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Abstract
Learning with inaccurate supervision is often en-
countered in weakly supervised learning, and re-
searchers have invested a considerable amount
of time and effort in designing specialized algo-
rithms for different forms of annotations in in-
accurate supervision. In fact, different forms of
these annotations share the fundamental charac-
teristic that they all still incorporate some portion
of correct labeling information. This common-
ality can serve as a lever, enabling the creation
of a cohesive framework designed to tackle the
challenges associated with various forms of anno-
tations in learning with inaccurate supervision. In
this paper, we propose a unified label refinement
framework named ULAREF, i.e., a Unified LAbel
REfinement Framework for learning with inaccu-
rate supervision, which is capable of leveraging
label refinement to handle inaccurate supervision.
Specifically, our framework trains the predictive
model with refined labels through global detec-
tion of reliability and local enhancement using an
enhanced model fine-tuned by a proposed consis-
tency loss. Also, we theoretically justify that the
enhanced model in local enhancement can achieve
higher accuracy than the predictive model on the
detected unreliable set under mild assumptions.

1. Introduction
Due to the time-consuming and expensive nature of acquir-
ing large-scale high-quality data, the necessity for weakly
supervised learning has emerged in various real-world sce-
narios. These scenarios include online queries (Liu et al.,
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2011), crowdsourcing (Arpit et al., 2017; Ibrahim et al.,
2023), ecoinformatics (Tang & Zhang, 2017), multimedia
content analysis (Zeng et al., 2013), among others, where
handling inaccurate supervision is a challenging problem.
Typical learning paradigms related to inaccurate supervision
encompass learning with noisy labels (Natarajan et al., 2013;
Liu & Tao, 2016), where instances may be annotated with
incorrect labels replacing the correct ones, and learning with
partial labels (Jin & Ghahramani, 2002; Nguyen & Caruana,
2008), where instances are annotated with a candidate label
set that hides the correct label. Under these paradigms, char-
acterized by mistakes or ambiguity, the predictive model
tends to overfit to inaccurate annotations, adversely affecting
its generalization ability.

To address this challenge, a number of approaches have
been proposed. For noisy labels, selection-based strategies
(Jiang et al., 2018; Chen et al., 2019; Li et al., 2020) back-
propagate the loss for the clean label of an instance obtained
by a sample selection algorithm to remove the mistakes in
inaccurate annotations. When dealing with partial labels,
identification-based strategies (Zhang et al., 2016a; Lv et al.,
2020; Zhang et al., 2021) focus on iteratively identify one
label from the candidate label set as the correct label to
reduce the ambiguity in inaccurate annotations. Besides,
to learn from crowdsourcing, correction-based strategies
(Zhang et al., 2016b; Ibrahim et al., 2019; Ibrahim & Fu,
2021) correct and integrate labels via estimating the annota-
tors’ confusion parameters, which attempts to alleviate both
mistakes and ambiguity in inaccurate annotations.

Previously, researchers tend to devote significant time and
effort to develop specialized learning algorithms for various
forms of annotations under inaccurate supervision. In fact,
different forms of these annotations share the fundamental
characteristic that they all still incorporate some portion of
correct labeling information. This commonality can serve
as a lever, enabling the creation of a cohesive framework
designed to tackle the challenges associated with various
forms of annotations in learning with inaccurate supervision
and avoid designing specialized approaches that consume a
substantial amount of resources.

In this paper, we propose a unified label refinement frame-
work named ULAREF, i.e., a Unified LAbel REfinement
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Framework for learning with inaccurate supervision, where
we optimize our predictive model with the empirical risk
estimator using our refined labels. We consider label re-
finement with the outputs of the predictive model from two
aspects. First, we globally detect the reliability of the predic-
tion made by the predictive model. The training instance set
is divided into the detected reliable set, the major instances
of which the model predicts correctly, and unreliable set,
the major instances of which the model predicts incorrectly.
Second, we locally enhance the output of the predictive
model on the detected unreliable set via an enhanced model.
We initialize an enhanced model with the predictive model,
which is then fine-tuned on the detected reliable set and the
neighbourhood of the set with the proposed consistency loss
to perform regularization. Upon fine-tuning, we incorporate
the outputs of the enhanced model and predictive model to
improve the reliability of the overall label refinement.

Besides, we also provide a theoretical analysis on the pro-
cess of the local enhancement in our framework. By re-
sorting to a cluster property on instance distribution that
an instance shares its correct label with sufficient instances
in its neighborhood, we deduce a theorem demonstrating
that our enhanced model is able to obtain higher accuracy
than the predictive model on the detected unreliable set
if it has sufficient consistency on the reliable set, i.e., the
consistency between the predictions of the enhanced model
and the predictive model on the reliable set, as well as the
consistency between the predictions of the enhanced model
on the reliable set and the neighborhood of the reliable set.
Our contributions are summarized as follows:

• Practically, we propose a unified label refinement frame-
work named ULAREF for inaccurate supervision, which
trains the predictive model with refined labels via globally
detecting the reliability of the supervision signal provided
by the predictive model and locally enhancing supervi-
sion signal with a proposed consistency loss.

• Theoretically, we prove that the enhanced model in the
process of local enhancement could achieve higher accu-
racy than the predictive model on the detected unreliable
set under mild assumptions, which guarantees the im-
provement on the overall reliability of label refinement.

Experimental results on two typical paradigms of inaccurate
supervision, i.e., noisy label learning (NLL) and partial
label learning (PLL), demonstrate the effectiveness of our
proposed framework compared with the baselines under the
respective settings.

2. Related Work
There are two main aspects of inaccurate supervision, i.e.,
mistakes and ambiguity. Hence, in this section, we briefly re-
view related works in two typical learning paradigms about

inaccurate supervision, i.e., NLL and PLL, under the set-
tings of which we also conduct the corresponding experi-
ments introduced in Section 4.

Noisy labels are caused by mistakes of correct labels dur-
ing annotating. To reduce its impact, loss-based strategies
(Ghosh et al., 2017b; Zhang & Sabuncu, 2018a; Ma et al.,
2020; Yao et al., 2020; Englesson & Azizpour, 2021) con-
sider the loss about noisy labels from the aspects of ro-
bustness (Ghosh et al., 2017a; Wang et al., 2019; Zhang &
Sabuncu, 2018b) and correction (Patrini et al., 2017a; Gold-
berger & Ben-Reuven, 2017). Architecture-based strategies
(Srivastava et al., 2014; Chen & Gupta, 2015; Goldberger &
Ben-Reuven, 2016; Bekker & Goldberger, 2016; Han et al.,
2018a; Yao et al., 2018) aim to incorporate a noise adapta-
tion layer atop a deep neural network (DNN) for learning
the label transition process or design a dedicated architec-
ture to accommodate a broader range of label noise types.
Selection-based strategies (Malach & Shalev-Shwartz, 2017;
Jiang et al., 2018; Han et al., 2018b; Yu et al., 2019; Li et al.,
2020; Zhou et al., 2020) backpropagate the loss associated
with the clean label of an instance determined by a sample
selection algorithm. Regularization-based strategies (Jenni
& Favaro, 2018; Tanno et al., 2019; Hendrycks et al., 2019;
Wei et al., 2021b) prevent a DNN from overfitting false-
labeled instances by imposing certain training restrictions.

Partial labels increase ambiguity of labeling though avoiding
the missing of the correct label. To perform disambiguation,
mainstream approaches could be divided into average-based
strategies and identification-based strategies. Average-based
strategies (Hüllermeier & Beringer, 2006; Cour et al., 2011;
Zhang & Yu, 2015) treat each candidate label of the instance
equally. Recently, (Lv et al., 2023) propose a theoretically
grounded framework for this research line based on an aver-
age partial-label loss family. Identification-based strategies
(Jin & Ghahramani, 2002; Liu & Dietterich, 2014; Zhang &
Yu, 2015; Zhang et al., 2016a), which treat the correct label
as a latent variable and aim to identify it from the candidate
label set, have been concentrated and attained tremendous
improvements. (Lv et al., 2020; Feng et al., 2020) simply
use the prediction of predictive model as the label infor-
mation to put more weights on more possibly correct label.
(Zhang et al., 2021; Wang et al., 2022) leverage the inner
representation of the predictive model to identify the correct
label. (Wu et al., 2022) incorporate the outputs of the pre-
dictive model on different data augmentations to form the
label distribution. (Xu et al., 2023) set a threshold on the
output of the predictive model to eliminate incorrect labels
to obtain a purer candidate set.

Researchers before have devoted significant time and effort
to develop specialized learning algorithms capable for di-
verse forms of annotations under inaccurate supervision. In
fact, different forms of these annotations share the funda-
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mental characteristic that they all still incorporate some por-
tion of correct labeling information. For instance, in NLL,
there still exists some samples annotated by correct labels
though some samples annotated by incorrectly. In PLL, it is
known that correct labels are certain to be in the annotated
candidate labels. In this paper, we leverage the commonality
as a lever and propose a unified label refinement framework
to address these various forms of inaccurate annotations to
avoid manually designing specialized approaches, which
costs a substantial amount of resources.

3. Proposed Method
First of all, we briefly introduce some necessary notations.
Let X = Rq be the q-dimensional instance space and
Y = {1, 2, ..., c} be the label space with c class labels.
The training dataset with inaccurate supervision is denoted
by D = {(xi, li)|1 ≤ i ≤ n}, where xi ∈ X denotes the
i-th q-dimensional instance associated with its correct label
yxi ∈ Y , and the logical vector li = [l1i , l

2
i , . . . , l

c
i ]

⊤ de-
notes the annotation for xi. The j-th element of li represents
whether the label j is one of the annotated labels, i.e., lji = 1

if j is a label annotated to xi, otherwise lji = 0. For noisy
labels where mistakes exist, ∀1 ≤ i ≤ n,

∑c
j=1 l

j
i = 1, and

∃1 ≤ i ≤ n, l
yxi
i ̸= 1. For partial labels where ambiguity

exists, ∀1 ≤ i ≤ n,
∑c

j=1 l
j
i > 1, and l

yxi
i = 1. The objec-

tive of learning with inaccurate supervision is to derive a
multi-class predictive model f from D capable of assigning
the correct labels to unobserved instances.

3.1. Overview

In our label refinement framework, we optimize our predic-
tive model using the empirical risk estimator with refined
labels. Label refinement in our approach involves two key
aspects. Initially, we globally detect prediction reliability, di-
viding the training instances into a detect reliable set (mainly
composed of correctly predicted instances) and unreliable
one (mainly composed of incorrectly predicted instances).
Subsequently, we locally enhance the predictive model’s out-
put on the detected unreliable set using an enhanced model.
The enhanced model, initialized with the predictive model,
undergoes fine-tuning on the detected reliable set and its un-
reliable neighborhood, employing the proposed consistency
loss for regularization. After fine-tuning, we integrate the
outputs of both the enhanced model and predictive model to
improve the overall label refinement’s reliability.

Moreover, we theoretically analyzes the local enhancement
process. Leveraging a cluster property on instance distri-
bution, where an instance shares its correct label with suf-
ficient instances in its neighbours, we establish a theorem
demonstrating that the enhanced model can achieve higher
accuracy than the predictive model on the detected unreli-

able set if it exhibits adequate consistency on the reliable
set. This consistency includes alignment between predic-
tions of the enhanced model and the predictive model on the
reliable set, as well as alignment between predictions of the
enhanced model on the reliable set and its neighborhood.

3.2. The ULAREF Framework

3.2.1. OPTIMIZATION OBJECTIVE

In this paper, we model the predictive model as a DNN
with softmax as the final layer, denoted as f : X 7→
∆c−1, where ∆c−1 represents the c-dimensional simplex.
We optimize our predictive model f by using the following
empirical risk estimator R̂(f) with refined labels:

R̂(f) = − 1

n

n∑
i=1

c∑
j=1

rji log fj(xi), (1)

Here, it is essential to note that the refined label of the
instance xi, denoted by ri = [r1i , r

2
i , . . . , r

c
i ] ∈ [0, 1]c, can

be considered as a kind of post-processed results of the
outputs of predictive model fand enhanced model g in the
process of local enhancement, which could be computed at
epoch t as follows:

r
[t]
i =

(1− λ)r
[t−1]
i + λ((1−mi)f(xi) +mig(xi))

||(1− λ)r
[t−1]
i + λ((1−mi)f(xi) +mig(xi))||1

,

(2)
where λ ∈ [0, 1] is a constant weighting the supervision
information provided by the original dataset and the models,
and || · ||1 denotes the L1-norm of a vector used to perform
normalization here. We initialize r

[0]
i = li to start our

optimization. Besides, m = [m1,m2, . . . ,mn] is a mask to
identify the instances in a detected unreliable set Du

x during
the process of local enhancement below. For each instance
xi, the corresponding mask value mi is decided by:

mi =

{
β, ifxi ∈ Du

s ,

0, otherwise,
(3)

where β ∈ [0, 1] is a trade-off for supervision information
between the predictive model and enhanced model when the
instance xi exists in the detected unreliable set Du

s .

3.2.2. GLOBAL DETECTION

Since the label refinement depends on the output of the pre-
dictive model, our first operation in the framework ULAREF
is to perform global detection on its reliability, which means
that we should decide which instance the predictive model
may predicts correctly and which instance the predictive
model may predicts incorrectly, and then divide our training
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Algorithm 1 ULAREF Algorithm

Require: The training dataset D = {(xi, li)|1 ≤ i ≤ n},
iteration T ;

1: for t = 1, . . . , T do
2: Initialize the detected reliable set Dr

x = ∅ and unreli-
able set Du

x = ∅;
3: if Ts ≤ t ≤ Te then
4: Perform global detection to divide the training in-

stance set Dx into the detected reliable set Dr
x and

unreliable set Du
x according to Eq. (6) and (8);

5: Perform local enhancement via initializing the en-
hanced model g = f and fine-tuning the enhanced
model g with the loss function Eq. (9);

6: end if
7: for each instance xi in Dx do
8: Perform label refinement to generate the refined

label ri for xi according to Eq. (2);
9: end for

10: Train the predictive model f on D with assistence of
refined labels according to Eq. (1);

11: end for
Ensure: The predictive model f .

instance set Dx = {x|(x, l) ∈ D} into the detected reliable
one Dr

x and detected unreliable one Du
x.

Specifically, ULAREF initiates the global detection from the
epoch Ts to ensure that the predictive model f possesses
some capability to detect the instances with reliable and
unreliable predictions from the predictive model f , and
ends the global detection at the epoch Te. This means that
if t < Ts or t > Te, we keep Dr

x = Du
x = ∅.

To identify the reliable instance set Dr
x from the training

instance set Dx = {x|(x, l) ∈ D}, we introduce an entropy-
based uncertainty score Ξi for each training instance xi as
the criterion to determine whether xi belongs to the reliable
set Dr

x as follows:

Ξi = −
c∑

j=1

f(xi) log f(xi). (4)

Inspired by (Li et al., 2020), we utilize a two-component
one-dimensional Gaussian Mixture Model (GMM) to char-
acterize the distribution of per-instance scores, i.e.,

π = GMM([Ξ1, . . . ,Ξn]). (5)

Here, π = [π1, π2, . . . , πn] ∈ [0, 1]n is a vector which has
been normalized using min-max normalization, and πi can
be interpreted as the likelihood that the predictive model
predicts correctly on instance xi. We introduce a threshold

τ(t) (Ts ≤ t ≤ Te) to select instances for constructing the
detected reliable set Dr

x, i.e.,

Dr
x = {xi|πi ≥ τ(t),xi ∈ Dx}, (6)

where
τ(t) = τs − (t− Ts)

τs − τe

Te − Ts
(7)

linearly decreases during the training process within a rea-
sonable range (mini πi ≤ τe < τs ≤ maxi πi). Besides, we
typically set τe to max(10−6,mini πi) in our framework.
Upon obtaining the detected reliable set, the detected unreli-
able set is decided by:

Du
x = Dx \ Dr

x. (8)

3.2.3. LOCAL ENHANCEMENT

After finishing the global detection, we consider how to
enhance the supervision information provided by the pre-
dictive model on the detected unreliable set. We employ an
enhanced model g and initialize it by g = f and propose
the following loss function to fine-tuning it:

L =
κ

|Dr
x|

∑
xi∈Dr

x

ℓc(g(xi), f(xi))+

1− κ

|Dr
x|

∑
xi∈Dr

x

1

|B̂(xi)|

∑
xj∈B̂(xi)

ℓc(g(xi), g(xj)),
(9)

where κ ∈ [0, 1] acts as a trade-off between the two terms,
ℓc is a consistency loss, and B̂(xi) denotes the approxi-
mate neighborhood for the given instance xi. In the imple-
mentation of our framework, we set the consistency loss
ℓc(·|·) = KL(·||·), and inspired by (Chidambaram et al.,
2022), we select B̂(xi) for the instance xi as follows:

B̂(xi) = {x′|x′ = ς ′ · xi + (1− ς ′) · NN(xi,Du
x),

ς ′ = max(ς, 1− ς), ς ∼ Beta(σ, σ)},
(10)

where NN(xi,Du
x) = argminx′∈Du

x
||Φ(xi) − Φ(x′)||, σ

is the parameter of Beta Distribution with its value set to 1,
and Φ(·) denotes a feature extractor in the predictive model
f outputting an embedding for an instance. Eq. (9) could be
considered as a variant of manifold regularization (Belkin
et al., 2006; Kamnitsas et al., 2018; Luo et al., 2018) with
mix-up (Zhang et al., 2017).

Upon completing the fine-tuning, we integrate the super-
vision information provided by the enhanced model g for
training each instance xi in a moving-average style through
the mask vector m in Eq. (1).

Overall, we iteratively perform global detection and local
enhancement in our framework, thereby improving the reli-
ability of the label refinement and the performance of the
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predictive model. The algorithmic description of our frame-
work ULAREF is presented in Algorithm 1.

3.3. Theoretical Analysis

We conduct theoretical analysis to demonstrate the feasibil-
ity of local enhancement in our framework ULAREF, i.e.,
whether the operation can improve the reliability of label
refinement. The analysis builds upon a compact set S with
the associated probability measure P supported on the in-
stance space X . Our assumptions and proofs are motivated
by the previous work (Wei et al., 2021a) but extended to a
different problem and framework.

Definition 1. We say that P exhibits the (α, ϵ)-cluster prop-
erty on a set S ⊂ X if, for any V ⊂ S with P (V) > α, the
following condition holds:

P (N ⋆(V) \ S)− P (V) ≥ ϵ. (11)

Here, N ⋆(V) = {x|∃x′ ∈ V,B(x)∩B(x′) ̸= ∅, and yx =
yx′} denotes the neighborhood of V sharing the same cor-
rect label with the corresponding instance in V , where
B(x′) = {x|µ(x,x′) ≤ r} represents a neighborhood
of the instance x′ given some measure µ of the instance
space with the distance r. Definition 1 means that any suf-
ficiently large subset V of S, i.e., P (V) > α, will have
a sufficiently large neighborhood outside of S sharing the
same correct label with the corresponding instance in V , i.e.,
P (N ⋆(V) \ S)− P (V) ≥ ϵ.

Let the prediction label of the model f be denoted by
h(x) = argmaxj∈Y fj(x) for a given instance x. Then for
the completely unreliable set where the predictive model f
always makes incorrect predictions, i.e., Ef = {x|h(x) ̸=
yx}, we make the following assumption:

Assumption 1. There exist constants α, ϵ > 0, and P ex-
hibits the (α, ϵ)-cluster property on the set Ef .

Besides, we introduce a mild assumption regarding the pre-
diction consistency of the enhanced model on the completely
reliable set Ēf = {x|h(x) = yx}, where the predictive
model always makes correct predictions, considering two
aspects. Firstly, the prediction of the enhanced model should
not deviate significantly from that of the predictive model.
Secondly, the prediction for an instance by the enhanced
model should closely align with the predictions for the neigh-
borhood of the instance.

Assumption 2. For the predictions of the enhanced model
g on Ēf , there exists a constant ε ≥ ϵ such that the consis-
tency with the predictions of the predictive model f and its
predictions on the neighborhood is bounded by the correct
rate of the predictive model, i.e.,

P (Ēf )− P (If,g ∩ Jg ∩ Ēf ) ≤ ε. (12)

Here, we define If,g = {x|h(x) = h′(x)} as the set
where the prediction of the enhanced model g, denoted
by h′(x) = argmaxj∈Y gj(x), is the same as that of the
predictive model f , i.e., h(x). Additionally, let Jg =
{x|∀x′ ∈ B(x), h′(x) = h′(x′)} denote the set where
the prediction of the enhanced model g on a given instance
coincides with its predictions in the neighborhood. Assump-
tion 2 explicitly articulates the aforementioned consistency
by quantifying the gap between P (If,g ∩ Jg ∩ Ēf ) and
P (Ēf ), assuming the existence of its upper bound ε. In our
framework ULAREF, this upper bound manifests in the loss
function for fine-tuning the enhanced model. Subsequently,
let Eg = {x|h′(x) ̸= yx} denote the instance set where
the enhanced model g always predicts incorrectly, and we
present our main theoretical result related to improvement
of label refinement.

Theorem 1. Under Assumption 1 and Assumption 2, if
for the detected unreliable set U , there exists a constant
δ > α+ 3

2P (U)− P (Jg ∩ U)− 1
2P (If,g ∩ U), such that

the error of f on the detected unreliable set U has a lower
bound, i.e., P (Ef ∩ U) ≥ δ, we have

P (Eg ∩ U) < P (Ef ∩ U). (13)

The detailed proof is available in Appendix A.1. Theorem
1 illustrates that our enhanced model g could achieve a
higher accuracy on the detected unreliable set U compared
to the predictive model f . The lower bound to the error
of f on the detected unreliable set U , i.e., P (Ef ∩ U) ≥ δ
explains why we perform global detection to separate an
detected unreliable set from the training instance set instead
of random selection. Meanwhile, P (Eg ∩ U) < P (Ef ∩ U)
indicates that the output of the enhanced model g could
then be used to perform local enhancement on that of the
predictive model f on the detected unreliable set.

4. Experiments
In this section, we empirically validate the effectiveness
of our framework on two typical paradigms of inaccurate
supervision: noisy label learning (NLL) and partial label
learning (PLL), both of which are investigated on the cor-
rupted benchmark datasets and real-world datasets. Our
code is available at https://github.com/palm-ml/ularef.

4.1. Noisy Label Learning

4.1.1. DATASETS

For noisy labels, we initiate by randomly selecting a subset
of training instances based on the noisy ratio η. Subse-
quently, for each selected training instance, we replace its
correct label with another possible label to create a noisy
label. In the symmetric setting, the noisy label can be any
label except the correct one, while in the asymmetric setting,
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Table 1: Classification accuracy (mean std) of each comparing approach on benchmark datasets with noisy labels

Dataset CIFAR-10 CIFAR-100
Type Symmetric Asymmetric Symmetric Asymmetric
ι 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4

CE 85.75 0.58• 79.50 0.39• 60.89 1.37• 83.59 0.70• 59.97 0.31• 44.81 1.33• 19.95 0.80• 43.34 0.34•
MIXUP 92.80 0.31• 86.66 0.44• 69.01 3.34• 87.48 0.38• 67.41 0.78• 56.08 0.52• 31.26 1.33• 49.09 0.77•

CO-TEACHING 92.25 0.11• 88.81 0.25• 57.65 2.03• 84.91 1.05• 62.14 0.89• 45.38 1.26• 17.53 1.39• 42.93 0.78•
DIVIDEMIX 95.69 0.20◦ 93.97 0.18• 90.82 0.56• 92.23 0.16 75.57 0.26• 71.44 0.29• 50.43 1.13• 55.57 0.39•

ELR 93.17 0.20• 91.04 0.31• 78.18 1.02• 87.50 0.66• 72.44 0.25• 64.71 0.40• 25.20 1.06• 72.35 0.53•
ELR+ 95.13 0.17 94.37 0.11 91.11 0.37 91.88 0.45• 70.78 0.34• 68.29 0.53• 53.98 0.38• 69.94 1.64•

ADACORR 90.42 0.37• 88.79 0.24• 55.42 0.31• 82.45 0.77• 65.88 0.67• 52.85 0.89• 32.43 0.79• 49.21 0.76•
PROMIX 94.88 0.09• 93.23 0.13• 83.11 0.43• 89.83 0.59• 75.43 0.32• 71.64 0.47• 43.35 0.43• 72.13 0.65•

SOP 94.02 0.22• 93.01 0.22• 90.11 0.66• 90.46 1.10• 73.44 0.42• 70.73 0.55• 54.03 0.23• 69.53 0.68•
ULAREF 95.28 0.06 94.31 0.13 91.47 0.24 92.56 0.28 76.16 0.27 72.39 0.21 54.72 0.42 76.11 0.25

Table 2: Classification accuracy (mean ± std) of comparing algo-
rithms on the real-world datasets with noisy labels.

Dataset Clothing1M Webvision

CE 70.11± 0.18%• 71.96± 0.68%•
MIXUP 71.21± 0.18%• 72.14± 0.24%•

CO-TEACHING 71.86± 0.50%• 69.54± 0.71%•
DIVIDEMIX 74.42± 0.27%• 77.37± 0.27%•

ELR 72.98± 0.19%• 76.65± 0.57%•
ELR+ 74.19± 0.10%• 75.91± 0.26%•

ADACORR 73.71± 0.23%• 72.76± 0.63%•
PROMIX 74.18± 0.27%• 76.12± 0.34%•

SOP 71.35± 0.53%• 73.67± 0.90%•
ULAREF 74.78± 0.14 77.80± 0.24

only labels similar to the correct label (e.g., dog and cat) are
considered potential noisy labels. The noisy ratio ι takes
values from the set {0.2, 0.5, 0.8} for the symmetric setting
and 0.4 for the asymmetric setting, as outlined in (Patrini
et al., 2017b). We split 10% from the training dataset as the
validation set.

Additionally, we incorporate two large-scale datasets with
real-world noisy labels, namely Clothing1M (Xiao et al.,
2015) and Webvision (Li et al., 2017).

4.1.2. BASELINES

The performance of ULAREF for noisy labels is compared
against nine baselines:

• CE, which directly uses standard cross-entropy loss to
train the predictive model in a batch.

• MIXUP (Zhang et al., 2018), which trains the predictive
model using the mixup technique.

• CO-TEACHING (Han et al., 2018b), which trains two
models simultaneously, and makes them teach each other

given every mini-batch.

• DIVIDEMIX (Li et al., 2020), which treats noisy instances
as unlabeled data and utilizes the strategy (Berthelot et al.,
2019) with label co-refinement and co-guessing.

• ELR and ELR+(Liu et al., 2020), which capitalize on early
learning via regularization preventing memorization of
the false labels.

• ADACORR (Zheng et al., 2020), which is theoretically
grounded to correct the noisy labels based on the noisy
classifier prediction.

• PROMIX (Xiao et al., 2023), which carefully selects, dy-
namically expands and maximally uses clean sample sets
under the devised semi-supervised learning framework.

• SOP (Liu et al., 2022), which models label noise by intro-
ducing an additional sparse over-parameterization term
and differentiates the underlying corruptions.

We train a PreActResNet-18 for 200 epochs on CIFAR-10
and CIFAR-100, pretrained ResNet-50 for 15 epochs on
Clothing1M, and Inception-ResNet-V2 for 100 epochs
on Webvision. The training setup involves stochastic
gradient descent (SGD) optimization with momentum set
to 0.9, weight decay chosen from {10−4, 5 × 10−4}, and
batch size selected from {32, 64, 128}. Learning rates are
chosen from the orders of magnitude {10−3, 10−2, 10−1}.
Common data augmentations, including Random Horizontal
Flipping, Random Cropping, Cutout (Devries & Taylor,
2017), and Auto Augment (Cubuk et al., 2019), are applied.

4.1.3. EXPERIMENTAL RESULTS

Tables 1 and 2 present the classification accuracy of each
comparative approach for noisy labels on benchmark and
real-world datasets, respectively. To ensure robustness, we
conducted 5 trials with different random seeds, reporting
mean and standard deviation. The optimal results are in-
dicated in bold, with the second-best results underlined.
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Table 3: Classification accuracy (mean std) of each comparing approach on benchmark datasets with partial labels.

Dataset CIFAR-10 CIFAR-100
Type Uniform Instance Uniform Instance
γ 0.3 0.5 0.7 - 0.03 0.05 0.1 -

IDGP 92.07 0.32• 91.04 0.13• 88.37 2.50• 86.43 0.23• 68.19 0.02• 67.68 0.34• 62.39 0.95• 64.38 0.27•
PLCR 93.13 0.15• 91.97 0.25• 89.89 0.28• 86.37 0.38• 66.49 0.23• 65.81 0.64• 62.75 0.42• 64.12 0.23•
PICO 90.70 0.38• 88.93 0.27• 84.99 0.79• 86.16 0.21• 62.54 0.43• 61.03 0.29• 40.99 1.74• 62.98 0.38•
CAVL 87.38 4.00• 72.81 5.57• 52.93 9.87• 59.67 3.30• 57.86 2.43• 46.37 3.55• 25.83 1.71• 52.59 1.01•
LWS 82.94 0.66• 53.41 2.33• 39.70 1.96• 37.49 2.82• 59.10 0.91• 54.31 0.47• 40.49 2.88• 53.98 0.99•

VALEN 89.19 0.49• 88.36 0.30• 87.29 0.43• 86.06 0.33• 66.77 0.99• 65.97 0.87• 65.27 0.18• 62.85 0.56•
CC 87.41 0.38• 85.33 0.58• 81.16 0.53• 79.96 0.99• 65.15 0.61• 64.33 0.50• 62.47 0.72• 62.40 0.84•

PRODEN 89.46 0.30• 88.98 0.29• 87.21 0.42• 86.04 0.21• 65.76 0.74• 65.21 0.60• 64.90 0.29• 62.56 1.49•
ULAREF 93.72 0.06 92.98 0.29 91.13 0.09 87.16 0.10 69.95 0.26 69.63 0.25 67.93 0.24 66.45 0.29

Additionally, •/◦ denotes whether ULAREF is statistically
superior/inferior (pairwise t-test at a 0.05 significance level)
to the compared approach on each dataset. From Tables 1
and 2, ULAREF, we can observe:

• ULAREF always achieves the best performance and sig-
nificantly outperforms the compared NLL baselines on
the benchmark dataset CIFAR-100 and the real-world
datasets Clothing1M and Webvision.

• Notably, ULAREF exhibits a substantial advantage un-
der asymmetric noise on CIFAR-100, and exceeds the
performance of the second-best algorithm by 3.76%.

• While not attaining the best outcome for CIFAR-10
with noisy ratios of 0.2 and 0.5, it consistently secures
the second position.

• Overall, as the complexity of label noise grows, our frame-
work achieves a larger advantage.

4.2. Partial Label Learning

4.2.1. DATASETS

For partial labels, we introduce two types of partial la-
bels: instance-independent and instance-dependent. In the
instance-independent setting, we employ a flipping prob-
ability γ to synthesize candidate labels. Each incorrect
label has the same probability of being flipped as candi-
date labels. The flipping probability γ takes values from
the set {0.3, 0.5, 0.7} for CIFAR-10 and {0.03, 0.05, 0.1}
for CIFAR-100. In the instance-dependent setting, the
flipping probability of each incorrect label is calculated fol-
lowing the methodology in (Xu et al., 2021). Also, 10% of
the training dataset is split for validation.

Moreover, we include five datasets with real-world partial
labels across various domains, including Lost (Cour et al.,
2011), BirdSong (Briggs et al., 2012), MSRCv2 (Liu &
Dietterich, 2012), Soccer Player (Zeng et al., 2013),
and Yahoo!News (Guillaumin et al., 2010). The features

of these datasets are all extracted. For each real-world
PLL dataset, we run the methods with 80%/10%/10%
train/validation/test split.

4.2.2. BASELINES

We compare ULAREF with eight methods handling partial
labeled data well:

• IDGP (Qiao et al., 2023a), which builds the model
upon a decompositional generation process of instance-
dependent partial labels.

• PLCR (Wu et al., 2022), which introduces a consistency
regularization between feature space and label space.

• PICO (Wang et al., 2022), which adds an additional con-
trastive loss term to enhance the disambiguation ability.

• CAVL (Zhang et al., 2021), which leverages the class
activation value for disambiguation.

• LWS (Wen et al., 2021), which weighs candidate labels
and non-candidate labels through a leverage parameter.

• VALEN (Xu et al., 2021), which leverages the variational
inference technique to approximate labels distributions
for instance-dependent partial labels.

• CC (Feng et al., 2020), which derives a classifier-
consistent risk estimator through a transition matrix.

• PRODEN (Lv et al., 2020), which progressively identifies
correct labels through the model output.

We implement these approaches using a 32-layer ResNet
for benchmark datasets and a linear model for real-world
datasets. The optimization involves SGD with momentum
set to 0.9, the batch size is set to 256 and the training epochs
set to 250. Learning rates are selected from the orders of
magnitude {10−2, 10−3}, and weight decay is chosen from
the orders of magnitude {10−3, 10−3, 10−5} based on the
performance on the validation dataset. The data augmen-
tation techniques are applied to the benchmark datasets in
the same manner as that of the noisy label setting. For
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Table 4: Classification accuracy (mean ± std) of comparing algorithms on the real-world datasets with partial labels.

Lost BirdSong MSRCv2 Soccer Player Yahoo!News

IDGP 77.02± 0.82% 74.23± 0.17%• 50.45± 0.47% 55.99± 0.28% 66.62± 0.19%•
CAVL 75.89± 0.42%• 73.47± 0.13%• 44.73± 0.96%• 54.06± 0.67%• 65.44± 0.23%•
LWS 73.13± 0.32%• 51.45± 0.26%• 49.85± 0.49%• 50.24± 0.45%• 48.21± 0.29%•

VALEN 76.87± 0.86%• 73.39± 0.26%• 49.97± 0.43%• 55.81± 0.10% 66.26± 0.13%•
CC 63.54± 0.25%• 69.90± 0.58%• 41.50± 0.44%• 49.07± 0.36%• 54.86± 0.48%•

PRODEN 76.47± 0.25%• 73.44± 0.12%• 45.10± 0.16%• 54.05± 0.15%• 66.14± 0.10%•
ULAREF 77.82± 0.89% 74.72± 0.24% 50.56± 0.39% 55.87± 0.21% 67.12± 0.14%
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Figure 1: Further analysis of ULAREF on CIFAR-100.

real-world PLL datasets, due to the impracticality of im-
plementing data augmentation on extracted features, the
data-augmentation-based approaches PLCR and PICO are
not compared on PLL real-world datasets. We extend the
training epochs to 500 and use a batch size of 100 to maxi-
mize algorithms performance. Additionally, due to that the
correct label will not be exisits in non-candidate labels, we
normalize our refined labels on candidate labels and set the
values on non-candidate labels to zero.

4.2.3. EXPERIMENTAL RESULTS

Tables 3 and 4 display the mean and standard deviation of
classification accuracy for each comparative approach under
five different random seeds on benchmark and real-world
datasets with partial labels. We conclude that:

• ULAREF always ranks first and significantly outperforms
the compared PLL baselines on all the settings of bench-
mark datasets CIFAR-10 and CIFAR-100 and the real-
world datasets BirdSong and Yahoo!News.

• For the real-world datasets Lost, MSRCv2 and Soccer
Player, ULAREF achieves superior or at least compara-
ble performance to other PLL approaches.

• Notably, ULAREF shows more impressive advantage un-
der the settings of CIFAR-100, which is more complex
than CIFAR-10.

4.3. Further Analysis

Figure 1(a) visually presents the comparison of error rates
between the predictive models and the generator on a fixed
unreliable set during the local enhancement process. No-
tably, in the NLL settings with ι = 0.5 on CIFAR-100, the
variation curve of the enhanced model consistently surpasses
that of the predictive model. The maximum difference in
errors between the enhanced and predictive model reaches
up to 7.56%, as indicated in the figure. This observation
underscores the effectiveness of the fine-tuning implementa-
tion on the enhanced model within our framework ULAREF,
which improves the reliability of label refinement.

Furthermore, we conduct sensitivity analyses on key hy-
perparameters, specifically τs for the PLL uniform setting
with γ taking values in 0.03, 0.05, 0.1 on CIFAR-100,
and Ts, Te for the NLL symmetric setting with ι =
0.5 on CIFAR-100. The sensitivity analysis on β
and λ can be found in the Appendix A.3. The
chosen ranges for these hyperparameters are τs from
{0.1, 0.3, 0.5, 0.7, 0.9}, Ts from {1, 10, 20, 30, 40, 50},
and Te from {150, 160, 170, 180, 190, 200}. As depicted
in Figures 1(b) and 1(c), the performance of ULAREF re-
mains relatively stable across a range of values for these
hyperparameters. This stability signifies robustness, a desir-
able characteristic for algorithm design.
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5. Conclusion
In this paper, we aim at inaccurate supervision and introduce
a unified label refinement framework ULAREF, addressing
the limitations of previous approaches tailored and confined
to their own paradigms. We globally detects the supervision
signal provided by the predictive model and locally enhance
it with an auxiliary model on the detected unreliable set.
Theoretical justification provides a guarantee to improve the
reliability of label refinement. Experimental results under
typical paradigms of inaccurate supervision confirm the
effectiveness of our framework ULAREF.
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A. Appendix
A.1. Proofs of Theorem 1

Table 5: Basic notations and their descriptions.

Notation Meaning

X the instance space
Y the label space
D training dataset
xi the i-th instance
yxi

the correct label of the instance xi

li a logical vector, denoting the annotation for the instance xi

R̂(·) an empirical risk estimator
f(·) the predictive model
ϕ(·) a feature extractor in the predictive model f(·)
g(·) the enhanced model
ri the refined label for the instance xi

Dx the instance set
Dr

x the detected reliable set during global detection
Du

x the detected unreliable set during global detection
m a vector, the i-th element of which denotes whether the instance xi belongs to Du

x

Ξi the uncertainty score vector for the instance xi

π a vector output by a Gaussian Mixture Model, the i-th element of which can be considered as a estimation of
the probability that the predictive model f predicts correctly on the instance xi

τ a threshold to select instances according to π for constructing the detected reliable set
L the fine-tining loss for the enhanced model g
ℓc(·, ·) a consistency loss, which we instantiate with KL divergence
B̂(xi) the approximate neighborhood for the instance xi

NN(·, ·) nearest-neighbour function
Beta(·, ·) Beta distribution
N ⋆(V) a neighborhood of the set V
B(x) a neighborhood of the instance x
h(x) the label predicted by the predictive model f on the instance x
h′(x) the label predicted by the enhanced model g on the instance x
µ(·, ·) a function measuring two instance, e.g., Euclidean distance
Ef the completely unreliable set where the predictive model f always makes incorrect predictions
Ēf the completely reliable set where the predictive model f always makes incorrect predictions, where ·̄ is the

inverse operation of the set
If,g the instance set where the prediction of the enhanced model g is the same with that of the predictive model f
Jg the instance set where the prediction of the enhanced model g on a given instance x coincides with the

predictions in its neighborhood B(x)
Eg the instance set where the enhanced model g always predicts incorrectly

We could begin with decomposing P (Eg ∩ U) into P (Eg ∩ Jg ∩ U) and P (J̄g ∩ U) according to the principle of inclusion-
exclusion. And then P (Eg ∩ Jg ∩ U) could further be decomposed into two parts P (E1 ∪ E2) and P (E3) as we defined
later, since E1 ∪ E2 ∪ E3 = Eg ∩ Jg ∩ U . We bound P (E1 ∪ E2) in Lemma 1, i.e., P (E1 ∪ E2) ≤ α, and E3 in Lemma 2,
i.e., P (E3) ≤ α+ P (J̄g ∩ U) + P (Īf,g)− P (Ef ∩ U), according to Assumption 1 and 2. Finally, we combine the above
conditions and obtain P (Eg ∩ U) < P (Ef ∩ U).

Towards proving Theorem 1, we consider three disjoint subsets of Eg ∩ Jg ∩ U :

• E1 = {x : g(x) = f(x), f(x) ̸= yx, andx ∈ Jg ∩ U};

• E2 = {x : g(x) ̸= f(x), f(x) ̸= yx, g(x) ̸= yx, andx ∈ Jg ∩ U}};
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• E3 = {x : g(x) ̸= f(x), f(x) = yx, andx ∈ Jg ∩ U}.

We could first deduce the following lemma about E1 ∩ E2:

Lemma 1. Under Assumption 1 and Assumption 2, we have P (Jg ∩ Eg ∩ Ef ∩ U) ≤ α. As a result, since it holds that
E1 ∪ E2 ⊂ Jg ∩ Eg ∩ Ef ∩ U , it immediately follows that P (E1 ∪ E2) ≤ α.

We divide the proof of Lemma 1 into the proof of Claim 1 and Claim 2.

Claim 1. Under Assumption 1 and 2, define O = N ⋆(Jg ∩ Eg ∩ Ef ∩ U) \ Ef . For any x ∈ O ∩ Jg, it holds that
f(x) ̸= g(x) and g(x) ̸= yx.

Proof. For any x ∈ O ⊂ N ⋆(Jg ∩ Eg ∩ Ef ∩ U), there exists x′ ∈ Jg ∩ Eg ∩ Ef ∩ U such that B(x) ∩ B(x′) ̸= ∅ and
yx = yx′ by the definition of N ⋆(·). As x′ ∈ Jg, by the definition of Jg, we also must have g(x) = g(x′). Furthermore,
as x′ ∈ Eg , g(x′) ̸= yx′ . Since yx = yx′ , it follows that g(x) ̸= yx.

As O ∩ Ef = ∅ by the definition of O, f must match the ground-truth predictive model on O, so f(x) = yx. It follows that
f(x) ̸= g(x), as desired.

Claim 2. Under Assumption 1 and 2, define O = (N ⋆(Jg ∩ Eg ∩ Ef ∩ U) \ Ef . If P (Jg ∩ Eg ∩ Ef ∩ U) > α, then

P (O ∩ Jg) > P (Eg) + P (Jg) + ϵ− 1− P (Jg ∩ Ef ∩ Eg ∩ U)− P (Jg ∩ Ef ∩ U)

Proof. Define Q = Jg ∩ Eg ∩ Ef ∩ U . By the assumption that Ef satisfies (α, ϵ)-cluster property, if P (Q) > α holds, it
follows that P (O) > P (Q) + ϵ. Furthermore, we have O \ Jg ⊂ Jg ∪ Ef by the definition of O as O ∩ Ef = ∅, and so
P (O \ Jg) ≤ 1− P (Jg ∪ Ef ). Thus we obtain

P (O ∩ Jg) = P (O)− P (O \ Jg) > P (Q) + ϵ− 1 + P (Jg ∪ Ef ).

Now we use the principle of inclusion-exclusion to compute

P (Jg ∪ Ef ) = P (Ef ) + P (Jg)− P (Jg ∩ Ef )

Plugging into the previous, we obtain

P (O ∩ Jg) > P (Ef ) + P (Jg)− P (Jg ∩ Ef ) + P (Q) + ϵ− 1

= P (Ef ) + P (Jg) + ϵ− 1− P (Jg ∩ Ef ∩ Eg ∩ U)
= P (Ef ) + P (Jg) + ϵ− 1− P (Jg ∩ Ef ∩ Eg)− P (Jg ∩ Ef ∩ U)
+ P (Jg ∩ Ef ∩ Eg ∩ U)
= P (Ef ) + P (Jg) + ϵ− 1− P (Jg ∩ Ef ∩ Eg ∩ U)− P (Jg ∩ Ef ∩ U)

To complete the proof of Lemma 1, we first compose Jg into four disjoint sets:

• J1 = Jg ∩ Ef ∩ U ;

• J2 = {x : g(x) = f(x)} ∩ Ef ∩ Jg;

• J3 = {x : g(x) ̸= f(x)} ∩ Ef ∩ Jg;

• J4 = Jg ∩ Ef ∩ U .

First, by Claim 1 and the definition of O, we have ∀x ∈ O ∩ Jg, g(x) ̸= f(x) and x ∈ Ef . Thus, it follows that
O ∩ Jg ⊂ J3.

Next, we claim that Jg ∩ Ef ∩ Eg ∩ U ⊂ J4. Assume for the sake of contradiction that P (Q) > α. Now we have

P (Jg ∩ U) = P (J1) + P (J2) + P (J3) + P (J4)

≥ P (Jg ∩ Ef ∩ U) + P (Jg ∩ Ef ∩ Eg ∩ U) + P (J2) + P (O ∩ Jg)

> P (J2) + P (Ef ) + P (Jg) + ϵ− 1
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However, we also have
P (J2) = 1− EP [I[g(x) ̸= f(x) ∨ x /∈ Jg ∨ f(x) ̸= yx]

≥ 1− P (Ef )− ϵ

Plugging this in gives us P (J1) + P (J2) + P (J3) + P (J4) > P (Jg), a contradiction. Thus P (Q) ≤ α, as desired.

According to Claim 2, due to that E1 ∪ E2 ⊂ Q, P (E1 ∪ E2) ≤ (Q) ≤ α. The proof of Lemma 1 has been completed.

Next, we could deduce the following lemma about E3:

Lemma 2. Under Assumption 1 and Assumption 2, the following bound holds:

P (E3) ≤ α+ P (J̄g ∩ U) + P (Īf,g ∩ U)− P (Ef ∩ U)

Proof. The proof will follow from basic manipulation. First, we note that

E3 ∪ {x : f(x) = g(x), andx ∈ Jg) ∩ U}
=({x : g(x) ̸= f(x), f(x) = yx} ∩ Jg) ∩ U) ∪ ({x : f(x) = g(x)} ∩ Jg) ∩ U)
=({x : g(x) ̸= f(x), f(x) = yx} ∪ {x : f(x) = g(x)}) ∩ Jg) ∩ U
=({x : f(x) = yx} ∪ {x : f(x) = g(x)}) ∩ Jg) ∩ U
=({x : f(x) = yx} ∪ {x : f(x) = g(x), f(x) ̸= yx}) ∩ Jg) ∩ U
=E1 ∪ {x : f(x) = yx, andx ∈ Jg) ∩ U}

It follows that
P (E3)+P ({x : f(x) = g(x), andx ∈ Jg) ∩ U}) =

P (E1) + P ({x : f(x) = yx, andx ∈ Jg) ∩ U})

Thus, we can obtain

P (E3) = P (E1) + P ({x : f(x) = yx} ∩ Jg) ∩ U)− P ({x : f(x) = g(x)} ∩ Jg) ∩ U)
≤ P (E1) + P ({x : f(x) = yx} ∩ U)− P ({x : f(x) = g(x)} ∩ Jg) ∩ U)
≤ P (E1) + P ({x : f(x) = yx} ∩ U)− P ({x : f(x) = g(x)} ∩ U)
+ P ({x : f(x) = g(x)} ∩ U ∩ J g)

≤ P (E1) + P (U)− P ({x : f(x) ̸= yx} ∩ U)− (P (U)− P ({x : f(x) ̸= g(x)} ∩ U))
+ P (U ∩ J g)

= P (E1) + P (J̄g ∩ U) + P (Īf,g ∩ U)− P (Ef ∩ U)
≤ α+ P (J̄g ∩ U) + P (Īf,g ∩ U)− P (Ef ∩ U)

Finally, according to Lemma 1 and 2, we could obtain:

P (Eg ∩ U) ≤ P (Eg ∩ Jg ∩ U) + P (J̄g ∩ U)
≤ P (E1) + P (E2) + P (E3) + P (J̄g ∩ U)
≤ 2(α+ P (J̄g ∩ U)) + P (Īf,g ∩ U)− P (Ef ∩ U)
< P (Ef ∩ U)

Here, we finish our proof of Theorem 1.

A.2. Extended experiments

Sensitivity Analysis. We conduct the sensitivity analysis about the hyper-parameters β and κ on CIFAR-100 under the
NLL symmetric setting with ι taking values in {0.2, 0.5, 0.8} and λ on CIFAR-100 under the PLL uniform setting with
γ taking values in {0.03, 0.05, 0.1}. We vary β, κ and λ from {0.1, 0.3, 0.5, 0.7, 0.9}. As shown in Figure 2(a), 2(b) and
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Figure 2: Sensitivity analysis of ULAREF on CIFAR-100.

Table 6: Classification accuracy (mean std) of comparing methods on CIFAR-10 with both noisy and partial labels.

IDGP PLCR PICO CAVL LWS VALEN CC PRODEN ULAREF

40.26 2.34 46.13 0.92 61.39 2.64 14.31 2.08 12.49 2.34 58.77 1.52 43.57 2.36 58.77 1.52 65.25 1.65

2(c), we can find that the performance of the proposed ULAREF is relatively stable for varying β and κ, which indicates its
robustness, and with respect to λ, a recommended range of values is around 0.9.

Model Calibration. We investigate the effect of model calibration by introducing a temperature-scaling parameter, denoted
as T , into the softmax function within our global detection procedure, a technique recommended for calibrating model
predictions in classical literature (Guo et al., 2017). Figure 3 presents the performance of ULAREF across varying values
of T . The figure illustrates that calibration indeed influences ULAREF’s performance, with poorly calibrated models (e.g.,
T = 0.7 or 10) exhibiting decreased performance.
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Figure 3: The performance of ULAREF under different temperature T for model calibration on CIFAR-10.

Optimally Working. Inspired by (Lv et al., 2023; Qiao et al., 2023b; Yuan et al., 2023), we manually corrupt CIFAR-10
to obtain a dataset with both partial labels and noisy labels, where NLL baselines cannot handle this setting, and the
performance of PLL baselines drop a lot due to label noise. This highlights the distinct advantage of our framework. We
control the noisy rate ι at 0.3 and the partial rate γ at 0.5. As depicted in Table 6, ULAREF demonstrates a substantial
superiority over other baselines. We intend to include these experimental findings in our revised version.

Ablation Study. We investigate another measure to determine whether the instance xi belongs to the reliable set Dr
xi

:

Ξi = max
j

fj(xi)− max
k ̸=argmaxj fj(xi)

fk(xi). (14)

And we create a variant ULAREF-M and report its performance in Table 7, from which we could observe that ULAREF-M
could still achieve comparable results.
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Table 7: Ablation study on the choice of the uncertainty score in ULAREF.

Dataset CIFAR-10 CIFAR-100
Type Symmetric Asymmetric Symmetric Asymmetric
ι 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4

ULAREF-M 94.56 0.12 94.53 0.22 91.13 0.28 92.03 0.45 75.87 0.37 72.45 0.25 53.22 0.57 75.34 0.31

ULAREF 95.28 0.06 94.31 0.13 91.47 0.24 92.56 0.28 76.16 0.27 72.39 0.21 54.72 0.42 76.11 0.25

A.3. Technical differences from self-training and auto-labeling

Our framework distinguishes itself from self-training and auto-labeling methodologies. We contribute to the community by
introducing a novel theorem, demonstrating the potential to obtain greater accuracy with our enhanced model on certain
unreliable instances compared to the predictive model, achieved through maintaining local consistency in the enhanced
model. Supported by the theorem, we design two procedures in our framework, i.e., global detection and local enhancement.
The former detects reliable and unreliable instances, and the latter fine-tunes the enhanced model with the proposed
consistency loss. In this way, we get more reliable supervision information locally from the enhanced model. However,
the previous works in self-training and auto-labeling are not guided by such a theorem to consider a individually and
locally enhanced model, and thus does not decouple an enhanced model from the predictive model to perform such a local
enhancement.

Besides, different goals lead to different designs among our framework, self-training and auto-labeling. First, the goal of
self-training is to annotate unlabeled data to further leverage them to train the classifier (Wei et al., 2021a). Hence, they
focus on accuracy of the prediction made by the predictive model on the unlabeled data. However, the goal of our work is
to build a framework to hand inaccurate supervision. Hence, we make more efforts on the reliability of the supervision
information, and thus design global detection with the predictive model and local enhancement with another enhanced
model, to further enhance the reliability of the supervision information. Second, the goal of auto-labeling is to obtain
a labeled dataset (not a model) (Vishwakarma et al., 2023). Hence, they first train an annotation model and then select
instances which the model could predict accurately. In contrast, our framework first finds the unreliable instances which the
model could predict inaccurately, and then fine-tune an enhanced model to predict them accurately. This is because we
aim to enhance the reliability of the supervision information and finally obtain a predictive model on unobserved instances,
instead of only an annotation model on observed unlabeled instances.
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