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Abstract

This supplementary document contains additional experiments and all technical
proofs for Theorem 2 and Theorem 3 in the NeurIPS’22 paper entitled “Learning
Contrastive Embedding in Low-Dimensional Space”. It is indeed the appendix sec-
tion of the paper. Source code is available at https://github.com/functioncs/CLLR.

A. Additional Experiments

A.1. Parametric Sensitivity

Here we investigate the parametric sensitivities of λ and α in our method. Specifically, we change λ
and α in [0.01, 5] and [1, 20], respectively, and we record the classification accuracy of our method
on STL-10 dataset (batch size=256, epochs=100). Tab. 0.1 clearly shows that the accuracy variation
of our method is smaller than 1.5.

Similar experiments are conducted on CIFAR-10 dataset, where we can observe that the accuracy
variation of our method is smaller than 2.0. These results clearly demonstrate that the two regulariza-
tion parameters λ and α are very stable within a given range. It implies that the hyper-parameters of
our method can be easily tuned in practice use.

Table 0.1: Parametric sensitivities of λ and α on STL-10 dataset. Here λ and α are changed in
[0.01, 5] and [1, 20], respectively.

λ
α 1 5 10 15 20

0.01 78.4 79.3 79.2 78.2 78.0
0.1 78.2 79.1 79.2 78.8 77.9
0.5 77.8 78.6 79.2 79.4 79.2
5 78.9 78.9 78.9 78.6 79.4
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Table 0.2: Parametric sensitivities of λ and α on CIFAR-10 dataset. Here λ and α are changed in
[0.01, 5] and [1, 20], respectively.

λ
α 1 5 10 15 20

0.01 93.8 94.3 94.2 95.2 94.1
0.1 94.2 95.1 95.2 95.2 94.2
0.5 93.8 93.6 93.2 93.4 94.2
5 93.9 94.9 94.9 94.6 94.4

Table 0.3: Training time of the baseline methods and our proposed method (100 epochs, in hours).

Method
CIFAR-10 ImageNet-100

512 1024 512 1024

SimCLR [3] 2.3 1.3 10.9 5.5
DCL [5] 2.5 1.4 11.2 5.7

CLLR(SimCLR+ℓ2,1-norm) 2.3 1.4 10.9 5.6
CLLR(SimCLR+nuclear-norm) 2.4 1.5 11.2 5.8
CLLR(DCL+ℓ2,1-norm) 2.5 1.6 11.3 5.8
CLLR(DCL+nuclear-norm) 2.6 1.6 11.5 5.9

A.2. Running Time Comparsion

As we described in the manuscript, we adopt the sub-gradients of ℓ2,1-norm and nuclear-norm as
the stochastic gradients during the iteration. However, the iteration of nuclear-norm may be time-
consuming which involves the singular value decomposition (SVD) operation [1]. Therefore, here
we further provide experiments to record the training time of our method as well as the corresponding
baseline method. Specifically,we use four NVIDIA TeslaV100 GPUs to train our method based on
SimCLR and DCL with 100 epochs, where the batch size is set to 512 and 1024.

In Tab. 0.3, we can find that the proposed regularizer only brings in little additional time consumption.
This is because the gradient calculations of ℓ2,1-norm ∥L∥2,1 and nuclear-norm ∥L∥∗ are independent
to the size of training data, so the training time is still acceptable in practice use.

A.3. Comparison with Distillation-Based Contrastive Learning

We may notice that the distillation method can also reduce the dimensionality of contrastive embed-
dings. However, in the distillation-based CL, the distilled student model is usually supervised by
the original teacher model, so the distillation-based CL may naturally inherit improper similarities
learned by the original CL. In comparison, our CLLR directly reduces the feature dimensionality of
the original CL to avoid / alleviate the improper similarity measure. Therefore, it is worth pointing
out that our method is completely different from the distillation-based CL methods.

Here we further provide experiments in Tab. 0.4 to compare our method with the distillation-based
CL methods. We select the recent works wasserstein contrastive representation distillation (WCoRD)
[2] and complementary relation contrastive distillation (CRCD) [8]for comparsions, where the
output dimensionlaities of their student networks are set to 256-dimension and 512-dimension. We
can find that most distilled student models have the close or slightly lower classification accuracy
compared with the corresponding baseline teacher models (as reported in their original paper).
In comparison, our method can consistently improve the baseline method on all three datasets.
Meanwhile, we observe that our method significantly outperforms the distillation-based methods in
both 256-dimension and 512-dimension settings.

A.4. Experiments on Negative-Free Contrastive Learning

Although we implement our method on CL models that use both positive and negative samples,
our proposed CLLR can also work with negative-free models. We follow the reviewer’s suggestion
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Table 0.4: Classification accuracy (%, Top5) of the distillation-based methods and our proposed
method on STL-10, CIFAR-10, and ImageNet-100 datasets (batch size = 512 / 1024, epochs = 500).

Method
STL-10 CIFAR-10 ImageNet-100

512 1024 512 1024 512 1024

SimCLR (Teacher) 81.3 82.3 91.3 93.3 77.9 80.5
WCoRD(256-dimension) [2] 80.2 81.3 90.3 90.3 76.9 75.5
WCoRD(512-dimension) [2] 81.2 81.4 92.5 91.4 77.2 79.7
CRCD(256-dimension) [8] 79.4 80.3 89.3 91.3 74.9 81.5
CRCD(512-dimension) [8] 81.4 82.4 92.0 90.4 78.2 79.7

CLLR(SimCLR+nuclear-norm, 256-dimension) 85.2 86.4 93.7 96.4 81.2 84.6
CLLR(SimCLR+nuclear-norm, 512-dimension) 84.4 87.1 93.3 96.5 80.9 84.8

Table 0.5: Classification accuracy (%, Top1 and Top5) of combining our proposed method with
negative-free contrastive learning methods on ImageNet-100 dataset (batch size = 1024 / 4096, epochs
= 500).

Method
1024 4096

Top1 Top5 Top1 Top5

BYOL [6] 61.3 91.8 74.9 91.9
SimSiam [4] 70.9 91.9 73.6 92.8

CLLR(BYOL+nuclear-norm) 63.1 92.7 76.5 93.0
CLLR(SimSiam+nuclear-norm) 72.2 92.9 75.8 93.8

to conduct experiments on negative-free CL baselines (BYOL [6] and SimSiam [4], merely using
positive pairs) to validate the effectiveness of our proposed method. As shown in Tab. 0.5, our
method can consistently improve the compared methods upon themselves (Top1 and Top5 accuracy
on ImageNet-100 with 500 training epochs and batch size = 1024 / 4096).

A.5. Training Models via Other Optimizers

Since our proposed reconstruction loss and regularizer are differentiable almost everywhere, we
can employ some other optimizers such as Adam to minimize the learning objective of our CLLR.
Specifically, here use the Adam optimizer to training our model on CIFAR-10 dataset (batch size =
256), and we record the corresponding training / test errors (%) after 100, 200, and 400 epochs. In
Tab. 0.6, we observe that both SGD (learning rate = 5× 10−3) and Adam can converge well after 400
epochs. Therefore, our proposed method has good compatibility with existing (stochastic) optimizers.

Table 0.6: Training / test errors (%, Top5) of our method by using SGD and Adam on CIFAR-10
dataset.

Optimizer 100 epochs 200 epochs 300 epochs 400 epochs

SGD 30.2±5.3 / 35.8±4.3 10.8±2.1 / 15.8±2.3 3.3±1.8 / 10.4±2.3 2.1±1.1 / 6.9±1.3
Adam [7] 20.2±4.3 / 25.4±3.3 14.1±1.9 / 18.8±4.1 3.4±1.5 / 10.5±3.4 2.4±1.2 / 7.2±2.1
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B. Proofs

B.1. Derivation for Eq. (3)

According to the definition of gamma function, we have that

lim
H→∞

(πH/2/(H · Γ(H/2)))/2H−1

= lim
H→∞

(πH/2/(H ·
∫ ∞

0

tH/2−1e−tdt))/2H−1

≤ lim
H→∞

(πH/2/(H ·
∫ 2

1

tH/2−1e−tdt))/2H−1. (0.1)

By further using the mean-value theorem, we have

lim
H→∞

(πH/2/(H ·
∫ 2

1

tH/2−1e−tdt))/2H−1

≤ lim
H→∞

(πH/2/(H · e−2))/2H−1

≤ lim
H→∞

π(H−1)/2/2H−1. (0.2)

Finally, it is easy to obtain that

lim
H→∞

π(H−1)/2/2H−1 = lim
H→∞

(π/4)(H−1)/2 = 0, (0.3)

which is Eq. (3) in our manuscript.

B.2. Proof for Theorem 2

Theorem 2. If the function F(Φ,L) has δ-bounded gradient (i.e., ∥∇F(Φ,L)∥2 < δ), then we let

η =
√
2(F(Φ(0),L(0))−F(Φ∗,L∗))/(Sδ2T ), and for the iterations in Algorithm 1 we have that

min
0≤t≤T−1

E[ ∥∇F(Φ(t),L(t))∥2]

≤
√
2S(F(Φ(0),L(0))−F(Φ∗,L∗))/T )δ, (0.4)

where S > 0 is the lipschitz constant such that ∥∇F(Φ,L) − ∇F(Φ′,L′)∥2 ≤ S∥[Φ,L] −
[Φ′,L′]∥2.

Proof. Firstly, by using the lipschitz continuity of F(Φ,L) we have that

E[F(Φ(t+1),L(t+1))]− E[F(Φ(t),L(t))]

≤ E[ ∥∇F(Φ(t+1),L(t+1))− ([Φ(t+1),L(t+1)]− [Φ(t),L(t)])∥22
+ S/2∥[Φ(t+1),L(t+1)]− [Φ(t),L(t)]∥22]
≤ −ηtE[∇F(Φ(t),L(t))∥22] + (Sη2t /2)E[∥∇Fbi(Φ(t),L(t))∥22]
≤ −ηtE[∇F(Φ(t),L(t))∥22] + (Sη2t /2)δ

2, (0.5)

where the second inequality follows from the fact that [Φ(t+1),L(t+1)] is updated by Algorithm 1.
Then, we have that

E[∇F(Φ(t),L(t))∥22] ≤ (1/ηt)E[F(Φ(t),L(t))−F(Φ(t+1),L(t+1))] + (Lηt/2)δ
2, (0.6)

and thus
E[∇F(Φ(0),L(0))∥22] ≤ (1/η0)E[F(Φ(0),L(0))−F(Φ(1),L(1))] + (Sη0/2)δ

2,

E[∇F(Φ(1),L(1))∥22] ≤ (1/η1)E[F(Φ(1),L(1))−F(Φ(2),L(2))] + (Sη1/2)δ
2,

...

E[∇F(Φ(T−1),L(T−1))∥22] ≤ 1
ηT−1

E[F(Φ(T−1),L(T−1))−F(Φ(T ),L(T ))] +
SηT−1

2 δ2.

(0.7)
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Finally, we sum all inequalities in the above Eq. (0.7) and letting η0 = η1 = · · · = ηT−1 = η. Then
we have

min
0≤t≤T−1

E[ ∥∇F(Φ(t),L(t))∥2]

≤ 1

T

T−1∑
t=0

E[ ∥∇F(Φ(t),L(t))∥2] + (Sη/2)δ2

≤ 1

Tη
E[F(Φ(0),L(t))−F(Φ(t),L(t))] + (Sη/2)δ2

≤ 1

Tη
(F(Φ(0),L(t))−F(Φ∗,L∗)) + (Sη/2)δ2

≤ 1√
T
((F(Φ(0),L(t))−F(Φ∗,L∗))/c+ (Sc/2)δ2), (0.8)

where c = η
√
T . We set c =

√
2(F(Φ(0),L(0))−F(Φ∗,L∗))/(Sδ2), and we have

min
0≤t≤T−1

E[ ∥∇F(Φ(t),L(t))∥2] ≤
√

2S(F(Φ(0),L(0))−F(Φ∗,L∗))/T )δ, (0.9)

which completes the proof.

B.3. Proof for Theorem 3

Theorem 3. For any given n + 1 i.i.d. random data points x, x1, x2, . . . , xn ∈ Rm, we denote
that Dmax

Φ̂,L̂
= max{DΦ̂,L̂(x, xi)|i = 1, 2, . . . , n} and Dmin

Φ̂,L̂
= min{DΦ̂,L̂(x, xi)|i = 1, 2, . . . , n},

and we have that

P
{
(Dmax

Φ̂,L̂
−Dmin

Φ̂,L̂
)/Dmin

Φ̂,L̂
≥αλC(X )

}
=1, (0.10)

where DΦ̂,L̂(x, xi) = ∥L̂Φ̂(x)− L̂Φ̂(xi)∥2/rank(L̂), and parameters Φ̂ and L̂ are learned from
Eq. (13).

Proof. As Φ̂ and L̂ are iterated by the optimization algorithm, we have

LNCE(Φ̂) + λEx∈X [ ∥L̂
⊤
L̂ · Φ̂(x)− Φ̂(x)∥22 ] + αλR(Φ̂, L̂)

≤ LNCE(Φ(0)) + λEx∈X [ ∥L⊤
(0)L(0) ·Φ(0)(x)−Φ(0)(x)∥22 ] + αλR(Φ(0),L(0)), (0.11)

which implies that

R(Φ̂, L̂) ≤ 1

αλ

(
F(Φ(0),L(0))− LNCE(Φ̂)− λEx∈X [ ∥L̂

⊤
L̂ · Φ̂(x)− Φ̂(x)∥22 ]

)
=

1

αλ
c1 −

1

α
c2 + c3

=
1

α

(
1

λ
c1 − c2

)
+ c3, (0.12)

where
c1 = LNCE(Φ(0))− LNCE(Φ̂),

c2 = Ex∈X [ ∥L⊤
(0)L(0) ·Φ(0)(x)−Φ(0)(x)∥22 − Ex∈X [ ∥L̂

⊤
L̂ · Φ̂(x)− Φ̂(x)∥22,

c3 = R(Φ(0),L(0)).

(0.13)

Then we have that ∥L̂∥2,1 ≤ 1
α

(
1
λc1 − c2

)
+ c3 and ∥L̂∥∗ ≤ 1

α

(
1
λc1 − c2

)
+ c3, respectively.

Therefore, we have ∥L̂∥2,0 ≤ k1
(
1
α

(
1
λc1 − c2

)
+ c3

)
and rank(L̂) ≤ k2

(
1
α

(
1
λc1 − c2

)
+ c3

)
. It
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implies that the pairwise distance DΦ̂,L̂(x, xi) satisfies that

Dmax
Φ̂,L̂

−Dmin
Φ̂,L̂

Dmin
Φ̂,L̂

=
maxi=1,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)−L̂

(j)
Φ̂(xi))/rank(L̂)−mini=1,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)−L̂

(j)
Φ̂(xi))/rank(L̂)

mini=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))/rank(L̂)

=
maxi=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))/rank(L̂)

mini=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))/rank(L̂)

− 1

≥
maxi=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))/k2

(
1
α

(
1
λc1 − c2

)
+ c3

)
mini=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))/rank(L̂)

=
Q

k2
(
1
α

(
1
λc1 − c2

)
+ c3

)
≥ αλQ

k2c1
, (0.14)

where

Q =
maxi=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))

mini=1,2,...,n

√∑H
j=1(L̂

(j)
Φ̂(x)− L̂

(j)
Φ̂(xi))/rank(L̂)

. (0.15)

Finally, we let C(X ) = Q/(k2c1) and complete the proof.
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