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Figure 1: We present Lotus, a diffusion-based visual foundation model for dense geometry pre-
diction. With minimal training data, Lotus achieves promising performance in zero-shot depth and
normal estimation. “Avg. Rank” indicates the average ranking across all metrics, where lower values
are better. Bar length represents the amount of training data used.

ABSTRACT

Leveraging the visual priors of pre-trained text-to-image diffusion models offers a
promising solution to enhance zero-shot generalization in dense prediction tasks.
However, existing methods often uncritically use the original diffusion formula-
tion, which may not be optimal due to the fundamental differences between dense
prediction and image generation. In this paper, we provide a systemic analysis of
the diffusion formulation for the dense prediction, focusing on both quality and
efficiency. And we find that the original parameterization type for image gener-
ation, which learns to predict noise, is harmful for dense prediction; the multi-
step noising/denoising diffusion process is also unnecessary and challenging to
optimize. Based on these insights, we introduce Lotus, a diffusion-based visual
foundation model with a simple yet effective adaptation protocol for dense predic-
tion. Specifically, Lotus is trained to directly predict annotations instead of noise,
thereby avoiding harmful variance. We also reformulate the diffusion process into
a single-step procedure, simplifying optimization and significantly boosting in-
ference speed. Additionally, we introduce a novel tuning strategy called detail
preserver, which achieves more accurate and fine-grained predictions. Without
scaling up the training data or model capacity, Lotus achieves promising perfor-
mance in zero-shot depth and normal estimation across various datasets. It also
enhances efficiency, being significantly faster than most existing diffusion-based
methods. Lotus’ superior quality and efficiency enables a wide range of practical
applications, such as joint estimation, single/multi-view 3D reconstruction, etc.
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1 INTRODUCTION
Dense prediction is a fundamental task in computer vision, benefiting a wide range of applications,
such as 3D/4D reconstruction (Huang et al., 2024; Long et al., 2024; Wang et al., 2024; Lei et al.,
2024), tracking (Xiao et al., 2024; Song et al., 2024), and autonomous driving (Yurtsever et al., 2020;
Hu et al., 2023). Estimating pixel-level geometric attributes from a single image requires compre-
hensive scene understanding. Although deep learning has advanced dense prediction, progress is
limited by the quality, diversity, and scale of training data, leading to poor zero-shot generalization.
Instead of merely scaling data and model size, recent works (Lee et al., 2024; Ke et al., 2024; Fu
et al., 2024; Xu et al., 2024) leverage diffusion priors for zero-shot dense prediction. These stud-
ies demonstrate that text-to-image diffusion models like Stable Diffusion (Rombach et al., 2022),
pretrained on billions of images, possess powerful and comprehensive visual priors to elevate dense
prediction performance. However, most of these methods directly inherit the pre-trained diffusion
models for dense prediction tasks, without exploring more suitable diffusion formulations. This
oversight often leads to challenging issues. For example, Marigold (Ke et al., 2024) directly fine-
tunes Stable Diffusion for image-conditioned depth generation. While it significantly improves
depth estimation, its performance is still constrained by overlooking the fundamental differences
between dense prediction and image generation. Especially, its efficiency is also severely limited by
standard iterative denoising processes and ensemble inferences.

Motivated by these concerns, we systematically analyze the diffusion formulation, trying to find a
better formulation to fit the pre-trained diffusion model into dense prediction. Our analysis yields
several important findings: ① The widely used parameterization, i.e., noise prediction, for diffusion-
based image generation is ill-suited for dense prediction. It results in large prediction errors due
to harmful prediction variance at initial denoising steps, which are subsequently propagated and
magnified throughout the entire denoising process (Sec. 4.1). ② Multi-step diffusion formulation is
computation-intensive and is prone to sub-optimal with limited data and resources. These factors
significantly hinder the adaptation of diffusion priors to dense prediction tasks, leading to decreased
accuracy and efficiency (Sec. 4.2). ③ Though remarkable performance achieved, we observed that
the model usually outputs vague predictions in highly-detailed areas (Fig. 8). This vagueness is
attributed to catastrophic forgetting: the pre-trained diffusion models gradually lose their ability to
generate detailed regions during fine-tuning (Sec. 4.3).

Following our analysis, we propose Lotus, a diffusion-based visual foundation model for dense
prediction, featuring a simple yet effective fine-tuning protocol (see Fig. 2). First, Lotus is
trained to directly predict annotations, thereby avoiding the harmful variance associated with stan-
dard noise prediction. Next, we introduce a one-step formulation, i.e., one step between pure
noise and clean output, to facilitate model convergence and achieve better optimization perfor-
mance with limited high-quality data. It also considerably boosts both training and inference
efficiency. Moreover, we implement a novel detail preserver through a task switcher, allow-
ing the model either to generate annotations or reconstruct the input images. It can better pre-
serve the fine-grained details in the input image during dense annotation generation, achieving
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Figure 2: Adaptation protocol of Lotus. After the pre-trained VAE encoder E encodes the im-
age x and annotation y to the latent space: ① the denoiser U-Net model fθ is fine-tuned using
x0-prediction; ② we employ single-step diffusion formulation at time-step t = T for better conver-
gence; ③ we propose a novel detail preserver, to switch the model either to reconstruct the image or
generate the dense prediction via a switcher s, ensuring a more fine-grained prediction. The noise
zyT in bracket is used for our generative Lotus-G and is omitted for the discriminative Lotus-D.
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1. On Single A800
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Figure 3: Inference time comparison in depth
estimation between Lotus and SoTA methods.
Lotus is hundreds of times faster than Marigold
and slightly faster than DepthAnything V2 at high
resolutions. DepthAnything V2’s inference time
at 2048 × 2048 is not plotted because it requires
> 80GB graphic memory.

higher performance without compromising ef-
ficiency, requiring additional parameters, or be-
ing affected by surface textures.

To validate Lotus, we conduct extensive exper-
iments on two primary geometric dense predic-
tion tasks: zero-shot monocular depth and nor-
mal estimation. The results demonstrate that
Lotus achieves promising, and even superior,
performance on these tasks across a wide range
of evaluation datasets. Compared to traditional
discriminative methods, Lotus delivers remark-
able results with only 59K training samples.
Among generative approaches, Lotus also out-
performs previous methods in both accuracy
and efficiency, being significantly faster than
methods like Marigold (Ke et al., 2024) (Fig. 3).
Beyond these improvements, Lotus seamlessly
supports various applications, e.g., joint estima-
tion, single/multi-view 3D reconstruction, etc.

In conclusion, our key contributions are as follows:

• We systematically analyze the diffusion formulation and find their parameterization type,
designed for image generation, is unsuitable for dense prediction and the computation-
intensive multi-step diffusion process is also unnecessary and challenging to optimize.

• We propose a novel detail preserver that ensures more accurate dense predictions especially
in detail-rich areas, without compromising efficiency, introducing additional network pa-
rameters, or being affected by surface textures.

• Based on our insights, we introduce Lotus, a diffusion-based visual foundation model for
dense prediction with simple yet effective fine-tuning protocol. Lotus achieves promising
performance on both zero-shot monocular depth and surface normal estimation. It also
enables a wide range of applications.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE GENERATIVE MODELS

In the field of text-to-image generation, the evolution of methodologies has transitioned from gen-
erative adversarial networks (GANs) (Goodfellow et al., 2014; Zhang et al., 2017; 2018; 2021; He
et al., 2022; Karras et al., 2019; 2020; 2021; Zhang et al., 2017; 2018; Xu et al., 2018; Zhang et al.,
2021) to advanced diffusion models (Ho et al., 2020; Ramesh et al., 2022; Saharia et al., 2022;
Ramesh et al., 2021; Nichol et al., 2021; Chen et al., 2023; Rombach et al., 2022; Ramesh et al.,
2021). A series of diffusion-based methods such as GLIDE (Nichol et al., 2021), DALL·E2 (Ramesh
et al., 2022), and Imagen (Saharia et al., 2022) have been introduced, offering enhanced image qual-
ity and textual coherence. The Stable Diffusion (SD) (Rombach et al., 2022), trained on large-scale
LAION-5B dataset (Schuhmann et al., 2022), further enhances the generative quality, becoming the
community standard. In our paper, we aim to leverage the comprehensive and encyclopedic visual
priors of SD to facilitate zero-shot generalization for dense prediction tasks.

2.2 GENERATIVE MODELS FOR DENSE PERCEPTION

Currently, a notable trend involves adopting pre-trained generative models, particularly diffusion
models, into dense prediction tasks. Marigold (Ke et al., 2024) and GeoWizard (Fu et al., 2024)
directly apply the standard diffusion formulation and the pre-trained parameters, without address-
ing the inherent differences between image generation and dense prediction, leading to constrained
performance. Their efficiency is also severely limited by standard iterative denoising processes and
ensemble inferences. In this paper, we propose a novel diffusion formulation tailored to the dense
prediction. Aiming to fully leveraging the pre-trained diffusion’s powerful visual priors, Lotus en-
ables more accurate and efficient predictions, finally achieving promising performance.

More recent works, GenPercept (Xu et al., 2024) and StableNormal (Ye et al., 2024), also adopted
single-step diffusion. However, GenPercept (Xu et al., 2024) first removes noise input for deter-
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ministic characteristic based on DMP (Lee et al., 2024), and then adopts one-step strategy to avoid
surface texture interference. It lacks systematic analysis of the diffusion formulation, only treats the
U-Net as a deterministic backbone and still falls short in performance. In contrast, Lotus systemati-
cally analyzes the standard stochastic diffusion formulation for dense prediction and proposes inno-
vations such as the detail preserver to improve accuracy especially in detailed area, finally delivering
much better results (Tab. 1). Additionally, Lotus is a stochastic model. In contrast to GenPercept’s
deterministic nature, Lotus enables uncertainty predictions. StableNormal (Ye et al., 2024) predicts
normal maps through a two-stage process. While the first stage produces coarse normal maps with
single-step diffusion, the second stage performs refinement still with iterative diffusion which is
computation-intensive. In comparison, Lotus not only achieves fine-grained predictions thanks to
our novel detail preserver without extra stages or parameters, but also delivers much superior re-
sults (Tab. 2) thanks to our designed diffusion formulation that better fits the pre-trained diffusion
for dense prediction. Recently, a concurrent work, Diffusion-E2E-FT (Garcia et al., 2024), has also
achieved promising results in a single step. Its main contribution lies in addressing the issue where
Marigold (Ke et al., 2024) and similar models (Fu et al., 2024) use inconsistent pairings of time-step
and noise, resulting in poor predictions. By setting the “time-step spacing” to “trailing” mode in
schedulers, it prevents “GT” signal leakage during inference, improving accuracy. While the per-
formance of Lotus-D and Diffusion-E2E-FT is similar, Lotus is based on a systematic analysis of
stochastic diffusion for dense prediction, with innovations like the detail preserver to enhance accu-
racy, particularly in detailed areas. Additionally, unlike the deterministic Diffusion-E2E-FT, Lotus
(Lotus-G) is a stochastic model that enables uncertainty predictions.

2.3 MONOCULAR DEPTH AND NORMAL PREDICTION

Monocular depth and normal prediction are two crucial dense prediction tasks. Solving them typ-
ically demands comprehensive scene understanding capability. Starting from (Eigen et al., 2014),
early CNN-based methods for depth prediction, such as (Fu et al., 2018), (Lee et al., 2019), (Yuan
et al., 2022), focus only on specific domains. Subsequently, in pursuit of a generalizable depth es-
timator, many methods expand model capacity and train on larger and more diverse datasets, such
as DiverseDepth (Yin et al., 2021a) and MiDaS (Ranftl et al., 2020). DPT (Ranftl et al., 2021) and
Omnidata (Eftekhar et al., 2021) are further proposed based on vision transformer (Ranftl et al.,
2021), significantly enhancing performance. LeRes (Yin et al., 2021b) and HDN (Zhang et al.,
2022) further introduce novel training strategies and multi-scale depth normalization to improve
predictions in detailed areas. More recently, the DepthAnything series (Yang et al., 2024a;b) and
Metric3D series (Yin et al., 2023; Hu et al., 2024) collect and leverage millions of training data to
develop more powerful estimators. Normal prediction follows the same trend. Starting with the early
CNN-based methods like OASIS (Chen et al., 2020), EESNU (Bae & Davison, 2021) and Omnidata
series (Eftekhar et al., 2021; Kar et al., 2022) expand the model capacity and scale up the training
data. Recently, DSINE (Bae & Davison, 2024) achieves SoTA performance by rethinking inductive
biases for surface normal estimation. In our paper, we focus on leveraging pre-trained diffusion
priors to enhance zero-shot dense predictions, rather than expanding model capacity or relying on
large training data, which avoids the need for intensive resources and computation.
3 PRELIMINARIES

Diffusion Formulation for Dense Prediction. Following Ke et al. (2024) and Fu et al. (2024), we
also formulate dense prediction as an image-conditioned annotation generation task based on Stable
Diffusion (Rombach et al., 2022), which performs the diffusion process in low-dimensional latent
space for computational efficiency. First, the auto-encoder, which consists an encoder E(·) and a
decoder D(·), is trained to map between RGB space and latent space, i.e., E(x) = zx, D(zx) ≈ x.
The auto-encoder also maps between dense annotations and latent space effectively, i.e., E(y) = zy,
D(zy) ≈ y (Ke et al., 2024; Fu et al., 2024; Xu et al., 2024; Ye et al., 2024). Following Ho et al.
(2020), Stable Diffusion establishes a pair of forward nosing and reversal denoising processes in
latent space. In forward process, Gaussian noise is gradually added at levels t ∈ [1, T ] into sample
zy to obtain the noisy sample zyt :

zyt =
√
αtz

y +
√
1− αtϵ, (1)

where ϵ ∼ N (0, I), αt :=
∏t

s=1(1− βs), and {β1, β2, . . . , βT } is the noise schedule with T steps.
At time-step T , the sample zy is degraded to pure Gaussian noise. In the reversal process, a neural
network fθ, usually a U-Net model (Ronneberger et al., 2015), is trained to iteratively remove noise
from zyt to predict the clean sample zy. The network is trained by sampling a random t ∈ [1, T ] and
minimizing the loss function Lt.

4



Published as a conference paper at ICLR 2025

add
noise

Image x 

Annotation y

 ℰ

𝐳𝐱

𝐳𝐲
𝑡 ∈ [1, T]

concat
.

𝐳𝒕
𝐲

denoiser
U-Net 𝑓! 𝜖 − 𝑓! 𝐳𝒕

𝐲, 𝐳𝐱, 𝑡
%

Training Objective:

𝑡 ∈ [1, T]❄

🔥

𝜖

multi-step

multi-step

𝜖-prediction

(predict noise)

Figure 4: Adaptation protocol of Direct Adaptation. Starting with a pre-trained Stable Diffusion
model, image x and annotation y are encoded using the pre-trained VAE. The noisy annotation zyt is
obtained by adding noise at level t ∈ [1, T ]. The U-Net input layer is coupled to accommodate the
concatenated inputs and then fine-tuned using the standard diffusion objective, ϵ-prediction, under
the original multi-step formulation.

Parameterization Types. To enable gradient computation for network training, there are two basic
parameterizations of the loss function Lt. ① ϵ-prediction (Ho et al., 2020): the model fθ learns to
predict the added noise ϵ; ② x0-prediction (Ho et al., 2020): the model fθ learns to directly predict
the clean sample zy. The loss functions for these parameterizations are formulated as:

ϵ-prediction: Lϵ
t = ||ϵ− f ϵ

θ(z
y
t , z

x, t)||2,
x0-prediction: Lz

t = ||zy − f z
θ(z

y
t , z

x, t)||2.
(2)

where f∗
θ is the denoiser model to be learnt, ∗ ∈ {ϵ, z}. ϵ-prediction is commonly chosen as the

standard for parameterizing the denoising model, as it empirically achieves high-quality image gen-
eration with fine details and realism.

Denoising Process. DDIM (Song et al., 2020) is a key technique for multi-step diffusion models
to achieve fast sampling, which implements an implicit probabilistic model that can significantly
reduce the number of denoising steps while maintaining output quality. Formally, the denoising
process from zyτ to zyτ−1 is:

zyτ−1 =
√
ατ−1ẑ

y
τ + direction(zyτ ) + στ ϵτ , (3)

where ẑyτ is the predicted clean sample at the denoising step τ , direction(zyτ ) represents the direction
pointing to zyτ and στ can be set to 0 if deterministic denoising is needed. And τ ∈ {τ1, τ2, . . . , τS},
an increasing sub-sequence of the time-step set [1, T ], is used for fast sampling. During inference,
DDIM iteratively denoises the sample from τS to τ1 to obtain the clean one.
4 METHODOLOGY

We start our analysis by directly adapting the original diffusion formulation with minimal modifica-
tions as illustrated in Fig. 4. We call this starting point as “Direct Adaptation”1. Direct Adaptation
is optimized using the standard diffusion objective as formulated in Eq. 2 (first row) and inferred
by standard multi-step DDIM sampler. As shown in Tab. 3, Direct Adaptation fails to achieve sat-
isfactory performance. In following sections, we will systematically analyze the key factors that
affect adaptation performance step by step: parameterization types (Sec. 4.1); number of time-steps
(Sec. 4.2); and the novel detail preserver (Sec. 4.3).

4.1 PARAMETERIZATION TYPES

The type of parameterization is crucial, it not only determines the loss function discussed in Sec. 3,
but also influences the inference process (Eq. 3). During inference, the predicted clean sample ẑyτ ,
a key component in Eq. 3, is calculated according to different parameterizations 2.

ϵ-prediction: ẑyτ =
1√
ατ

(zyτ −
√
1− ατf

ϵ
θ(z

y
τ , z

x, τ)),

x0-prediction: ẑyτ = f z
θ(z

y
τ , z

x, τ).

(4)

In the community, ϵ-prediction is chosen as the standard for image generation. However, it is not
effective for dense prediction task. In the following, we will discuss the impact of different parame-
terization types in denoising inference process for dense prediction task.

1Details of Direct Adaptation will be provided in the supplementary materials.
2The latest parameterization, v-prediction, combines ϵ-prediction and x0-prediction, producing results that

are intermediate between the two. Please see the supplementary materials for more details.
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Figure 5: Comparisons among different parameterizations using various seeds. All models are
trained on Hypersim (Roberts et al., 2021) and tested on the input image for depth estimation. The
standard DDIM sampler is used with 50 denoising steps. Four steps are selected for clear illustration.
From left (larger τ ) to right (smaller τ ) is the iterative denoising process.
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dicted depth maps ẑyτ along the denoising pro-
cess. The experimental settings are same as Fig. 5.
Six steps are selected for illustration. The banded
regions around each line indicate the variance,
wider areas representing larger variance.

Insights from the literature (Benny & Wolf,
2022; Salimans & Ho, 2022) reveal that
ϵ-prediction introduces larger pixel variance
compared to x0-prediction, especially at the ini-
tial denoising steps (large τ ). This variance
mainly originates from the noise input. Specifi-
cally, for ϵ-prediction in Eq. 4, at initial denois-
ing step, τ → T , the value 1√

ατ
→ +∞. Thus,

the prediction variance from f ϵ
θ(z

y
τ , z

x, τ) will
be amplified significantly, resulting in large
variance of predicted ẑyτ . In contrast, there
is no coefficient for x0-prediction to re-scale
the model output, achieving more stable pre-
dictions of ẑyτ at initial denoising steps. Subse-
quently, the predicted ẑyτ is used in Eq. 3, where
its coefficient

√
ατ−1 are same across the two

parameterizations, and other terms are of the
same order of magnitude. Therefore, the ẑyτ predicted by ϵ-prediction, which has larger variance,
exerts a more significant influence on denoising process. Since the process is iterative, this influence
is continually preserved and maybe amplified.
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Figure 7: Comparisons among various training
time-steps and data scales evaluated on NYUv2
in depth estimation. All models are fine-tuned
on Hypersim using x0-prediction. During infer-
ence, if T ′ > 50, the DDIM sampler is used with
50 denoising steps; otherwise, the number of de-
noising steps is equal to T ′. The results demon-
strate improved performance with decreased train-
ing time-steps. The single-step diffusion formula-
tion (T ′ = 1) exhibits best performance across
different data volumes.

We take the depth estimation as an example.
During the inference process, we compute the
predicted depth map ẑyτ at each denoising step
τ . As illustrated in Fig. 5, the depth maps
predicted by ϵ-prediction significantly vary un-
der different seeds while those predicted by
x0-prediction are more consistent. Although
the large variance enhances diversity for im-
age generation, it lead to unstable predictions
in dense prediction tasks, potentially resulting
in significant errors. For example in Fig. 5,
the “dark gray cabinet” (highlighted in red cir-
cles) maybe wrongly considered as an “opened
door” with significantly larger depth. While
the predicted depth map looks more and more
plausible, the error gradually propagates to the
final prediction (τ = 1) along the denoising
process, indicating the persistent influence of
the large variance. We further quantitatively
measure the predicted depth maps by the ab-
solute mean relative error (AbsRel) on NYUv2
dataset (Silberman et al., 2012). As shown in
Fig. 6, ϵ-prediction exhibits higher error with
much larger variance compared to x0-prediction at the initial denoising steps (τ → T ), and the
prediction error propagates with a higher slope. In contrast, x0-prediction, directly predicting ẑyτ
without any coefficients to amplify the prediction variance, yields more stable and correct dense
predictions than ϵ-prediction. In conclusion, to mitigate the errors from large variance that ad-
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Figure 8: Depth maps w/ and w/o the detail preserver and reconstruction outputs. Fine-tuning
the diffusion model for dense prediction tasks can potentially degrade its ability to generate highly
detailed images, resulting in blurred predictions in regions with rich detail. To preserve these fine-
grained details, we introduce a detail preserver that incorporates an additional reconstruction task,
enhancing the model’s capacity to produce more accurate dense annotations.

versely affect the performance of dense prediction, we replace the standard ϵ-prediction with the
more tailored x0-prediction.

4.2 NUMBER OF TIME-STEPS

Although x0-prediction can improve the prediction quality, the multi-step diffusion formulation still
leads to the propagation of predicted errors during the denoising process (Fig. 5, 6). Furthermore,
utilizing multiple time-steps enhances the model’s capacity, typically requiring large-scale training
data to optimize and is beneficial for complex tasks such as image generation. However, for simpler
tasks like dense prediction, where large-scale, high-quality training data is also scarce, employing
multiple time-steps can make the model difficult to optimize. Additionally, training/inferring a
multi-step diffusion model is slow and computation-intensive, hindering its practical application.

Therefore, to address these challenges, we propose fine-tuning the pre-trained diffusion model with
fewer training time steps. Specifically, the original set of training time-steps is defined as [1, T ] =
{1, 2, 3, . . . , T}, where T denotes the total number of original training time-steps. We fine-tune the
pre-trained diffusion model using a sub-sequence derived from this set. We define the length of this
sub-sequence as T ′, where T ′ ⩽ T and T is divisible by T ′. This sub-sequence is obtained by
evenly sampling the original set at intervals, defined as:

{ti = i · k | i = 1, 2, . . . , T ′}, (5)

where k = T/T ′ is the sampling interval. During inference, the DDIM denoises the sample from
noise to annotation using the same sub-sequence if T ′ ⩽ 50, otherwise we use 50 denoising steps.

As illustrated in Fig. 7, we conduct experiments by varying the number of time-steps T ′ under
x0-prediction. The results clearly show that the performance gradually improves as the number of
time-steps is reduced, no matter the training data scales, culminating in the best result when re-
duced to only a single step. We further consider more strict scenarios with more limited training
data to assess its impact on model optimization. As depicted in Fig. 7, these experiments reveal
that the multi-step formulation is more sensitive to increases in training data scales compared with
single-step. Notably, the single-step formulation consistently yields lower prediction errors and
demonstrates greater stability. Although it is conceivable that multi-step and single-step formula-
tions might achieve comparable performance with unlimited high-quality data, it’s expensive and
sometimes impractical in dense prediction.

Decreasing the number of denoising steps can reduce the optimization space of the diffusion model,
leading to more effective and efficient adaption, as suggested by the above phenomenon. There-
fore, for better adaptation performance under limited resource, we reduce the number of training
time-steps of diffusion formulation to only one, and fixing the only time-step t to T . Addition-
ally, the single-step formulation is much more computationally efficient. It also naturally prevents
the harmful error propagation as discussed in Sec. 4.1, further enhancing the diffusion’s adaptation
performance in dense prediction.
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Figure 9: Depth maps of multiple inferences and uncertainty maps. Areas like the sky, object
edges, and intricate details (e.g., cat whiskers) typically exhibit high uncertainty.

4.3 DETAIL PRESERVER

Despite the effectiveness of the above designs, the model still struggles with processing detailed
areas (Fig. 8, w/o Preserver). The original diffusion model excels at generating detailed images.
However, when adapted to predict dense annotations, it can lose such detailed generation ability, due
to unexpected catastrophic forgetting (Zhai et al., 2023; Du et al., 2024). This leads to challenges in
predicting dense annotations in intricate regions.

To preserve the rich details of the input images, we introduce a novel regularization strategy called
Detail Preserver. Inspired by previous works (Long et al., 2024; Fu et al., 2024), we utilize a task
switcher s ∈ {sx, sy}, enabling the denoiser model fθ to either generate annotation or reconstruct
the input image. When activated by sy , the model focuses on predicting annotation. Conversely,
when sx is selected, it reconstructs the input image. The switcher s is a one-dimensional vector
encoded by the positional encoder and then added with the time embeddings of diffusion model,
ensuring seamless domain switching without mutual interference. This dual capability enables the
diffusion model to make detailed predictions and thus leading to better performance. Overall, the
loss function Lt is:

Lt = ||zx − fθ(z
y
t , z

x, t, sx)||2 + ||zy − fθ(z
y
t , z

x, t, sy)||2, (6)

where t = T and thus zyt is a pure Gaussian noise.

4.4 STOCHASTIC NATURE OF DIFFUSION MODEL
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Figure 10: Inference Pipeline of Lotus. The
noise zyT in bracket is used for Lotus-G and
omitted for Lotus-D.

One major characteristic of generative models is
their stochastic nature, which, in image generation,
enables the production of diverse outputs. In per-
ception tasks like dense prediction, this stochasticity
has the potential to allow the model generating pre-
dictions with uncertainty maps. Specifically, for any
input image, we can conduct multiple inferences us-
ing different initialization noises and aggregate these
predictions to calculate its uncertainty map. Thanks
to our systematic analysis and tailored fine-tuning
protocol, our method effectively reduces excessive
flickering (large variance), only allowing for more
accurate uncertainty calculations in naturally uncertain areas, such as the sky, object edges, and fine
details (e.g. cat whiskers), as shown in Fig. 9.

Most existing perception models are deterministic. To align with these, we can remove the noise
input zyt and only input the encoded image features zx to the U-Net denoiser. The model still
performs well. In this paper, we finally present two versions of Lotus: Lotus-G (generative) with
noise input and Lotus-D (discriminative) without noise input, catering to different needs.
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4.5 INFERENCE

The inference pipeline is illustrated in Fig. 10. We initialize the annotation map with standard
Gaussian noise zyT, and encode the input image into its latent code zx. The noise zyT and the image
zx are concatenated and fed into the denoiser U-Net model. In our single-step formulation, we
set t = T and the switcher to sy . The denoiser U-Net model then predicts the latent code of the
annotation map. The final annotation map is decoded from the predicted latent code via the VAE
decoder. For deterministic prediction, we eliminate the Gaussian noise zyT and only feed the latent
code of the input image into U-Net.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Implementation details. We implement Lotus based on Stable Diffusion V2 (Rombach et al.,
2022), without text conditioning. During training, we fix the time-step t = 1000. For depth estima-
tion, we predict in disparity space, i.e., d = 1/d′, where d represents the values in disparity space
and d′ denotes the true depth. For more details, please see the supplementary materials.

Training Datasets. Both depth and normal estimation are trained on two synthetic dataset covering
indoor and outdoor scenes: ① Hypersim (Roberts et al., 2021) is a photorealistic synthetic dataset
featuring 461 indoor scenes. We use the official training split, which contains approximately 54K
samples. After filtering out incomplete samples, around 39K samples remain, all resized to 576×768
for training. ② Virtual KITTI (Cabon et al., 2020) is a synthetic street-scene dataset with five urban
scenes under various imaging and weather conditions. We utilize four of these scenes for training,
comprising about 20K samples. All samples are cropped to 352× 1216, with the far plane at 80m.

Following Marigold (Ke et al., 2024), we probabilistically choose one of the two datasets and then
draw samples from it for each batch (Hypersim 90% and Virtual KITTI 10%).

Evaluation Datasets and Metrics. ① For zero-shot affine-invariant depth estimation, we evaluate
Lotus on NYUv2 (Silberman et al., 2012), ScanNet (Dai et al., 2017), KITTI (Geiger et al., 2013),
ETH3D (Schops et al., 2017), and DIODE (Vasiljevic et al., 2019) using absolute mean relative
error (AbsRel), and also report δ1 and δ2 values. ② For surface normal prediction, we employ
NYUv2, ScanNet, iBims-1 (Koch et al., 2018), Sintel (Butler et al., 2012) and OASIS (Chen et al.,
2020) datasets, reporting mean angular error (m.) as well as the percentage of pixels with an angular
error below 11.25◦ and 30◦. Please see supplementary materials for further details on the evaluation
datasets and metrics.

5.2 QUANTITATIVE COMPARISONS

① For depth estimation (Tab. 1), Lotus-G demonstrates promising performance across all evaluation
datasets, achieving the overall best rank compared to other generative baselines. Notice that we only
require single step denoising process, significantly boosting the inference speed as shown in Fig. 3.
Lotus-D also performs well, achieving comparable results to DepthAnything series. It is worthy to
notice that Lotus is trained on only 0.059M images compared to DepthAnything’s 62.6M images.
② For normal estimation (Tab. 2), both Lotus-G and Lotus-D outperform all other generative and
discriminative methods in terms of average ranking. Please see the supplementary materials for
Qualitative Comparisons.

5.3 ABLATION STUDY

As shown in Tab. 3, we conduct ablation studies to validate our designs. Starting with “Direct
Adaptation”, we incrementally test the effects of different components, such as parameterization
types, the single-step diffusion process, and the detail preserver. Initially, we train the model using
only the Hypersim dataset to establish a baseline. We then expand the training dataset using a
mixture dataset strategy by including Virtual KITTI, aiming to enhance the model’s generalization
ability across different domains. For depth estimation, we further train the model in the disparity
space to improve the accuracy. The findings from these ablations validate the effectiveness of our
proposed adaptation protocol, demonstrating that each design plays a vital role in optimizing the
diffusion models for dense prediction tasks.
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6 CONCLUSION

In this paper, we introduce Lotus, a diffusion-based visual foundation model for dense prediction.
Through systematic analysis and specifically tailored diffusion formulation, Lotus finds a way to
better fit the rich visual prior from pre-trained diffusion models into dense prediction. Extensive
experiments demonstrate that Lotus achieves promising performance on zero-shot depth and normal
estimation with minimal training data, paving the way of various practical applications.

Table 1: Quantitative comparison on zero-shot affine-invariant depth estimation between Lotus
and SoTA methods. The upper section lists discriminative methods, the lower lists generative ones.
The best and second best performances are highlighted. Lotus-G outperforms all others methods
while Lotus-D is only slightly inferior to DepthAnything. §indicates results revised by ourselves,
following Marigold (Ke et al., 2024). ⋆denotes the method relies on pre-trained Stable Diffusion.

Method Training NYUv2 (Indoor) KITTI (Outdoor) ETH3D (Various) ScanNet (Indoor) DIODE (Various) Avg
Data↓ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ Rank

DiverseDepth 320K 11.7 87.5 - 19.0 70.4 - 22.8 69.4 - 10.9 88.2 - 37.6 63.1 - 10.6
MiDaS 2M 11.1 88.5 - 23.6 63.0 - 18.4 75.2 - 12.1 84.6 - 33.2 71.5 - 10.2
LeRes 354K 9.0 91.6 - 14.9 78.4 - 17.1 77.7 - 9.1 91.7 - 27.1 76.6 - 7.8
Omnidata 12.2M 7.4 94.5 - 14.9 83.5 - 16.6 77.8 - 7.5 93.6 - 33.9 74.2 - 7.5
DPT 1.4M 9.8 90.3 - 10.0 90.1 - 7.8 94.6 - 8.2 93.4 - 18.2 75.8 - 5.8
HDN 300K 6.9 94.8 - 11.5 86.7 - 12.1 83.3 - 8.0 93.9 - 24.6 78.0 - 5.3

GenPercept⋆
§

74K 5.6 96.0 99.2 13.0 84.2 97.2 7.0 95.6 98.8 6.2 96.1 99.1 35.7 75.6 86.6 4.9
Diffusion-E2E-FT⋆ 74K 5.4 96.5 99.1 9.6 92.1 98.0 6.4 95.9 98.7 5.8 96.5 98.8 30.3 77.6 87.9 3.6
DepthAnything V2 62.6M 4.5 97.9 99.3 7.4 94.6 98.6 13.1 86.5 97.5 4.2 97.8 99.3 26.5 73.4 87.1 3.5
Lotus-D (Ours)⋆ 59K 5.1 97.2 99.2 8.1 93.1 98.7 6.1 97.0 99.1 5.5 96.5 99.0 22.8 73.8 86.2 3.0
DepthAnything 62.6M 4.3 98.1 99.6 7.6 94.7 99.2 12.7 88.2 98.3 4.3 98.1 99.6 26.0 75.9 87.5 2.4

GeoWizard⋆
§

280K 5.6 96.3 99.1 14.4 82.0 96.6 6.6 95.8 98.4 6.4 95.0 98.4 33.5 72.3 86.5 3.3
Marigold(LCM)

⋆§ 74K 6.1 95.8 99.0 9.8 91.8 98.7 6.8 95.6 99.0 6.9 94.6 98.6 30.7 77.5 89.3 2.9
Marigold⋆ 74K 5.5 96.4 99.1 9.9 91.6 98.7 6.5 95.9 99.0 6.4 95.2 98.8 30.8 77.3 88.7 2.1
Lotus-G (Ours)⋆ 59K 5.4 96.8 99.2 8.5 92.2 98.4 5.9 97.0 99.2 5.9 95.7 98.8 22.9 72.9 86.0 1.3

Table 2: Quantitative comparison on zero-shot surface normal estimation between Lotus and
SoTA methods. Discriminative methods are shown in the upper section, generative methods in the
lower. Both Lotus-D and Lotus-G outperform all other methods. ‡refers the Marigold normal
model as detailed in this link. ⋆denotes the method relies on pre-trained Stable Diffusion.

Method Training NYUv2 (Indoor) ScanNet (Indoor) iBims-1 (Indoor) Sintel (Outdoor) OASIS (Various) Avg.
Data↓ m.↓ 11.25◦↑ 30◦↑ m.↓ 11.25◦↑ 30◦↑ m.↓ 11.25◦↑ 30◦↑ m.↓ 11.25◦↑ 30◦↑ m.↓ 11.25◦↑ 30◦↑ Rank

OASIS 110K 29.2 23.8 60.7 32.8 15.4 52.6 32.6 23.5 57.4 43.1 7.0 35.7 - - - 7.8
Omnidata 12.2M 23.1 45.8 73.6 22.9 47.4 73.2 19.0 62.1 80.1 41.5 11.4 42.0 24.9 31.0 71.4 5.9
EESNU 2.5M 16.2 58.6 83.5 - - - 20.0 58.5 78.2 42.1 11.5 41.2 27.7 24.0 66.6 5.8
GenPercept§⋆ 74K 18.2 56.3 81.4 17.7 58.3 82.7 18.2 64.0 82.0 37.6 16.2 51.0 26.3 26.9 71.1 4.9
Omnidata V2 12.2M 17.2 55.5 83.0 16.2 60.2 84.7 18.2 63.9 81.1 40.5 14.7 43.5 24.2 27.7 74.2 4.4
DSINE 160K 16.4 59.6 83.5 16.2 61.0 84.4 17.1 67.4 82.3 34.9 21.5 52.7 24.4 28.8 72.0 3.1
Diffusion-E2E-FT§⋆ 74K 16.5 60.4 83.1 14.7 66.1 85.1 16.1 69.7 83.9 33.5 22.3 53.5 23.2 29.4 74.5 1.9
Lotus-D (Ours)⋆ 59K 16.2 59.8 83.9 14.7 64.0 86.1 17.1 66.4 83.0 32.3 22.4 57.0 22.3 31.8 76.1 1.4

Marigold‡⋆ 74K 20.9 50.5 - 21.3 45.6 - 18.5 64.7 - - - - - - - 3.6
GeoWizard§⋆ 280K 18.9 50.7 81.5 17.4 53.8 83.5 19.3 63.0 80.3 40.3 12.3 43.5 25.2 23.4 68.1 3.1
StableNormal§⋆ 250K 18.6 53.5 81.7 17.1 57.4 84.1 18.2 65.0 82.4 36.7 14.1 50.7 26.5 23.5 68.7 2.1
Lotus-G (Ours)∗ 59K 16.5 59.4 83.5 15.1 63.9 85.3 17.2 66.2 82.7 33.6 21.0 53.8 22.7 29.4 75.8 1.0

Table 3: Ablation studies on the step-by-step design of our adaptation protocol for fitting pre-trained
diffusion models into dense prediction. Here we show the results in monocular depth estimation.

Method Training NYUv2 (Indoor) KITTI (Outdoor) ETH3D (Various) ScanNet (Indoor)
Data AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑

Direct Adaptation 39K 11.551 87.692 96.122 20.164 70.403 90.996 19.894 76.464 87.960 15.726 78.885 93.651
+ x0-prediction 39K 8.332 92.769 97.941 17.008 74.969 93.611 11.075 87.952 94.978 10.212 89.130 97.181
+ Single Time-step 39K 5.587 96.272 99.113 13.262 83.210 97.237 7.586 94.143 97.678 6.262 95.394 98.791
+ Detail Preserver 39K 5.555 96.303 99.118 13.170 83.657 97.454 7.147 95.000 98.058 6.201 95.470 98.814

+ Mixture Dataset 59K 5.425 96.597 99.156 11.324 87.692 97.780 6.172 96.077 98.980 6.024 96.026 99.730
↪→− Noise Input 59K 5.334 96.729 99.198 9.334 92.813 98.795 6.846 95.290 98.899 5.982 96.287 99.087

+ Disparity Space (Lotus-G) 59K 5.379 96.736 99.155 8.521 92.206 98.374 5.878 97.024 99.233 5.925 95.727 98.839
↪→− Noise Input (Lotus-D) 59K 5.123 97.182 99.134 8.117 93.097 98.654 6.147 96.964 99.077 5.494 96.534 99.039
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