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1 Overview1

The supplementary materials presented in this paper offer a comprehensive quantitative and qualitative2

analysis of the proposed method. In Section 2, we provide additional implementation details regarding3

the evidence of motivation. And we also present an extra continual adaptation experiment for4

Foundation Models in Section 3.1, which is conducted on ImageNet-to-ImageNet-C. To evaluate the5

domain generalization ability of our method, we conducted additional experiments directly testing6

on a different number of unseen domains in Section 3.2. Ablation study on prototype dimension7

are described in Section 3.3. Furthermore, Section 3.4 presents additional CTTA classification8

experiments utilizing the convolutional backbone. We offer an additional qualitative analysis in9

Section 4. In Section 5, we present a more detailed discussion of related work. Moreover, we extend10

the classification results of our submission to include a fine-grained performance, which examines11

the error across fifteen corruption types. The checklist is presented in the final section of this report.12

2 Supplementary Details for Motivation13

The study of Continual Test-Time Adaptation (CTTA) poses significant challenges, particularly in14

addressing error accumulation and catastrophic forgetting [36, 10]. Notably, the use of adapters with15

prototypes of varying dimensions has demonstrated promising results in mitigating these challenges16

in our submission. In this section, we aim to provide comprehensive implementation details regarding17

the evidence supporting our motivation. Furthermore, we delve deeper the underlying principles18

behind the effective utilization of domain adapters.19

Distribution Qualitative Analysis We employ t-distributed stochastic neighbor embedding (t-SNE)20

[33] to visualize the distribution of adapters across four continual target domains. This visualization21

is specifically performed on the Cityscapes-to-ACDC experiment, which represents a scenario with22

continually changing environments in the real world. To conduct the t-SNE analysis, we analyze the23

output of the third transformer block in the Segformer-B5 model [37]. The objective is to qualitatively24

compare the feature distributions of adapters with different dimension prototypes. Furthermore,25

our findings reveal that the qualitative results obtained from different layers of the Segformer-B526

model exhibit similar distribution representations. Illustrated in Figure 1(b) of our submission, there27

is a noticeable distribution gap due to the significant domain shift between the night domain and28

other domains. Interestingly, the low-rank Visual Domain Adapter (ViDA) effectively reduces the29

distribution distance across different target domains. On the other hand, the high-rank ViDA exhibits30

notable distribution discrepancies among the various target domains, indicating its focus on extracting31

domain-specific knowledge.32

Distribution Distance To provide clearer evidence for our assumption, we directly calculate the33

distribution distance to represent different domain representation of adapters. We adopt the domain34

distance definition proposed by Ben-David [2, 1] and build upon previous domain transfer research35

[11] by employing the H-divergence metric to further evaluate the domain representations of36
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adapters across different target domains. H-divergence between DS and DTi can be calculated as37

dH(DS , DTi
) = 2 sup

D∼H
| Pr
x∼DS

[D(x) = 1]− Pr
x∼DTi

[D(x) = 1]| (1)

, where H denotes hypothetical space and D denotes discriminator. Similar to [11], due to our model38

without discriminator architecture, calculating the H-divergence directly is challenging. For low-39

rank adapter evaluation, we adopt the Jensen-Shannon (JS) divergence between two adjacent40

domains as an approximation.41

JS(PDS
||PDTi

) =
1

2
KL(PDS

||
PDS
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2
) +

1

2
KL(PDTi

||
PDS

+ PDTi

2
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Where Kullback-Leibler (KL) divergence between two domain is42

KL(P1||P2) =

n∑
i=0

P1(xi)log(
P1(xi)

P2(xi)
) (3)

Where P denotes probability distribution of model output features. We split the output feature space43

into mutually disjoint intervals xi. n range from 0 to 1000. To investigate the effectiveness of44

adapters in adapting to continual target domains, we compare the JS values obtained by using the45

source model alone, injecting low-rank adapter, and combining low-high adapters, as illustrated in46

Figure 3(a) of our submission. For high-rank adapter, we use normalized intra-class divergence to47

further verify the domain representations of high-rank adapters in CIFAR10C, which is inspired48

by intra-cluster dissimilarity proposed by k-means [26]. We first calculate the Euclidean distance49

clustering center for each category µ = 1
|C|

∑
ei∼C ei, where ei stands for output feature in class C.50

Then following [26], we introduce normalized intra-class divergence E by51

E = ϕ(
1

|C|
∑
ei∼C

||ei − µ||22) (4)

ϕ(·) denotes for normlization function. As illustrated in Figure 3(b) of the submission, the high-52

rank adapter is found to drive down divergence within almost all domains and can better extract53

domain-specific knowledge in target domains.54

Distribution Quantitative Analysis To provide stronger evidence for our assumption, we have55

developed two evaluation approaches for both low-rank and high-rank adapters, which directly reflect56

their ability to extract domain-agnostic and domain-specific knowledge on ImageNet-to-ImageNet-C.57

After completing the entire process of continual adaptation on fifteen target domains, we employ the58

model and adapters from the last target domain to directly test on previously seen target domains,59

thereby evaluating the extent of catastrophic forgetting. As anticipated, we observe a noteworthy60

overall improvement of 1.0% in the average classification error, as demonstrated in the final row of61

Table 1 (submission). These findings provide additional support to our assumptions and indicate that62

utilizing low-rank adapters can mitigate catastrophic forgetting. Secondly, we conduct an ablation63

study on ImageNet-to-ImageNet-C to demonstrate the effectiveness of the high-rank adapter. In this64

study, we solely introduce the high-rank adapter into the pre-trained model. The results, presented65

in Table 6 (Ex2) of the submission, reveal a sustained reduction (-4.6%) in the classification error66

rate within the dynamic target domains when employing the high-rank adapter. This finding provides67

support for our hypothesis that high-rank adapters can extract more dependable domain-specific68

knowledge. These evaluation approaches serve to strengthen our findings and contribute to a clearer69

understanding of the capabilities and advantages of both low-rank and high-rank adapters.70

3 Additional Experiment71

3.1 Additional Continual Adaption Experiments for Foundation Models72

To demonstrate the effectiveness of our proposed method in enhancing the continual adaptation ability73

of foundation models such as DINOv2 [27] and SAM [19], we conducted additional experiments on74

a more extensive dataset, namely ImagNet-to-ImageNet-C. Our approach involved loading the weight75

parameters of the foundation model and pre-training it on ImagNet, thus constructing our source76
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Table 1: Average error rate (%) for the ImageNet-to-ImageNet-C CTTA task. All results are evaluated
on the ViT-Base, which uses the pre-trained encoder parameter of DINOv2 [27] and SAM [19].
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DINOv2

Source 52.3 50.5 51.2 57.3 83.8 60.1 62.6 47.1 56.9 58.1 22.5 88.4 60.3 32.4 35.0 54.6 0.0
Tent [35] ICLR2021 51.7 43.6 50.4 56.2 74.1 51.7 67.2 46.9 53.2 50.1 25.2 69.6 58.0 29.5 39.4 51.1 +3.5

CoTTA [36] CVPR2022 51.4 62.1 50.4 78.3 75.2 62.8 60.3 48.4 59.0 58.8 31.6 90.7 49.2 39.1 36.5 56.9 -2.3
Ours Proposed 49.0 49.8 50.7 61.4 60.2 49.7 42.6 47.1 51.9 45.3 27.1 49.7 47.4 32.0 29.4 46.2 +8.4

SAM

Source 67.9 62.1 51.6 69.7 92.6 65.4 59.8 53.9 61.2 64.1 39.0 91.6 60.1 47.3 67.0 63.6 0.0
Tent [35] ICLR2021 67.2 59.1 48.8 56.2 72.5 59.4 61.0 49.1 57.9 63.7 33.8 77.0 51.4 39.5 55.2 55.5 +8.1

CoTTA [36] CVPR2022 68.1 64.5 50.4 67.1 80.1 68.9 67.0 63.1 69.5 61.4 40.6 88.2 58.3 43.5 68.4 63.9 -0.3
Ours Proposed 59.9 55.7 40.2 84.3 49.6 59.7 59.0 47.8 48.3 57.4 26.6 71.8 42.9 41.7 50.3 53.0 +10.6

model. It is important to note that we solely utilized the pre-trained encoder of SAM and incorporated77

a classification head, which was fine-tuned on the source domain. Subsequently, we adapted the78

source model to continual target domains (ImageNet-C) comprising fifteen corruption types. The79

results, as depicted in Table 1, demonstrate that our approach achieved a significant performance80

improvement of 8.4% on the representative image-level foundation model DINOv2 [27] and 10.6%81

on the pixel-level foundation model SAM [19]. These outcomes highlight the effectiveness of our82

method when applied to large-scale models. Our method consistently and reliably enhances the83

performance of the foundation model across unseen continual target domains.84

3.2 Domain Generalization on a Different Number of Unseen Target Domains85

Table 2: We performed domain generalization comparisons on ImageNet-C, where the source model
was continually adapted on the first 5 domains and directly tested on 10 unseen domains. The
evaluation of the results was conducted using ViT-base.

Directly test on 10 unseen domains Unseen
Method motion zoom snow frost fog bri. contrast elastic_trans pixelate jpeg Mean↓
Source 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 53.3
Tent [35] 56.0 61.3 45.7 49.6 56.6 24.8 94.0 55.6 37.1 35.1 51.6
CoTTA [36] 57.3 62.1 49.1 52.0 57.1 26.4 91.9 57.1 37.6 35.3 52.6
Ours 46.4 52.7 39.8 43.7 42.2 23.5 71.5 49.6 33.9 33.3 43.7

Table 3: We performed domain generalization comparisons on ImageNet-C, where the source
model was continually adapted on the first 7 domains and directly tested on 8 unseen domains. The
evaluation of the results was conducted using ViT-base.

Directly test on 8 unseen domains Unseen
Method snow frost fog bri. contrast elastic_trans pixelate jpeg Mean↓
Source 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 51.4
Tent [35] 44.3 48.8 51.8 24.9 83.7 55.2 35.4 34.7 47.4
CoTTA [36] 48.8 52.2 56.7 26.1 91.1 57.0 37.3 35.3 50.6
Ours 39.6 43.7 41.7 23.7 63.7 51.7 33.3 33.6 42.3

Similar to our previous submission, we follow the leave-one-domain-out principle [41, 24], where we86

utilize a subset of ImageNet-C domains as new source domains for model training, while leaving87

the remaining domains as target domains without any adaptation. However, in contrast to previous88

domain generalization experiments, we adopt an unsupervised continual test-time adaptation (CTTA)89

approach for training the model on these new source domains. We solely utilize the ImageNet90

pre-trained parameters as the initial weights of the model. In the supplementary material, we utilize 591

out of 15 and 7 out of 15 domains from ImageNet-C as the source domains, leaving the remaining 1092

out of 15 and 8 out of 15 domains as unseen target domains. Surprisingly, the results presented in93

Table 2 and 3 demonstrate that our method achieves a reduction of 9.6% and 9.1% in the average94

error on these unseen domains, respectively. These promising outcomes validate the DG ability of95

our method, as it effectively extracts domain-agnostic knowledge and provides a new perspective for96

enhancing DG performance within an unsupervised paradigm.97
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3.3 Additional Ablation study98

How do the prototype dimension influence the performance?99

According to Figure 1, we observe that as the dimensionality decreases, the error rate concurrently100

drops. This trend suggests that lower-dimension prototypes more effectively extract the domain-101

shared knowledge, leading to an improved model performance. However, an opposite trend emerges102

when dimensionality surpasses 16, with performance enhancements accompanying increased dimen-103

sionality. This correlation implies that prototypes with a higher dimensionality excel in extracting104

domain-specific knowledge. And we find that when the dimension is larger than 128, the performance105

improvement is limited but brings a larger number of parameters. Therefore, we set the dimensionality106

of the high-dimension prototype to 128 in our study.
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Figure 1: The prototype dimension influence of the performance
107

3.4 Additional Experiments on Classification CTTA108

Table 4: Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online CTTA task.
Results are evaluated on WideResNet-28. Gain(%) represents the percentage of improvement in
model accuracy compared with the source method.
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Source [39] BMVC2016 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5 0.0
BN Stats Adapt [31] NeurIPS2020 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4 +23.1
Tent-continual [35] ICLR2021 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7 +22.8
CoTTA [36] CVPR2022 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2 +27.3
SATA [5] 2023.4.20 23.9 20.1 28.0 11.6 27.4 12.6 10.2 14.1 13.2 12.2 7.4 10.3 19.1 13.3 18.5 16.1 +27.4
Ours Proposed 24.1 20.6 24.1 11.5 26.5 12.3 10.3 14.7 13.4 12.3 8.3 10.9 17.7 12.9 16.8 15.8 +27.7

CIFAR10-to-CIFAR10C standard task. In contrast to the experiments conducted in our submission,109

we introduce a change in the backbone of the classification model to WideResNet-28, which is110

consistent with previous works on CTTA [36]. Specifically, we modify the up-projection layer and111

down-projection layer to utilize 1 × 1 convolutions, while the adapters are placed alongside the112

original 3× 3 convolutions. For the adapters, we maintain a low-rank dimension of 1 and a high-rank113

dimension of 128. Additionally, we provide the pre-trained source model and perform CTTA on114

CIFAR10C, a dataset that encompasses fifteen corruption types that occur sequentially during the test115

time. As depicted in Table 5, our method surpasses all previous approaches, achieving a 27.7% and116

0.3% improvement over the source model and the previous state-of-the-art (SOTA) method. These117

findings demonstrate that our method successfully extracts domain-specific knowledge, regardless of118

the network backbone employed.119

4 Additional Qualitative Analysis120

To further validate the effectiveness of our proposed method, we present additional qualitative121

comparisons on the Cityscapes-to-ACDC CTTA scenario. Initially, we pre-train the Segformer-B5122

model [37] on the source domain and subsequently adapt it to four target domains in ACDC. In order123
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to assess the performance of our approach, we conduct a qualitative comparison with two leading124

methods, namely CoTTA [36] and VDP [10]. The visualizations of the segmentation outputs, obtained125

through the CTTA process, are depicted in Figure .2. Our method exhibits better segmentation map126

compared to CoTTA and VDP across all four target domains, as it effectively distinguishes the127

sidewalk from the road (shown in white box). This demonstrates the capability of our method to128

achieve more accurate segmentation results while mitigating the impact of dynamic domain shifts.129

Moreover, in the other categories, our method’s segmentation maps closely resemble the Ground130

Truth, leading to a visual enhancements. Lastly, we have included a video visualization in the131

supplementary material that showcases a comprehensive comparison of segmentation performance.132

This video provides a dynamic and visual representation of the results obtained from our experiments.133

road sidew build wall fence pole tr.light tr.sign veget terrain sky person rider car truck bus train m.bike bike n/a.
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Figure 2: Qualitative comparison of our method with previous SOTA methods on the ACDC dataset.
Our method could better segment different pixel-wise classes such as shown in the white box.

5 Additional Related Work134

5.1 Continual Test-Time Adaptation135

Test-time adaptation (TTA), also known as source-free domain adaptation [3, 20, 25, 38], aims136

to adapt a source model to an unknown target domain distribution without relying on any source137

domain data. In practical scenarios where data privacy and transmission costs are a concern, access138

to source domain data may be limited, rendering traditional unsupervised domain adaptation (UDA)139

algorithms ineffective. Recent research has explored various techniques such as self-training and140

entropy regularization to fine-tune the source model [21, 35, 25, 6]. Specifically, Tent [35] updates141

the training parameters in batch normalization layers by minimizing entropy. SHOT [25] focuses on142

optimizing only the feature extractor using information maximization and pseudo-labeling. AdaCon-143

trast [6] combines pseudo-labeling with self-supervised contrastive learning to improve performance.144

Additionally, some studies have approached the problem from an output distribution adjustment145

perspective [4]. Recently, SVDP introduces the sparse domain prompt to address the pixel-level146

domain shift for segmentation TTA task. While the works mentioned above primarily concentrate on147

convolutional neural networks, there has been a recent surge of interest in applying Transformer-based148

models [36, 13, 13].149

Continual Test-Time Adaptation (CTTA) refers to a scenario where the target domain is dynamic,150

presenting additional challenges for traditional TTA methods. The pioneering work by [36] intro-151

duced a comprehensive approach that combines bi-average pseudo labels and stochastic weight reset152

to address this complex task. While [36] focuses on tackling the problem at the model level for153
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both classification and segmentation tasks, [10] proposes the use of visual domain prompts at the154

input level, specifically for the classification task. In a similar vein, inspired by Tent [35], SATA [5]155

modifies the batch-norm affine parameters through a source anchoring-based self-distillation scheme.156

Building upon these advancements, our paper takes a pioneering step by introducing visual domain157

adapters to address the challenges of error accumulation and catastrophic forgetting in CTTA. By158

simultaneously tackling both classification tasks and dense prediction tasks, our approach provides a159

holistic solution for CTTA.160

5.2 Parameter-Efficient Fine-Tuning161

Selective updating or introducing a small subset of parameters instead of updating all parameters in a162

pre-trained model during standard fine-tuning has been shown to be effective. In the field of natural163

language processing (NLP), Parameter-Efficient Fine-Tuning (PEFT) has gained considerable traction,164

with notable studies including [18, 16, 15, 40, 23, 17, 12, 14, 34, 28]. Adapter-based models, a type165

of PEFT, have emerged as popular techniques in NLP. These models utilize bottleneck architecture166

adapter modules that are inserted between layers of pre-trained models, and during fine-tuning, only167

these adapter modules are updated. Adapter-based models have demonstrated superior performance168

in certain tasks, sometimes surpassing standard fine-tuning approaches [8]. The success of adapters169

in NLP has also led to widespread interest in applying adapter techniques to visual tasks. During the170

early stages of adapter development, residual adapter modules were introduced as a means to facilitate171

effective adaptation of convolutional neural networks across multiple downstream tasks [29, 30].172

Building on this foundation, AdaptFormer [7] improves the ViT [9] model by replacing the original173

multi-layer perceptron (MLP) block with AdaptMLP. AdaptMLP introduces a trainable down-to-up174

bottleneck module in a parallel manner, effectively mitigating catastrophic interference between tasks.175

Another notable approach, VL-Adapter [32], enhances the efficiency and performance of adapters176

by leveraging shared low-dimensional layer weights to transfer knowledge across tasks. Despite177

these advancements, existing methods have not adequately addressed the challenges of long-term178

preservation of domain-agnostic knowledge and the timely exploration of domain-specific knowledge179

in the face of continuous unknown domain variations. Consequently, there is an urgent demand for180

an adapter that can simultaneously address the challenges of error accumulation and catastrophic181

forgetting through specific adapters with differen domain representations.182

6 Fine-grained Performance183

Table 5: A fine-grained Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online
CTTA task. Results are evaluated on ViT-base.
Method gaussion shot impulse defocus glass motion zoom snow frost fog bri. contrast elastic_trans pixelate jpeg Mean↓ Gain

Source 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Pseudo-label [22] 59.8 52.5 37.2 19.8 35.2 21.8 17.6 11.6 12.3 20.7 5.0 41.7 21.5 25.2 22.1 26.9 +1.3
Tent-continual [35] 58.7 51.8 34.2 18.9 33.5 21.6 16.4 10.8 11.7 18.6 4.7 38.5 20.6 22.1 20.8 25.5 +2.7
CoTTA [36] 58.7 51.3 33.0 20.1 34.8 20 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6
VDP[10] 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4 27.5 18.4 22.5 19.9 24.1 +4.1
Ours (proposed) 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5

Table 6: A fine-grained Classification error rate(%) for standard CIFAR100-to-CIAFAR100C online
CTTA task. Results are evaluated on ViT-base.
Method gaussion shot impulse defocus glass motion zoom snow frost fog bri. contrast elastic_trans pixelate jpeg Mean↓ Gain

Source 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Pseudo-label [22] 53.8 48.9 25.4 23.0 58.7 27.3 19.6 20.6 23.4 31.3 11.8 28.4 39.6 52.3 33.9 33.2 +2.2
Tent-continual [35] 53.8 48.7 25.5 23 59.1 27.4 19.7 20.9 23.5 31.8 11.8 27.9 39.9 50.9 33.8 33.2 +2.2
CoTTA [36] 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6
VDP [10] 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4
Ours (proposed) 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1

In this section, we expand upon the classification results presented in our submission by providing a184

details of fine-grained performance. We assess the error rates across fifteen corruption types to gain185

deeper insights. To be specific, we augment the information provided in Table 2 of our submission186

with the additional details presented in Table 5 and 6. These tables offer a comprehensive view of the187

performance of our approach in addressing the CIFAR-10-to-CIFAR-10C and CIFAR-100-to-CIFAR-188

100C CTTA scenarios, respectively.189
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7 Main Checklist190

Claims: The abstract, introduction, and conclusion effectively convey the main claims of the paper,191

accurately reflecting its contributions and scope. The claims put forth in the paper align with both192

theoretical and experimental findings, ensuring that the extent of generalization expected from the193

results is appropriately conveyed. Furthermore, the introduction and conclusion clearly outline the194

paper’s contributions, important assumptions, and limitations, leaving no room for ambiguity.195

Code Of Ethics: After thoroughly reviewing the NeurIPS Code of Ethics196

(https://neurips.cc/public/EthicsGuidelines), I have ensure that our research adheres to its197

principles and guidelines.198

Broader Impacts: I have conscientiously considered the potential societal impacts of our work,199

including any potential risks associated with malicious or unintended uses, as well as negative200

applications. I strive to minimize any adverse consequences and ensure that our research is conducted201

responsibly.202

Limitations: In the last section of our submission, I have thoroughly documented the limitations203

inherent in our work.204

Experiments: I will promptly provide the necessary code, data, and comprehensive instructions to205

ensure the reproduction of our main experimental results.206

Training Detail and Compute: I provide explicit descriptions of all the training details in imple-207

mentation details that are unique to this work. For other aspects, we closely adhere to previously208

published work, following their established methodologies and specifications.209
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