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Figure 1: QPT V2: a new MIM-based pretraining paradigm
for visual scoring. For pretraining, dataset D𝐼 provides HR
& HFC images, augmented by quality- and aesthetics-aware
degradationA(·). Amulti-scale autoencoder G(·) outputs the
reconstructed images. Through finetuning of the encoder, it
can solve visual scoring tasks like IQA, VQA, and IAA.

The complexity and interrelation of quality-related and aesthetics-
related factors in emerging content are unprecedented, and analyz-
ing single factors alone is insufficient to achieve a comprehensive
perception of visual content aligned with human perception. In
response to the aforementioned resemblance and trend, we refer to
IQA, VQA, and IAA jointly as Visual Scoring (VS) for analysis.

Facilitated by the advancements of deep neural networks [13,
26, 41, 70, 81], learning-based methods [28, 43, 44, 72, 112] have
surpassed traditional methods [10, 57, 78, 92] based on handcrafted
features on multiple VS benchmarks [6, 9, 17, 20, 59, 86, 101]. They
acquire features with strong expressiveness via regressing from
the Mean Opinion Scores (MOS). However, one of the primary
obstacles in solving VS lies in the limited size of labeled datasets
[44, 46, 55, 74, 111]. Due to the high cost associated with collecting
MOS through extensively annotated subjective studies, the scale of
VS datasets is often only a fraction, ranging from one-tenth to even
one-hundredth, of other high-level visual task datasets (e.g., object
recognition). At all events, the paucity of labeled data restricts the
capabilities of data-driven deep learning methods.

To tackle this problem, some previous efforts increased data size
by patch/frame-level augmentation [4, 35, 36, 46] or mixed-database
training [39, 40, 94, 107]. However, the quality and aesthetics scores
of local patches often differ from those of the entire content, and
subjective differences are observed across datasets, thus hindering
the achievement of promising results. On the other hand, a differ-
ent research line [37, 76, 83, 89, 95] exploits knowledge valuable
for VS from datasets and model weights of other domains, by
tapping into the power of pretrained vision or vision-language (VL)
models [63, 76, 89, 95, 98, 100, 106]. These works attempt to extract
knowledge that is more quality- or aesthetic-aware from large-scale
datasets by carefully designing pretraining objectives[44, 55], and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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are then finetuned on downstream VS tasks. The pretraining ob-
jectives of existing works are mainly based on contrastive learning
[67, 80], which can be viewed as a global self-supervised learning
(SSL) approach, as it groups similar samples closer and diverse sam-
ples far from each other [25, 55, 111]. However, this "sample-level"
discernment is insufficient for capturing local distortions and visual
attributes [60]. Therefore, exploring more effective pixel-level dis-
crimination may be beneficial for incorporating pretrained priors
into downstream VS tasks.

Masked ImageModeling (MIM) [24], which learns representation
by pixel-level reconstruction of the masked regions in the input, has
demonstrated its impressive ability of semantic- and texture-aware
perception in visual tasks [2, 61, 84, 109]. In this paper, we conduct
a detailed exploration of MIM, in which we observe MIM can learn
both sample-level and pixel-level information of the visual content,
showing the potential to serve as a general pretraining recipe to
VS tasks. As shown in Fig. 1, we propose QPT V2, the first pre-
training framework based on MIM that offers a unified solution for
VS tasks. To enhance the acquisition of prior knowledge by MIM
for VS tasks, we propose further improvements and optimizations
of the vanilla MIM from the perspectives of data, degradation,
andmodel. Regarding the realm of data, we curate a dataset with
high resolution (HR) and high foreground coverage (HFC), thereby
aiding the pretext task of MIM. Regarding the realm of degradation,
we propose an optimal strategy for applying degradations to the
reconstruction target, exploring the type and composition of degra-
dation to acquire prior knowledge of practical scenarios. Regarding
the realm of model, we use a drop-in strategy to learn multi-scale
representations by adaptively fusing features of different layers.
Our main contributions can be summed as follows:

• To the best of our knowledge, we are the first to validate
the capability of MIM in adeptly unifying downstream vi-
sual scoring tasks. We decompose MIM into three crucial
components: data, degradation, and model, and individually
investigate their respective influences.

• We propose QPT V2, which stands as the pioneering MIM-
based pretraining framework, offering a unified solution
for VS tasks. To enhance the acquisition of prior knowledge
throughMIM,wemake targeted improvements in the aspects
of data, degradation, and model.

• QPT V2 achieves state-of-the-art (SOTA) results on 11 bench-
marks in IQA, VQA, and IAA, surpassing other pretraining
paradigms as well. Extensive ablation studies prove the va-
lidity of each enhancement of MIM.

2 RELATEDWORK
2.1 Visual Scoring
Visual scoring necessitates precise scoring of visual content in
terms of quality (e.g. , IQA, VQA) and aesthetics (e.g. , IAA). In
this work, we focus on Non-reference QA (e.g. , NR-IQA and NR-
VQA), since the availability of pristine data is too hard in the real
world. At the early stage, handcrafted features based on natural
scene statistics (NSS) dominate the realm of VS [56, 57, 69]. Later,
data-driven methods enhanced the performance significantly with
the rise of deep learning [15, 35, 45, 83, 89]. Nonetheless, they rely
heavily on label-intensive supervision. Previous works attempt to

noise reconstruction blurring reconstruction

(b) Distortion-aware: perceive distortions by reconstruction

(a) Semantics-aware: perceive semantics from a few pixels 

original reconstruction90% masked

high-frequency low-frequency

Figure 2: Semantics- and distortion-awareness of the pixel-
based MIM (a) MIM has the ability to understand the seman-
tics; (b) Pixel-based MIM can reconstruct the distortions ap-
plied original images, the left column and the right column
are high and low frequency intervals, respectively.

solve this problem by data augmentation [4, 35, 36, 99], mixed-
database training [40, 46, 74, 94, 107], rank-based learning [47, 50]
and general knowledge transfer [15, 83, 89, 108].

Several researches focus on extracting quality or aesthetics in-
formation by large-scale pretraining. Among them, CONTRIQUE
[55] learns distortion-related information on images with synthetic
and realistic distortions based on contrastive learning. Similarly,
Re-IQA [66] re-engineers the MoCo-v2 [8] framework and applies
intricate data augmentations to learn quality-aware features. More-
over, QPT [111] introduces a diverse array of degradations and
composites to mimic real-world distortions, which greatly expands
the pretraining data volume. Different from them, we devise a pre-
training framework based on MIM to learn effective quality- and
aesthetics-related representations.

2.2 Masked Image Modeling
Masked modeling learns representation by reconstructing a masked
portion of the input. Driven by the success of BERT [12] in NLP,
MIM has become an representative SSL method in computer vision
[2, 24, 61, 84, 109]. As a pioneer work, BEiT [2] proposes to recon-
struct the features of DALL-E [64]. MAE [24] directly reconstructs
raw pixels of the masked areas, which greatly simplifies the whole
pretraining pipeline. Some studies prove that pixel-based MIM is
biased towards reconstructing low-level details, thus hindering the
performance on high-level tasks [2, 51, 60]. As a result, following
works introduce more complicated reconstruction target rather
than using raw pixels [16, 33, 87, 88]. While previous MIM studies
mainly focus on high-level tasks, in this paper, we make the first
attempt to adapt MIM to visual scoring.
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Figure 3: Overview of our proposed QPT V2. QPT V2 incorporates three improvements based on pixel-based MIM tailored for
VS. To curate HR & HFC training data, we examine the resolution and foreground coverage of various datasets and samples. To
determine quality- and aesthetics-aware degradation, we explore the degradation type and composition. To perceive distortion
and aesthetics information in multi-scale fashion, we design a pretrain only feature fusion module based on hierarchical
encoder.

3 METHODOLOGY
We first revisit MIM concisely in Sec.3.1, and then describe the
motivation of QPT V2 in Sec.3.2. Last, the key designs incorporated
in QPT V2 are elucidated.

3.1 A Revisit of Masked Image Modeling
There are three major steps in MIM: (1) split the image into visible
and masked patches, (2) reconstruct the masked patches and (3)
calculate the reconstruction loss.

Given the original image I ∈ R𝐻×𝑊 ×3, where 𝐻 , 𝑊 are the
height and width of the image. First, specific degradations A(·)
(e.g. , resizing) are applied to the image, generating non-overlapping
visible patches I𝑣 and masked patches I𝑚 with maskingM:

I𝑣 = (1 −M) ⊙ A(I)
I𝑚 = M ⊙ A(I) (1)

Second, only the visible patches I𝑣 are fed into the autoencoder
G(·) to reconstruct the masked patches Î𝑚 as:

Î𝑚 = G(I𝑣, e[M] ) (2)

The autoencoder G(·) consists of an encoder F𝑒 and a decoder
F𝑑 , both are stacked Transformer blocks. Here, a shared learnable
mask token e[M] functions as the placeholder of masked patches,
which are combined with the encoder’s output and fed into the
decoder. Last, an MSE loss L(·) is computed at masked positions
for self-supervision as L = ∥I𝑚 − Î𝑚 ∥22.

3.2 Motivation
To accurately score the quality and aesthetics of visual content, a
broad range of VS-related factors necessitate examination, namely
high-level attributes (e.g. , semantics, composition etc. ) and low-
level distortions (e.g. , blur, noise etc. ). By analysing the insightful
features of MIM, we believe the pretrained models have the poten-
tial to be both quality-aware and aesthetics-aware, described
next.

First, it has been proved that MIM has the ability to comprehend
the high-level semantics of the image [2, 24]. During pretraining,
the large masking ratio forces the model to reconstruct the masked
area provided with a few visible patches. Depicted by Fig. 2 (a),
the pretrained model gives semantically plausible reconstruction
even when 90% of the pixels are masked. Second, MIM is proved
to be biased towards low-level details when reconstructing [51, 52]
the raw pixels. Due to the perfect reconstruction of pixel values,
the model focuses on intricate details (e.g. , texture with repeated
patterns) besides understanding the content, allowing for a better
perception of low-level distortion. To better illustrate the distortion-
awareness of MIM, we separately apply blurring and noise to the
same image. Reconstruction results in Fig. 2 (b) show that the
pretrainedmodel can perceive distortions in low and high frequency
intervals, respectively.

Despite MIM has the potential to encompass VS-related factors
comprehensively, unleashing its power on downstream VS tasks
still presents a non-trivial endeavor. We dissect the MIM framework
and identify three components that contribute to this gap:
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Figure 4: Illustration of the gap in FC between SA-1B and
SR datasets after introducing random cropping. Images in
SA-1B are more likely to generate HFC crops compared to
the images in DIV2K. Please zoom in for a better view.

• Data. ImageNet [11] has become the de-facto pretraining
data in MIM studies. The images generally exhibit low reso-
lution and lack intricate details. Over the years, supporting
evidence from psychophysical studies has indicated the rich-
ness of details (e.g. , spatial complexity) in visual content
directly impacts human eye’s perception of quality and aes-
thetics [14, 23, 27, 82]. Thus, pretraining on data lacking de-
tails might not be sufficient for model to exploit fine-grained
quality and aesthetics information. In all, curating pretrain-
ing data tailored for VS is of utmost importance.

• Degradation. MIM achieves excellent results in high-level
tasks with simple degradations (e.g. , random cropping) [24,
91]. Thus, previous works pay less attention to the degrada-
tion design. Yet, simple degradations can only encompass
VS-related factors presented in common scenario (e.g. , con-
tent editing), overlooking other factors introduced by various
visual applications, such as compression, transmission, and
unprofessional shooting. Therefore, degradations that cover
extensive VS-related factors need to be considered.

• Model. HVS assesses quality and aesthetics in a multi-scale
fashion [36]. Additionally, numerous previous works have
proved the benefits of utilizing multi-scale features in other
vision tasks [29, 49]. As a result, to mimic HVS and cap-
ture both fine-grained and coarse-grained VS-related factor
effectively, the improvement of themodel structure is ex-
ceedingly crucial.

3.3 Data
Demonstrated in Fig. 3, pretraining data of QPT V2 is curated from
two criteria: high resolution (HR) and high foreground cover-
age (HFC). As argued above, by reconstructing the rich textures
and local structures within the HR images, models are prone to
perceive a broad range of quality and aesthetics information during

sharpening blurring noise

(b) frequency-based

resizing

(a) geometry-based

color jittering

(c) color-based

CST

gray-scale local mean-subtraction

Figure 5: Illustration of the studied degradations, each trans-
forms data stochastically.

pretraining. In addition, FC is defined as the proportion of fore-
ground region of the entire image. Since foreground region encodes
way more semantics and texture than the background, pretraining
on HFC images ensures the model’s sensitivity to both high-level
and low-level visual attributes.

Based on the two criteria, multiple datasets with various res-
olution and FC are investigated. We resort to SA-1B [38] as the
pretraining data source for the following reasons. First, SA-1B has
an average resolution of approximately 1600×2100, which is sig-
nificantly higher than that of ImageNet. Second, although widely
used datasets (e.g. , DIV2K [1], UnsplashFull [54] etc. ) in super-
resolution (SR) task possess higher resolution (>2K), SA-1B exhibits
a significantly higher FC. To maintain the resolution of HR images
while adapting to the small input size of the model (e.g. , 224×224),
degradations A(·) in Equ. 1 typically include random cropping,
which further widens the gap between SA-1B and SR datasets in
terms of FC. Fig. 4 highlights this difference. Third, SA-1B provides
a straightforward criterion, namely the number of objects per image,
which allows us to further filter the dataset to get images with
higher FC. Eventually, the pretraining dataset for QPT V2 consists
of 1.28 million HR images filtered from SA-1B, with each image
containing 50 or more objects. The effectiveness of HR & HFC data
on downstream VS tasks is validated, we refer the reader to Sec.4.3
for more details.

3.4 Degradation
To comprehensively cover the VS-related factors, degradation type
and composition are studied. Fig.5 visualizes all the degradations
studied in this work. First, to account for VS-related factors intro-
duced by geometric transformation, resizing is considered. Second,
to cover the factors introduced by frequency shift, blurring, sharp-
ening, and gaussian noise are studied. Last, to incorporate the
factors introduced by color changing, color jittering and color space
transformation (CST) are considered. Following [55], we employ
four color spaces including RGB, LAB, HSV and grayscale. Fig.6
showcases the completeness of our degradation selection. In terms
of degradation composition, two strategies are adpoted. First, we
compose degradations sequentially. Second, inspired by recent
progress in SR [85, 111], an advanced composition including shuf-
fling, skipping and high-order operations is used to obtain complex
degradations. Random cropping is applied after all the degradations
by default.
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Benefiting from the comprehensiveness of our degradation se-
lection, we discover that CST stands out as the most quality- and
aesthetics-aware degradation. Previous NSS-based VS studies have
demonstrated that the VS-related information exists in various color
spaces [19, 79] and subsequent studies further proposed that the
information of different color spaces are complementary to each
other [55]. Therefore, we speculate that applying CST to the recon-
struction target exposes a richer set of quality and aesthetics factors
to the model, improving the data diversity during pretraining. Dif-
ferent from previous pretraining objectives based on contrastive
learning, we further reveal the fact that QPT V2 does not benefit
from the sequential or advanced composition of degradations. More
details of both findings can be found in Sec.4.3.

3.5 Model
To perceive the quality and aesthetics information at different scales,
encoder architecture and multi-scale feature fusion are considered.
Regarding the selection of the encoder architecture, the common
choices are ViT [13] and hierarchical backbones (e.g. , Swin [53] and
HiViT [109]). Compared to ViT, hierarchical backbones are better
at learning multi-scale features by leveraging image-related induc-
tive biases. Thus, a representative hierarchical backbone HiViT is
selected as the encoder.

There are three stages of different scales in HiViT. Upon that,
we devise a fusion module to incorporate the multi-scale features
output by different stages. The fusion process is described next.
The hierarchical encoder F𝑒 outputs features at multiple stages
during pretraining, shown in Fig. 3. These features are denoted by
𝑋 = {𝑥𝑖 }1≤𝑖≤𝑁 , where 𝑁 represents the number of stage. First, 𝑥𝑖
is processed by a projection layer P𝑖 (·), which aligns the feature
space between outputs of different stages, as:

𝑋 = {P𝑖 (𝑥𝑖 )}1≤𝑖≤𝑁 (3)

Second, the projected features of all stages 𝑋 , are integrated by a
fusion layer 𝐹 (·) as:

𝑌 = 𝐹 (𝑋 ) (4)

𝑌 will be fed into the decoder F𝑑 for pixel reconstruction. Note
that the fusion process is only introduced during pretraining, with-
out affecting the finetuning stage. More details of the architecture
selection and feature fusion are in Sec.4.3.

4 EXPERIMENTS
In this section, experimental setups are first introduced in Sec.4.1.
By comparing to existing SOTA methods in Sec.4.2, QPT V2 is
evaluated on 11 benchmarks from all three VS tasks. Last, an in-
depth ablation over QPT V2 is provided in Sec.4.3.

4.1 Evaluation Setups
Criteria. SRCC (Spearman rank correlation coef.) and PLCC

(Pearson linear correlation coef.) are adopted as evaluation criteria
for all three tasks, both ranging in [0, 1]. A larger SRCC indicates a
better ranking between samples, and a larger PLCC shows a more
accurate score prediction.

Benchmarks. 11 benchmarks are selected from IQA, VQA, and
IAA to comprehensively evaluate the visual scoring ability of QPT
V2. For IQA, three synthetically degraded datasets (TID2013 [62],
LIVE [68], KADID [48]) and three datasets with real-world distor-
tions (KonIQ10K [32], CLIVE [18], FLIVE [98]) are included. For
VQA, we choose three public NR-VQA datasets, including LIVE-
VQC [71], KoNViD-1k [31], and LSVQ [97]. For IAA, AVA [58] is
selected for evaluation. The key designs of QPT V2 are ablated on
FLIVE, LIVE-VQC, and AVA. For all the datasets without official
splitting, we randomly split them into 80% for training and 20% for
testing. The finetuning/evaluation procedure is conducted on 10
different splittings to avoid randomness, and the average SRCC and
PLCC is reported.

Pretraining details. All the experiments are conducted on 4
NVIDIA V100 GPUs. The pretraining data, degradation and model
are specified in Sec.3.3, Sec.3.4, and Sec.3.5, respectively. We ran-
domly mask 75% of the pixels following [24] and the input image
size is 224×224. The hyperparameter settings are inherited from
[24].

Finetuning strategy. For IQA, we implement the regression
head with a simple MLP (e.g. , two linear layers with a GeLU acti-
vation in between). Following [74], we resize the shorter edge of
images to 340 while keeping the aspect ratio, then randomly crop
sub-images with size 224×224. AdamW is adopted for optimiza-
tion, with weight decay of 0.01. The initial learning rate is 2e-5 and
decayed by cosine annealing without warmup. Pretrained models
are finetuned for 200 epochs, and the checkpoint of the last epoch
is selected for evaluation. When testing, we take the four corners
and the center crops and average their predicted quality scores to
obtain the final score.

For VQA, we follow the settings in [89] for finetuning. Also, the
pretraining weight is inflated to adapt video input, as done in [75].
As for hyperparamters, AdamW is used with weight decay of 0.05
and mini-batch size of 16. The initial learning rate is set to 1e-3
and decay it with cosine annealing strategy. The pretrained models
are finetuned for 30 epochs on LSVQtrain followed by evaluating
on LSVQtest, LSVQ1080p and two other smaller datasets, LIVE-VQC
and KoNViD-1k. We uniformly sample four 32-frame clips from an
input video, and average the predicted quality scores as the final
results.

For IAA, pretrained models are finetuned on AVA𝑡𝑟𝑎𝑖𝑛 for 60
epochs and then evaluate on AVA𝑡𝑒𝑠𝑡 , images are resized to 224×224
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Table 1: Performance of existing SOTA methods and the proposed QPT V2 on three synthetic and three real-world IQA datasets.
"-" means missing corresponding results in the original paper. The best and second-best results are bolded and underlined.

Method
Synthetic Real-world

LIVE TID2013 KADID FLIVE CLIVE KonIQ10K
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NIQE [57] 0.907 0.901 0.315 0.393 0.374 0.428 0.211 0.288 0.454 0.468 0.526 0.475
BRISQUE [56] 0.939 0.935 0.604 0.694 0.528 0.567 0.288 0.373 0.601 0.621 0.715 0.702
ILNIQE [104] 0.902 0.906 0.521 0.648 0.503 0.496 0.219 0.256 0.453 0.511 0.503 0.496
CORNIA [96] 0.947 0.950 0.678 0.768 0.516 0.558 - - - - - -
HOSA [92] 0.946 0.950 0.735 0.815 0.618 0.653 - - - - - -

DB-CNN [106] 0.968 0.971 0.816 0.865 0.851 0.856 0.554 0.652 0.844 0.862 0.878 0.887
HyperIQA [72] 0.962 0.966 0.840 0.858 0.852 0.845 0.535 0.623 0.855 0.871 0.908 0.921

CONRTIQUE [55] 0.960 0.961 0.843 0.857 0.934 0.937 0.580 0.641 0.854 0.890 0.896 0.901
Re-IQA [66] 0.970 0.971 0.804 0.861 0.872 0.885 0.645 0.733 0.840 0.854 0.914 0.923
MUSIQ [36] - - - - - 0.566 0.661 - - 0.916 0.928
TReS [22] 0.969 0.968 0.863 0.883 0.859 0.858 0.554 0.625 0.846 0.877 0.915 0.928
QPT [111] - - - - - - 0.610 0.677 0.895 0.914 0.927 0.941

QPT V2 0.972 0.973 0.874 0.885 0.897 0.896 0.649 0.684 0.897 0.902 0.913 0.930

Table 2: Performance of existing SOTA methods and the proposed QPT V2 on four in-the-wild VQA datasets. "-" means missing
corresponding results in the original paper. The best and second-best results are bolded and underlined.

Method
Intra-dataset Cross-dataset

LSVQ𝑡𝑒𝑠𝑡 LSVQ1080𝑝 LIVE-VQC KoNViD-1k
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [56] 0.579 0.576 0.497 0.531 0.524 0.536 0.646 0.647
TLVQM [39] 0.772 0.774 0.589 0.616 0.670 0.691 0.732 0.724
VIDEVAL [78] 0.794 0.783 0.545 0.554 0.630 0.640 0.751 0.741

VSFA [45] 0.801 0.796 0.675 0.704 0.734 0.772 0.784 0.794
BVQA [44] 0.852 0.854 0.772 0.788 0.816 0.824 0.839 0.830

SimpleVQA [73] 0.867 0.861 0.764 0.803 - - 0.860 -
PVQ𝑤𝑜/𝑝𝑎𝑡𝑐ℎ [97] 0.814 0.816 0.686 0.708 0.781 0.781 0.747 0.796
PVQ𝑤/𝑝𝑎𝑡𝑐ℎ [97] 0.827 0.828 0.711 0.739 0.770 0.807 0.791 0.795
FastVQA [89] 0.876 0.877 0.779 0.814 0.823 0.844 0.859 0.855
Q-Align [90] 0.883 0.882 0.797 0.830 - - 0.865 0.877

QPT V2 0.886 0.889 0.785 0.822 0.827 0.853 0.866 0.865

for evaluation. The regression head and hyperparameters are kept
consistent with those in IQA.

4.2 Comparison with state-of-the-arts
IQA. We compare our QPT V2 with two groups of IQA meth-

ods, including 5 traditional methods and 7 deep learning-based
methods. Results in Tab.1 show that QPT V2 achieves superior or
comparable performances to current SOTA methods. Previous deep
learning-based methods have achieved outstanding performances
on three synthetically datasets. Therefore, further improvements on
these datasets can be challenging to attain. Still, QPT V2 improves
the results on LIVE and TID2013 (e.g. , +1.1% of SRCC on TID2013).
Moreover, our method also reaches leading SRCC on FLIVE and
CLIVE (+0.4% of SRCC on FLIVE), showcasing its ability to perceive
real-world distortions effectively. Besides, Tab.1 includes methods
that also harness the power of pretraining by desiging contrastive
pretext tasks (e.g. , CONRTIQUE, Re-IQA, and QPT). For example,

Re-IQA respectively learns a content-aware encoder on ImageNet-
1K and a distortion-aware encoder on 758K distorted images. In
comparison, QPT V2 consumes less pretraining data and achieves
better performance.

VQA. We compare QPT V2 to three traditional methods and six
deep learning-based methods. Results given in Tab.2 provide the
following conclusions. First, the performances we obtain exceed all
the traditional methods that rely on hand-crafted features by a large
margin, and beat most data-driven methods on four VQA datasets.
Second, under the intra-dataset setting, QPT V2 pushes the SRCC
by 0.3% and PLCC by 0.7% on LSVQ𝑡𝑒𝑠𝑡 , exhibiting accurate quality
assessment. Third, under the cross-dataset setting, we surpass the
current SOTAs as well (e.g. , with 0.4% and 0.9% gains in SRCC
and PLCC on LIVE-VQC), presenting impressive generalization
capability.

IAA. We select 11 deep learning-based methods for comparison.
Tab.3 indicates that our method significantly surpasses previous
SOTA results on AVA dataset, reaching 0.865 (+4.3%) of SRCC and
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Table 3: Performance of existing SOTA methods and the pro-
posed QPT V2 on AVA dataset. The best and second-best
results are bolded and underlined.

Method AVA_test
SRCC PLCC

NIMA [15] 0.612 0.636
MLSP [30] 0.756 0.757
AFDC [7] 0.649 0.671
MUSIQ [36] 0.726 0.738
MaxViT [76] 0.708 0.745

CLIP-IQA+ [83] 0.619 0.586
Aesthetic Predictor [42] 0.721 0.723

TANet [28] 0.758 0.765
GAT×3-GATP [21] 0.762 0.764

LIQE [108] 0.776 0.763
VILA [37] 0.774 0.774

Q-Align [90] 0.822 0.817

QPT V2 (60% finetuning data) 0.766 0.780
QPT V2 0.865 0.875

Table 4: Comparisons of end-to-end finetuning evaluation
using different pretext tasks on CLIVE and LIVE-VQC, and
AVA.

Pretext task CLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

QPT V2 0.645 0.684 0.827 0.853 0.865 0.875
QPT [111] 0.610 0.677 - - - -
MoCo [25] 0.578 0.629 0.819 0.828 0.707 0.712
Supervised 0.556 0.604 0.810 0.825 0.704 0.690

w/o 0.451 0.475 0.696 0.731 0.545 0.552

0.875 (+5.8%) of PLCC. It is worth noting that Q-Align [90] leverages
the power of large multi-modality models (LMMs). In comparison,
our work introduces a new pretraining paradigm, and exhibits lower
computation and smaller model size. The advantages become more
evident when comparing to methods without utilizing LMMs (e.g. ,
+8.9% of SRCC and +10.1% of PLCC). The finetuning data amount
is further reduced to investigate the power of QPT V2. The results
show that QPT V2 achieves parity with some previous SOTA meth-
ods (e.g. , LIQE , VILA) using only 60% finetuning data, realizing
a more data-efficient transfer. Both LIQE and VILA solve IAA by
using auxiliary knowledge in text description. In comparison, QPT
V2 achieves SOTA results without the assistance of text modality.

QPT V2 vs. other pretext tasks. We compare QPT V2 with four
pretext tasks, including QPT, MoCo, ImageNet-1K supervised and
train-from-scratch, on three representative VS benchmarks. Note
that both supervised training and train-from-scratch use the same
encoder backbone as QPT V2, which is HiViT. MoCo and QPT are
based on semantic-aware and quality-aware contrastive learning,
respectively. The results in Tab.4 verify the superiority of QPT V2.
In addition, QPT V2 also achieves better performances than the
supervised training and the one without pretrained weights in all
three VS tasks.

4.3 Ablation Studies

Table 5: Ablation on resolution and foreground coverage
of pretraining data. IN1K and UF denote ImageNet-1K and
UnsplashFull for simplicity.

Source HR HFC FLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

IN1K % " 0.617 0.653 0.812 0.825 0.759 0.780

UF " % 0.602 0.631 0.799 0.828 0.778 0.801

SA-1B " " 0.645 0.684 0.827 0.853 0.865 0.875

Table 6: Ablation on single degradation type, each transforms
data stochastically.

Deg. FLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

None 0.616 0.664 0.813 0.836 0.832 0.820

Resizing 0.593 0.621 0.797 0.815 0.774 0.752

Blurring 0.628 0.664 0.813 0.833 0.827 0.831
Sharpening 0.617 0.650 0.803 0.820 0.801 0.786

Noise 0.602 0.614 0.793 0.810 0.773 0.747

CST 0.645 0.684 0.827 0.853 0.865 0.875
Color jittering 0.623 0.649 0.809 0.826 0.788 0.792

Table 7: Ablation on different forms of degradation composi-
tion. CST and B denote color space transform and blurring
for simplicity.

Comp. Deg. FLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

None CST 0.645 0.684 0.827 0.853 0.865 0.875
B 0.628 0.664 0.813 0.833 0.827 0.831

Sequential B→CST 0.645 0.671 0.806 0.824 0.821 0.840
CST→B 0.637 0.674 0.815 0.838 0.855 0.874

Advanced All 0.603 0.652 0.797 0.811 0.820 0.839

Effectiveness of HR & HFC data. We demonstrate the effec-
tiveness of HR & HFC data in QPT V2 by comparing to models
pretrained on data with differenet resolution and FC. Following
conclusions can be drawn from Tab.5. First, pretraining on data
with both HR and HFC leads to best downstream performances.
Second, high resolution matters. When the foreground coverage is
generally high, pretraining on HR images yields noticeably superior
performance on all three representative VS datasets. e.g. , +2.9%
on FLIVE, +2.2% on LIVE-VQC and +10.1% on AVA. Last, HFC is
essential. When the resolution is relatively high, HFC data always
prevail. e.g. , +4.8% on FLIVE, +2.7% on LIVE-VQC , and +8.1% on
AVA.

Effectiveness of quality- and aesthetics-aware degradation.
Tab.6 displays the downstream performances after applying six
different degradations to the reconstructed target in QPT V2. Re-
sults obtained without employing any form of degradation serve
as the baseline. First, the CST degradation incorporated in QPT
V2 performs the best, demonstrating its quality- and aesthectics-
awareness. Second, blurring brings a slight improvement in IAA
(+0.5% of SRCC and +1.1% of PLCC). Recent MIM studies find that
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removing the high-frequency components of pixels helps the model
to focus on semantics, benefiting downstream high-level tasks [51].
Thus, we attribute the gains to the fact that IAA places greater
emphasis on high-level visual attributes compared to IQA and VQA
[90]. Last, the geometry-based resizing, frequency-based sharp-
ening and noise, and color jittering impair the downstream per-
formances on all three benchmarks. This suggests that, altering
the spatial layout of the reconstruction target, enriching its high-
frequency details, corrupting its frequency spectrum, or perturbing
its color are all detrimental to model’s quality- and aesthectics-
awareness.

To study the effect of degradation composition, two top-performing
degradations in Tab.6, namely, CST and blurring are arranged se-
quentially. Also, all six degradations are included in an advanced
composition protocol discussed in Sec.3.4. The results in Tab.7 indi-
cate two findings. First, CST and blurring cannot synergize when
arranged sequentially, which leads to slight inferior results. Second,
QPT V2 does not benefit from a complicated degradation space.
Above findings are inconsistent with those in contrastive learn-
ing, we attribute them to the distinction between two pretraining
paradigms.

Effectiveness of multi-scale model. Tab.8 validates the effec-
tiveness of the encoder architecture selection. With similar model ca-
pacity, hierarchical backbones outperform plain ViT in all three VS
tasks. For example, Swin-T reaches 0.868 of SRCC on AVA dataset,
4.2% higher than ViT-S. Since two hierarchical models exhibit simi-
lar downstream performances, we opt for HiViT-T as the encoder in
QPT V2 for better training efficiency. Though increasing the model
capacity might potentially yield better results, we did not use larger
models out of tradeoffs, which can be done in future work.

To validate the effectiveness of the multi-scale feature fusion
strategy proposed in Sec.3.5, we fuse features at different stages, and
the downstream results are given in Tab.9. By default, the output of
the last stage (stage 3) is always fed to the decoder. Tab.9 indicates
that multi-scale feature fusion always provides benefits for VS tasks.
Particularly, fusing features from shallow stage (stage 1) yields the
most significant gains on three downstream datasets. Due to the
inclusion of more low-level details in shallow layer features, we
believe that fusing these features assist the model in better perceiv-
ing low-level VS-related factors. Additionally, the implementation
choices of the projection layer P𝑖 (·) and the fusion layer 𝐹 (·) spec-
ified in Sec.3.5 are discussed in Tab.10. Following conclusions can
be drawn: First, a simple linear layer is sufficient to project repre-
sentation into the same feature space. A more complex MLP (e.g.
, Linear-GeLU-Linear structure) cannot bring improvement while
introducing non-negligible computational overhead. We think the
non-linearity may increase the optimization difficulty as for pre-
training. Second, weighted average pooling is better suited for
integrating projected features compared to the simple summation.

Impact of pretraining data amount . We study the impact
of data amount on QPT V2 by using 20%, 50% and 100% percent-
ages of the pretraining data. Given by Tab.11, the performances on
three downstream datasets continue to improve as the data amount
increases. Surprisingly, we find that even when using only 50% of
the data, QPT V2 still achieves comparable performances to SOTA

Table 8: Ablation on the selection of the encoder architecture.
MS denotes to multi-scale for simplicity.

Model MS Param FLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

ViT-S % 22M 0.614 0.651 0.809 0.835 0.822 0.832
Swin-T " 28M 0.647 0.671 0.828 0.850 0.868 0.863
HiViT-T " 19M 0.645 0.684 0.827 0.853 0.865 0.875

Table 9: Ablation on the location for feature fusion.

Stage FLIVE LIVE-VQC AVA
1 2 SRCC PLCC SRCC PLCC SRCC PLCC

% % 0.643 0.650 0.814 0.837 0.848 0.858

" % 0.645 0.684 0.827 0.853 0.865 0.875
% " 0.643 0.671 0.819 0.838 0.842 0.863
" " 0.654 0.672 0.818 0.838 0.854 0.869

Table 10: Ablation on different implementatons of the multi-
scale feature fusion. Linear and MLP represents linear and
MLP projection layer, while Pool and Sum denote the fusion
strategies of weighted-average pooling and summation.

Linear MLP Pool Sum FLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

" " 0.645 0.684 0.827 0.853 0.865 0.875
" " 0.638 0.667 0.804 0.821 0.820 0.830

" " 0.656 0.682 0.820 0.848 0.858 0.864

Table 11: Impact of data amount for the pretext task of QPT
V2, using different percentages of the pretraining dataset.

Percentage FLIVE LIVE-VQC AVA
SRCC PLCC SRCC PLCC SRCC PLCC

20% 0.529 0.533 0.772 0.796 0.586 0.602
50% 0.610 0.647 0.805 0.829 0.770 0.774
100% 0.645 0.684 0.827 0.853 0.865 0.875

methods in IAA (e.g. , 0.770 of SRCC, 0.774 of PLCC on AVA dataset),
demonstrating its strong aesthetics perception capabilities. Further-
more, using different data sources to organize more HR & HFC data
remains an open question and could be explored in future work.

5 CONCLUSION
We propose QPT V2, a novel MIM-based pretraining paradigm
crafted for visual scoring tasks, aiming at alleviating the obstacle of
insufficient annotated data. To enhance the quality- and aesthetics-
awareness of the pretraining objective, we provide a meticulous
analysis over the vanilla MIM framework and make targeted im-
provements on three key components: pretraining data, degra-
dation, and model structure. After pretraining, QPT V2 achieves
SOTA results on 11 downstream benchmarks in IQA, VQA, and IAA,
demonstrating impressive capability and generalization ability. In
all, we hope this work will inspire the community to reflect and
explore the possibility of different pretraining paradigms in the
context of visual scoring.
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