
Supplementary Material: Learning Generalized Gumbel-max Causal
Mechanisms

A Diagrams of Gadget 1 and Gadget 2

Figure 3: Diagram of Gadget 1 applied to an observed distribution p(x) and counterfactual distribution
q(x), resulting in a coupled pair of observations. Note that � is transposed.

Figure 4: Diagram of Gadget 2 applied to an observed distribution p(x) and counterfactual distribution
q(x), resulting in a coupled pair of observations. Note that �(z), z, and �(x) are shared.
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B Proof of expected difference of costs equation for Gumbel-max SCM

In this section we show that
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Here G2|y is the Gumbel distribution with location log l(2)k conditioned on the event that y is the
maximal argument. We start by observing that
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Combining these terms yields the desired equation.

C Probability of x = y in Gumbel-max Coupling

Proposition 3. The probability that x = y = i in a Gumbel-max coupling is 1

1+
P

j 6=i max( p(j)
p(i) ,

q(j)
q(i) )

.

Proof. The event that x = y = i is equivalent to

log p(i) + �(i) > log p(j) + �(j) for all j 6= i and (17)
log q(i) + �(i) > log q(j) + �(j) for all j 6= i. (18)

Or equivalently,

�(i) > log p(j)� log p(i) + �(j) for all j 6= i, and (19)
�(i) > log q(j)� log q(i) + �(j) for all j 6= i. (20)

Only one inequality per j can be active, so we can combine to get the equivalent event

�(i) > logmax(
p(j)

p(i)
,
q(j)

q(i)
) + �(j) for all j 6= i. (21)

By the Gumbel-max trick, the probability of this event is a softmax 1

1+
P

j 6=i max( p(j)
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q(j)
q(i) )

.
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D Suboptimality of Gumbel-max Couplings

Corollary 3. Gumbel-max couplings are not maximal couplings. In particular, they are suboptimal
when
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Proof. The probability that x = y = i in a maximal coupling is min(p(i), q(i)). Note that we can
rewrite
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Comparing this expression to Proposition 1, this means Gumbel-max couplings are suboptimal when
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E Constant Factor Approximation of Gumbel-max Couplings

Corollary 4. If the Gumbel-max coupling assigns probability ↵ to the event that x = y, then the
probability that x = y under the maximal coupling is at most 2↵.

Proof. First expand out the above equations and replace 1 with p(i)
p(i) or q(i)
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Then we can prove the bound, leveraging the fact that all p and q are positive:
P

j max(p(j)p(i) ,
q(j)
q(i) )

max(
P

j
p(j)
p(i) ,

P
j

q(j)
q(i) )


P

j
p(j)
p(i) +

P
j

q(j)
q(i)

max(
P

j
p(j)
p(i) ,

P
j

q(j)
q(i) )


2max(

P
j

p(j)
p(i) ,

P
j

q(j)
q(i) )

max(
P

j
p(j)
p(i) ,

P
j

q(j)
q(i) )

= 2. (28)

Since this is true for each i, it implies that the total probability of x = y in the maximal coupling is at
most twice that of the Gumbel-max coupling.

F Proofs of Impossibility of Maximal Couplings

Proposition 4. Let ⌦ be a probability space with measure µ, and Fp : ⌦ ! {1, 2, 3} be a family of
functions, indexed by a marginal distribution p 2 �3 over three choices, that maps events u 2 ⌦
into three outcomes. Let F�1

p (i) = {u 2 ⌦ : Fp(u) = i}. Then the following cannot both be true:

1. F assigns correct marginals, i.e.

µ(F�1
p (1)) = p1, µ(F�1

p (2)) = p2, µ(F�1
p (3)) = p3. (29)

2. µ(F�1
p (i) \ F�1

q (i)) = min(µ(F�1
p (i)), µ(F�1

q (i))) for all p, q, i. Note that this implies
F�1
q (i) = F�1

p (i) whenever qi = pi, except possibly on a set of measure zero.
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Proof. Suppose F satisfies both. Let

A12 = F�1
[ 12 ,

1
2 ,0]

(1), B12 = F�1
[ 12 ,

1
2 ,0]

(2), C13 = F�1
[ 12 ,0,

1
2 ]
(3),

A13 = F�1
[ 12 ,0,

1
2 ]
(1), B23 = F�1

[0, 12 ,
1
2 ]
(2), C23 = F�1

[0, 12 ,
1
2 ]
(3),

From 1, all of these sets have measure 1
2 , and from 2, we know A12 = A13, B12 = B23, C13 = C23.

Also, A12 t B12 = A13 t C13 = ⌦, so we must have B12 = C13. But then B12 = B12 t C13 =
B23 t C23 = ⌦ and so µ(⌦) = 1

2 , which is impossible since µ(⌦) = 1.

Proposition 5. There is no reparameterization algorithm f✓ that takes logits l and a sample u of
noise, and deterministically transforms u into a sample from exp l, such that when given any two
distributions p and q and using shared noise u, the joint distribution of samples is always a maximal
coupling of p and q.

Proof. Suppose such an algorithm existed. Choose ⌦ = RD with the appropriate measure µ, and let
Fp(u) = f✓(u, log p). By assumption, the algorithm must satisfy 1, so there must be some p, q and i
that do not satisfy 2. But then f✓ does not produce a maximal coupling between p and q: in particular
we must have ⇡✓(i, i) 6= min(p(i), q(i)).

G Sampling from counterfactual distributions in Gadget 1

To use the gadget in a counterfactual setting, we need to condition on an outcome x(obs) and then
draw a counterfactual sample of y. As in the counterfactual sampling algorithm for Gumbel-max
couplings [Oberst and Sontag, 2019], we rely on top-down Gumbel sampling [Maddison et al., 2014],
but here we require a slightly more elaborate two-step construction. Due to properties of Gumbels,
we know that [�1(p)]x ⇠ Gumbel(log

P
z ⇡✓(x, z|p)). We can then sample the �1(p) conditioned

on x(obs) being the argmax using top-down sampling. Next, using the independence of the argmax
and max, we can independently sample z⇤x = argmaxz �x,z + log ⇡✓(x, z|p) for each x by sampling
from the distribution ⇡✓(x|p) =

P
z ⇡✓(x, z|p). Finally, we combine [�1(p)]x (the maximum over z)

and z⇤x (the argmax) using top-down sampling to obtain the values of �x,z . The result is a posterior
sample of the full K ⇥K matrix �x,y of exogenous Gumbel noise that is consistent with the behavior
policy. To get a counterfactual sample, transpose the �x,z’s and run the q gadget forward to sample y.

H Proof that the accept-reject correction in Gadget 2 produces the desired
marginals

Here we show that the correction step described in Section 5.2 produces the correct marginals. We
start by rewriting the correction in terms of possibly unnormalized log probabilities l, for which
p(x) / exp lx. Note that we omit the normalization constant in the definition of cx (writing exp lx
instead of p(x) = exp lxP

x0 exp lx0
), as it turns out to be unnecessary for ensuring correctness.

X

x
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z Ax,z
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x Ax,zcx
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+

✓
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exp lxP
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.

We now show that defining ⇡✓(x|z, l) in this way produces samples from the appropriate distribution.

Proposition 6. ⇡✓(z)⇡✓(x|z, l) has the correct marginals, i.e.

X

z

⇡✓(z)⇡✓(x|z, l) =
exp lxP
x0 exp lx0

. (30)
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Proof. Expanding the right hand side,
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We conclude that
X
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as desired.

I Experiments details

In all of our experiments we parameterize the two gadgets using multilayer perceptrons with two
hidden layers of size 1024. Gadget 1 containes two sets of parameters, one for ⇡x,z(p) and the other
for ⇡y,z(q). In gadget 2, for the last layer, we hold ⇡✓(Z) fixed as a uniform distribution over 20
latent causes. We used the Adam optimizer [Kingma and Ba, 2014] on the loss g. During training,
we fix the softmax relaxation temperature to 1.

The gadgets were implemented in Jax and PyTorch frameworks [Bradbury et al., 2018, Paszke et al.,
2019] and were trained on Nvidia GeForce RTX 2080 GPU.

Minimizing variance over random logits For the first part of the experiment, we started by tuning
learning rate for each gadget between 1e-5 and 1e-2 in six steps, training for 5000 iterations using a
single random seed. We then selected the best learning rate for each condition (“independent” and
“mirrored”), and repeated training with this learning rate for five additional random seeds, training
for 50,000 iterations. We computed gl(1),l(2)(x, y) = (x� y)2 over random pairs (p, q) in batches of
64 pairs and 16 drawn samples (x, y) for each pair. We then evaluated on a set of 10,000 hold-out
pairs (p, q) for each random seed, and reported the standard deviation across the five seeds. (For
the non-learned baselines, which are deterministic, this variance is instead over five independent
evaluation sets.)

For the second part of the experiment, we trained the gadgets for 48,000 steps. We then evaluated on
10 different reward realizations while we trained the gadgets from scratch in each trial, averaging
variance across 2,000 samples per pair.
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(a) Loss vs noise (b) Optimal (c) Ours (d) Gumbel-max

Figure 5: Maximal coupling experiments with additional visualization. (a) When the training
distribution is focused, we learn a near-maximal coupling. As the distribution becomes more diffuse,
the learned coupling reverts to Gumbel-max. (b) Maximal coupling. (c) Our learned coupling in
low-noise setting (Gadget 2). (d) Gumbel-max coupling.

MDP counterfactual treatment effects We learn the parameters of an MDP by interacting with
the sepsis simulator for 10,000 times across all possible states-actions. Then, the behavior policy
was trained over this MDP using policy iteration algorithm [Sutton et al., 2017], with full access to
all MDP variables including a diabetes flag and glucose levels. The diabetes is present with a 20%
probability, increasing the likelihood of fluctuating glucose levels. The patient is considered dead if
at least three of his vital signs are abnormal, and discharged if all of his vital signs are normal. We set
the rewards for these absorbing states to be -4 and 4 respectively.

Using the trained behavior policy, we draw 20,000 patient trajectories from the simulator with a
maximum of 20 time steps, where the states are projected into a reduced state space of 6 discrete
variables (without diabetes and glucose level). In total, there are 146 categories, including death
and discharge states. Based on them, we learn the parameters of an additional MDP, and train the
target policy over this MDP. In order to get p(s0|s, adoctor), we looked at the projected MDP at the
observed state-action pair. In order to get q = p(s0|s, aintervention), we chose aintervention to be the
argmax over the action space of the target policy.
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