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1 Overview

The supplementary materials presented in this paper offer a comprehensive quantitative and qualitative
analysis of the proposed method. In Section[2] we provide additional implementation details regarding
the evidence of motivation. And we also present an extra continual adaptation experiment for
Foundation Models in Section which is conducted on ImageNet-to-ImageNet-C. To evaluate the
domain generalization ability of our method, we conducted additional experiments directly testing
on a different number of unseen domains in Section Ablation study on prototype dimension
are described in Section [3.3] Furthermore, Section [3.4] presents additional CTTA classification
experiments utilizing the convolutional backbone. We offer an additional qualitative analysis in
Section[d] In Section[5] we present a more detailed discussion of related work. Moreover, we extend
the classification results of our submission to include a fine-grained performance, which examines
the error across fifteen corruption types. The checklist is presented in the final section of this report.

2 Supplementary Details for Motivation

The study of Continual Test-Time Adaptation (CTTA) poses significant challenges, particularly in
addressing error accumulation and catastrophic forgetting [36}110]. Notably, the use of adapters with
prototypes of varying dimensions has demonstrated promising results in mitigating these challenges
in our submission. In this section, we aim to provide comprehensive implementation details regarding
the evidence supporting our motivation. Furthermore, we delve deeper the underlying principles
behind the effective utilization of domain adapters.

Distribution Qualitative Analysis We employ t-distributed stochastic neighbor embedding (t-SNE)
[33] to visualize the distribution of adapters across four continual target domains. This visualization
is specifically performed on the Cityscapes-to-ACDC experiment, which represents a scenario with
continually changing environments in the real world. To conduct the t-SNE analysis, we analyze the
output of the third transformer block in the Segformer-B5 model [37]. The objective is to qualitatively
compare the feature distributions of adapters with different dimension prototypes. Furthermore,
our findings reveal that the qualitative results obtained from different layers of the Segformer-B5
model exhibit similar distribution representations. Illustrated in Figure 1(b) of our submission, there
is a noticeable distribution gap due to the significant domain shift between the night domain and
other domains. Interestingly, the low-rank Visual Domain Adapter (ViDA) effectively reduces the
distribution distance across different target domains. On the other hand, the high-rank ViDA exhibits
notable distribution discrepancies among the various target domains, indicating its focus on extracting
domain-specific knowledge.

Distribution Distance To provide clearer evidence for our assumption, we directly calculate the
distribution distance to represent different domain representation of adapters. We adopt the domain
distance definition proposed by Ben-David [2, (1] and build upon previous domain transfer research
[L1] by employing the H-divergence metric to further evaluate the domain representations of
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adapters across different target domains. H-divergence between Dg and Dy, can be calculated as

dy(Dg,Dr,) =2 sup | Pr [D(z)=1]— Pr [D(z)=1] )
D~H T~Ds z~Dr,

, where ‘H denotes hypothetical space and D denotes discriminator. Similar to [L1], due to our model
without discriminator architecture, calculating the H-divergence directly is challenging. For low-
rank adapter evaluation, we adopt the Jensen-Shannon (JS) divergence between two adjacent
domains as an approximation.

1 Pps + Pp,, 1 Pps + Pp,,
JS(PDSHPDTi):iKL(PDSH%)—FiKL(PDTiH%) (2)
Where Kullback-Leibler (K L) divergence between two domain is
KL(P||P) = Py (z;)l 3
(Pi|[P2) ; 1(96)09(]32(%)) )

Where P denotes probability distribution of model output features. We split the output feature space
into mutually disjoint intervals z;. n range from 0 to 1000. To investigate the effectiveness of
adapters in adapting to continual target domains, we compare the JS values obtained by using the
source model alone, injecting low-rank adapter, and combining low-high adapters, as illustrated in
Figure 3(a) of our submission. For high-rank adapter, we use normalized intra-class divergence to
further verify the domain representations of high-rank adapters in CIFAR10C, which is inspired
by intra-cluster dissimilarity proposed by k-means [26]. We first calculate the Euclidean distance
clustering center for each category p = ﬁ > ¢, ~C €i» Where ¢; stands for output feature in class C'.

Then following [26]], we introduce normalized intra-class divergence E by

1
B =95 > llei — pll3) “

€; ~C

@(+) denotes for normlization function. As illustrated in Figure 3(b) of the submission, the high-
rank adapter is found to drive down divergence within almost all domains and can better extract
domain-specific knowledge in target domains.

Distribution Quantitative Analysis To provide stronger evidence for our assumption, we have
developed two evaluation approaches for both low-rank and high-rank adapters, which directly reflect
their ability to extract domain-agnostic and domain-specific knowledge on ImageNet-to-ImageNet-C.
After completing the entire process of continual adaptation on fifteen target domains, we employ the
model and adapters from the last target domain to directly test on previously seen target domains,
thereby evaluating the extent of catastrophic forgetting. As anticipated, we observe a noteworthy
overall improvement of 1.0% in the average classification error, as demonstrated in the final row of
Table 1 (submission). These findings provide additional support to our assumptions and indicate that
utilizing low-rank adapters can mitigate catastrophic forgetting. Secondly, we conduct an ablation
study on ImageNet-to-ImageNet-C to demonstrate the effectiveness of the high-rank adapter. In this
study, we solely introduce the high-rank adapter into the pre-trained model. The results, presented
in Table 6 (Fx7) of the submission, reveal a sustained reduction (-4.6%) in the classification error
rate within the dynamic target domains when employing the high-rank adapter. This finding provides
support for our hypothesis that high-rank adapters can extract more dependable domain-specific
knowledge. These evaluation approaches serve to strengthen our findings and contribute to a clearer
understanding of the capabilities and advantages of both low-rank and high-rank adapters.

3 Additional Experiment

3.1 Additional Continual Adaption Experiments for Foundation Models

To demonstrate the effectiveness of our proposed method in enhancing the continual adaptation ability
of foundation models such as DINOv2 [27]] and SAM [19], we conducted additional experiments on
a more extensive dataset, namely ImagNet-to-ImageNet-C. Our approach involved loading the weight
parameters of the foundation model and pre-training it on ImagNet, thus constructing our source
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Table 1: Average error rate (%) for the ImageNet-to-ImageNet-C CTTA task. All results are evaluated
on the ViT-Base, which uses the pre-trained encoder parameter of DINOv2 [27] and SAM [19].

g $ 5 o § & » § 5 g ¢
g & 5 5 S s s < ) .
Backbone| Method REF $ .§ 55 $ ?f § § § é @% 3 og ;é’/ - ? § Mean] Gain
& - S S 5 S \‘;; g
3
Source 52.3 50.5 51.2 57.3 83.8 60.1 62.6 47.1 56.9 58.1 22.5 88.4 60.3 324 35.0| 546 0.0
DINOvV2 Tent [35] | ICLR2021 |51.7 43.6 50.4 56.2 74.1 51.7 67.2 46.9 53.2 50.1 25.2 69.6 58.0 29.5 39.4| 51.1 +3.5

CoTTA [36]|CVPR2022|51.4 62.1 50.4 78.3 75.2 62.8 60.3 48.4 59.0 58.8 31.6 90.7 49.2 39.1 36.5| 569 -2.3
Ours Proposed |49.0 49.8 50.7 61.4 60.2 49.7 42.6 47.1 51.9 45.3 27.1 49.7 474 32.0 29.4| 46.2 +84
Source 67.9 62.1 51.6 69.7 92.6 65.4 59.8 53.9 61.2 64.1 39.0 91.6 60.1 47.3 67.0| 63.6 0.0

Tent [35] | ICLR2021|67.2 59.1 48.8 56.2 72.5 59.4 61.0 49.1 57.9 63.7 33.8 77.0 51.4 39.5 55.2| 555 +8.1

CoTTA [36]|CVPR2022|68.1 64.5 50.4 67.1 80.1 68.9 67.0 63.1 69.5 61.4 40.6 88.2 58.3 43.5 68.4| 63.9 -0.3

Ours Proposed |59.9 55.7 40.2 84.3 49.6 59.7 59.0 47.8 48.3 57.4 26.6 71.8 42.9 41.7 50.3) 53.0 +10.6

SAM

model. It is important to note that we solely utilized the pre-trained encoder of SAM and incorporated
a classification head, which was fine-tuned on the source domain. Subsequently, we adapted the
source model to continual target domains (ImageNet-C) comprising fifteen corruption types. The
results, as depicted in Table[I] demonstrate that our approach achieved a significant performance
improvement of 8.4% on the representative image-level foundation model DINOv2 [27] and 10.6%
on the pixel-level foundation model SAM [19]. These outcomes highlight the effectiveness of our
method when applied to large-scale models. Our method consistently and reliably enhances the
performance of the foundation model across unseen continual target domains.

3.2 Domain Generalization on a Different Number of Unseen Target Domains

Table 2: We performed domain generalization comparisons on ImageNet-C, where the source model
was continually adapted on the first 5 domains and directly tested on 10 unseen domains. The
evaluation of the results was conducted using ViT-base.

Directly test on 10 unseen domains \ Unseen
Method | motion zoom snow frost fog bri. contrast elastic_trans pixelate jpeg | Mean]
Source 585 633 499 542 577 264 914 57.5 38.0 36.2| 533
Tent [35] 56.0 613 457 49.6 56.6 248 94.0 55.6 37.1 35.1| 51.6
CoTTA [36] | 57.3 62.1 49.1 520 57.1 264 919 57.1 37.6  353] 52.6
Ours 464 527 398 43.7 422 235 715 49.6 339 333| 437

Table 3: We performed domain generalization comparisons on ImageNet-C, where the source
model was continually adapted on the first 7 domains and directly tested on 8 unseen domains. The
evaluation of the results was conducted using ViT-base.

\ Directly test on 8 unseen domains | Unseen
Method | snow frost  fog bri.  contrast elastic_trans  pixelate  jpeg | Mean]
Source 499 542 577 264 91.4 57.5 38.0 36.2 51.4
Tent [35] 443 488 51.8 249 83.7 55.2 354 34.7 474
CoTTA [36] | 48.8 522 56.7 26.1 91.1 57.0 373 353 50.6
Ours 39.6 437 41.7 237 63.7 51.7 333 33.6 42.3

Similar to our previous submission, we follow the leave-one-domain-out principle [41} 24], where we
utilize a subset of ImageNet-C domains as new source domains for model training, while leaving
the remaining domains as target domains without any adaptation. However, in contrast to previous
domain generalization experiments, we adopt an unsupervised continual test-time adaptation (CTTA)
approach for training the model on these new source domains. We solely utilize the ImageNet
pre-trained parameters as the initial weights of the model. In the supplementary material, we utilize 5
out of 15 and 7 out of 15 domains from ImageNet-C as the source domains, leaving the remaining 10
out of 15 and 8 out of 15 domains as unseen target domains. Surprisingly, the results presented in
Table [2] and [3] demonstrate that our method achieves a reduction of 9.6% and 9.1% in the average
error on these unseen domains, respectively. These promising outcomes validate the DG ability of
our method, as it effectively extracts domain-agnostic knowledge and provides a new perspective for
enhancing DG performance within an unsupervised paradigm.
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3.3 Additional Ablation study

How do the prototype dimension influence the performance?

According to Figure[T] we observe that as the dimensionality decreases, the error rate concurrently
drops. This trend suggests that lower-dimension prototypes more effectively extract the domain-
shared knowledge, leading to an improved model performance. However, an opposite trend emerges
when dimensionality surpasses 16, with performance enhancements accompanying increased dimen-
sionality. This correlation implies that prototypes with a higher dimensionality excel in extracting
domain-specific knowledge. And we find that when the dimension is larger than 128, the performance
improvement is limited but brings a larger number of parameters. Therefore, we set the dimensionality
of the high-dimension prototype to 128 in our study.

52.0

51.5 A

51.0

50.5 1

Error (%)

50.0 1

49.5 4

49.0

1 2 4 8 16 32 64 128 256 512
Dimension
Figure 1: The prototype dimension influence of the performance

3.4 Additional Experiments on Classification CTTA

Table 4: Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online CTTA task.
Results are evaluated on WideResNet-28. Gain(%) represents the percentage of improvement in
model accuracy compared with the source method.

5 $ 5 . § s = § 5 § o
5 “ s & = I & .
Method REF g £ 5 S § § S & s & g § o T & |Meanl Gain
& § g % 5§ § 4 ¥ = §a S \%7 5 S
[5)
Source [39] BMVC2016 |72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3| 43.5 0.0

BN Stats Adapt [31] |NeurIPS2020|28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 153 84 12.6 23.8 19.7 27.3| 204 +23.1
Tent-continual [35] | ICLR2021 |24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9| 20.7 +22.8

CoTTA [36] CVPR2022 (24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 124 7.5 10.6 183 13.4 17.3| 162 +27.3
SATA [5 2023.420 |23.9 20.1 28.0 11.6 27.4 12.6 10.2 14.1 13.2 122 7.4 103 19.1 133 18.5| 16.1 +27.4
Ours Proposed |24.1 20.6 24.1 11.5 26.5 12.3 10.3 14.7 13.4 12.3 83 109 17.7 129 16.8| 15.8 +27.7

CIFAR10-to-CIFAR10C standard task. In contrast to the experiments conducted in our submission,
we introduce a change in the backbone of the classification model to WideResNet-28, which is
consistent with previous works on CTTA [36]. Specifically, we modify the up-projection layer and
down-projection layer to utilize 1 x 1 convolutions, while the adapters are placed alongside the
original 3 x 3 convolutions. For the adapters, we maintain a low-rank dimension of 1 and a high-rank
dimension of 128. Additionally, we provide the pre-trained source model and perform CTTA on
CIFARI10C, a dataset that encompasses fifteen corruption types that occur sequentially during the test
time. As depicted in Table[5] our method surpasses all previous approaches, achieving a 27.7% and
0.3% improvement over the source model and the previous state-of-the-art (SOTA) method. These
findings demonstrate that our method successfully extracts domain-specific knowledge, regardless of
the network backbone employed.

4 Additional Qualitative Analysis

To further validate the effectiveness of our proposed method, we present additional qualitative
comparisons on the Cityscapes-to-ACDC CTTA scenario. Initially, we pre-train the Segformer-B5
model [37] on the source domain and subsequently adapt it to four target domains in ACDC. In order
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to assess the performance of our approach, we conduct a qualitative comparison with two leading
methods, namely CoTTA [36] and VDP [10]. The visualizations of the segmentation outputs, obtained
through the CTTA process, are depicted in Figure [2] Our method exhibits better segmentation map
compared to CoTTA and VDP across all four target domains, as it effectively distinguishes the
sidewalk from the road (shown in white box). This demonstrates the capability of our method to
achieve more accurate segmentation results while mitigating the impact of dynamic domain shifts.
Moreover, in the other categories, our method’s segmentation maps closely resemble the Ground
Truth, leading to a visual enhancements. Lastly, we have included a video visualization in the
supplementary material that showcases a comprehensive comparison of segmentation performance.
This video provides a dynamic and visual representation of the results obtained from our experiments.

Image CoTTA ViDA Ground Truth

road sidew build ~ wall | sky | person | truck bus  train  mbike bike n/a.

Figure 2: Qualitative comparison of our method with previous SOTA methods on the ACDC dataset.
Our method could better segment different pixel-wise classes such as shown in the white box.

Night

Rain

Snow

5 Additional Related Work

5.1 Continual Test-Time Adaptation

Test-time adaptation (TTA), also known as source-free domain adaptation [3] [23] [38]], aims
to adapt a source model to an unknown target domain distribution without relying on any source
domain data. In practical scenarios where data privacy and transmission costs are a concern, access
to source domain data may be limited, rendering traditional unsupervised domain adaptation (UDA)
algorithms ineffective. Recent research has explored various techniques such as self-training and
entropy regularization to fine-tune the source model [21], [6]]. Specifically, Tent [33] updates
the training parameters in batch normalization layers by minimizing entropy. SHOT [23]] focuses on
optimizing only the feature extractor using information maximization and pseudo-labeling. AdaCon-
trast [[6] combines pseudo-labeling with self-supervised contrastive learning to improve performance.
Additionally, some studies have approached the problem from an output distribution adjustment
perspective [4]. Recently, SVDP introduces the sparse domain prompt to address the pixel-level
domain shift for segmentation TTA task. While the works mentioned above primarily concentrate on
convolutional neural networks, there has been a recent surge of interest in applying Transformer-based

models [36} [13], [13]].

Continual Test-Time Adaptation (CTTA) refers to a scenario where the target domain is dynamic,
presenting additional challenges for traditional TTA methods. The pioneering work by [36]] intro-
duced a comprehensive approach that combines bi-average pseudo labels and stochastic weight reset
to address this complex task. While [36]] focuses on tackling the problem at the model level for
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both classification and segmentation tasks, [10] proposes the use of visual domain prompts at the
input level, specifically for the classification task. In a similar vein, inspired by Tent [35]], SATA [5]
modifies the batch-norm affine parameters through a source anchoring-based self-distillation scheme.
Building upon these advancements, our paper takes a pioneering step by introducing visual domain
adapters to address the challenges of error accumulation and catastrophic forgetting in CTTA. By
simultaneously tackling both classification tasks and dense prediction tasks, our approach provides a
holistic solution for CTTA.

5.2 Parameter-Efficient Fine-Tuning

Selective updating or introducing a small subset of parameters instead of updating all parameters in a
pre-trained model during standard fine-tuning has been shown to be effective. In the field of natural
language processing (NLP), Parameter-Efficient Fine-Tuning (PEFT) has gained considerable traction,
with notable studies including [[18} [16} 15} 40, 23, [17, 12} [14} 134, [28]. Adapter-based models, a type
of PEFT, have emerged as popular techniques in NLP. These models utilize bottleneck architecture
adapter modules that are inserted between layers of pre-trained models, and during fine-tuning, only
these adapter modules are updated. Adapter-based models have demonstrated superior performance
in certain tasks, sometimes surpassing standard fine-tuning approaches [8]]. The success of adapters
in NLP has also led to widespread interest in applying adapter techniques to visual tasks. During the
early stages of adapter development, residual adapter modules were introduced as a means to facilitate
effective adaptation of convolutional neural networks across multiple downstream tasks [29, [30].
Building on this foundation, AdaptFormer [7]] improves the ViT [9] model by replacing the original
multi-layer perceptron (MLP) block with AdaptMLP. AdaptMLP introduces a trainable down-to-up
bottleneck module in a parallel manner, effectively mitigating catastrophic interference between tasks.
Another notable approach, VL-Adapter [32], enhances the efficiency and performance of adapters
by leveraging shared low-dimensional layer weights to transfer knowledge across tasks. Despite
these advancements, existing methods have not adequately addressed the challenges of long-term
preservation of domain-agnostic knowledge and the timely exploration of domain-specific knowledge
in the face of continuous unknown domain variations. Consequently, there is an urgent demand for
an adapter that can simultaneously address the challenges of error accumulation and catastrophic
forgetting through specific adapters with differen domain representations.

6 Fine-grained Performance

Table 5: A fine-grained Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online
CTTA task. Results are evaluated on ViT-base.

Method | gaussion shot impulse defocus glass motion zoom snow frost fog bri. contrast elastic_trans pixelate jpeg|Mean| Gain
Source 60.1 532 383 199 355 226 186 12.1 127 228 53 49.7 23.6 247 23.1| 282 0.0
Pseudo-label [22] 598 525 372  19.8 352 21.8 17.6 11.6 123 20.7 50 41.7 21.5 252 22.1| 269 +13
Tent-continual [35]| 587 51.8 342 189 335 216 164 108 11.7 18.6 47 385 20.6 22.1 20.8| 255 +2.7
CoTTA [36] 587 513 330 201 348 20 152 11.1 11.3 185 4.0 347 18.8 19.0 17.9| 246 +3.6
VDPI[I0] 575 495 317 213 351 196 151 108 103 181 4 275 18.4 225 199| 24.1 +4.1

Ours (proposed) 529 479 194 114 313 133 76 7.6 99 12538 263 14.4 339 18.2| 20.7 +7.5

Table 6: A fine-grained Classification error rate(%) for standard CIFAR100-to-CIAFAR100C online
CTTA task. Results are evaluated on ViT-base.

Method \gaussion shot impulse defocus glass motion zoom snow frost fog bri. contrast elastic_trans pixelate jpeg\Meani Gain

Source 550 515 269 240 605 290 214 21.1 250352 11.8 348 432 56.0 359| 354 0.0
Pseudo-label [22] 538 489 254 230 587 273 19.6 20.6 234 313 11.8 284 39.6 523 339] 332 +22
Tent-continual [35]| 53.8 487 255 23 591 274 19.7 209 235 31.8 11.8 279 39.9 50.9 33.8] 332 +22
CoTTA [36] 550 513 258 241 592 289 214 21.0 247 349 11.7 317 40.4 557 35.6| 348 +0.6
VDP [10] 548 512 256 242 59.1 288 21.2 205 233338 7.5 11.7 32.0 51.7 352| 320 +3.4
Ours (proposed) 50.1 407 22,0 212 452 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 347 271 273 +8.1

In this section, we expand upon the classification results presented in our submission by providing a
details of fine-grained performance. We assess the error rates across fifteen corruption types to gain
deeper insights. To be specific, we augment the information provided in Table 2 of our submission
with the additional details presented in Table[5|and[6] These tables offer a comprehensive view of the
performance of our approach in addressing the CIFAR-10-to-CIFAR-10C and CIFAR-100-to-CIFAR-
100C CTTA scenarios, respectively.
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7 Main ChecKklist

Claims: The abstract, introduction, and conclusion effectively convey the main claims of the paper,
accurately reflecting its contributions and scope. The claims put forth in the paper align with both
theoretical and experimental findings, ensuring that the extent of generalization expected from the
results is appropriately conveyed. Furthermore, the introduction and conclusion clearly outline the
paper’s contributions, important assumptions, and limitations, leaving no room for ambiguity.

Code Of Ethics: After thoroughly reviewing the Neur[PS Code of Ethics
(https://neurips.cc/public/EthicsGuidelines), I have ensure that our research adheres to its
principles and guidelines.

Broader Impacts: I have conscientiously considered the potential societal impacts of our work,
including any potential risks associated with malicious or unintended uses, as well as negative
applications. I strive to minimize any adverse consequences and ensure that our research is conducted
responsibly.

Limitations: In the last section of our submission, I have thoroughly documented the limitations
inherent in our work.

Experiments: I will promptly provide the necessary code, data, and comprehensive instructions to
ensure the reproduction of our main experimental results.

Training Detail and Compute: I provide explicit descriptions of all the training details in imple-
mentation details that are unique to this work. For other aspects, we closely adhere to previously
published work, following their established methodologies and specifications.
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