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A EXPERIMENTAL SETTINGS

A.1 IMPLEMENTATION DETAILS

We implement Lotus based on Stable Diffusion V2 (Rombach et al., 2022), with text conditioning
disabled. During training, we fix the time-step t = 1000. To optimize the model, we utilize the
standard Adam optimizer with the learning rate 3 × 10−5. All experiments are conducted on 8
NVIDIA A800 GPUs and the total batch size is 128. For our discriminative variant, we train for
4,000 steps, which takes ∼8.1 hours, while for the generative variant, we extend training to 10,000
steps, requiring ∼20.3 hours.

A.2 EVALUATION DATASETS AND METRICS

Evaluation Datasets. ① For affine-invariant depth estimation, we evaluate on 4 real-world datasets
that are not seen during training: NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al., 2017)
all contain images of indoor scenes; KITTI (Geiger et al., 2013) contains various outdoor scenes;
ETH3D (Schops et al., 2017), a high-resolution dataset, containing both indoor and outdoor scenes.
② For surface normal prediction, we employ 4 datasets for evaluation: NYUv2 (Silberman et al.,
2012), ScanNet (Dai et al., 2017), and iBims-1 (Koch et al., 2018) contain real indoor scenes; Sin-
tel (Butler et al., 2012) contains highly dynamic outdoor scenes.

Metrics. ① For affine-invariant depth, we follow the evaluation protocol from (Ranftl et al., 2020;
Ke et al., 2024; Yang et al., 2024a;b), aligning the estimated depth predictions with available ground
truths using least-squares fitting. The accuracy of the aligned predictions is assessed using the
absolute mean relative error (AbsRel), i.e., 1

M

∑M
i=1 |ai − di|/di, where M is the total number of

pixels, ai is the predicted depth map and di represents the ground truth. We also report δ1 and δ2,
the proportion of pixels satisfying Max(ai/di, di/ai) < 1.25 and < 1.252 respectively.

② For surface normal, following (Bae & Davison, 2024; Ye et al., 2024), we evaluate the predictions
of Lotus by measuring the mean angular error for pixels with available ground truth. Additionally,
we report the percentage of pixels with an angular error below 11.25◦ and 30◦.

For all tasks, we report the Avg. Rank, which indicates the average ranking of each method across
various datasets and evaluation metrics. A lower value signifies better overall performance.

B DETAILS OF DIRECT ADAPTION

As illustrated in Fig. 4 of the main paper, our Direct Adaption means directly adapting the standard
diffusion formulation for dense prediction task with minimal modifications. Specifically, starting
with the pre-trained Stable Diffusion model, image x and annotation y are encoded using the pre-
trained VAE encoder. Noise is added to the encoded annotation to obtain the noisy annotation zyt
at noise level t ∈ [1, T ]. The encoded image zx is then concatenated with the noisy annotation
zyt to form the input of the denoiser U-Net model. To handle this concatenated input, the U-Net
input layer is duplicated (from 4 channels to 8 channels) and its original weights are halved as
initialization, which prevents activation inflation (Ke et al., 2024). Direct Adaptation is optimized
using the standard multi-step formulation the standard diffusion objective, ϵ-prediction, as described
in Eq. 2 of the main paper. To analyze the original diffusion formulation more effectively, we avoid
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specialized techniques introduced in prior methods (Ke et al., 2024; Fu et al., 2024; Xu et al., 2024;
Ye et al., 2024), such as annealed multi-resolution noise and test-time ensembling.

C ANALYSIS OF “DIRECTION(zyτ )” IN DDIM PROCESS (EQ. 4)

In addition to the predicted clean sample ẑyτ , Eq. 4 of the main paper includes another term,
“direction(zyτ )”. It is calculated according to different parameterization types:

ϵ-prediction: d = wτ · f ϵ
θ

x0-prediction: d = wτ · [ 1√
1− ατ

(zyτ −
√
ατf

z
θ)]

(A)

where d represents the term “direction(zyτ )”, wτ =
√
1− ατ−1 is the weight at denoising step τ .

And f ϵ
θ and f z

θ denote the model outputs for different parameterizations. For clarity, the input of
the model fθ is omitted. As shown in Eq. A, for x0-prediction, when τ → 1, i.e., at the end of
the denoising process, the factor

√
1− ατ → 0, which may amplify variance from f z

θ . However,
its influence is limited. The reasons are as follows: ① The rate of change of

√
1− ατ from T to

1 is initially slow and then accelerates. As a result, the factor remains close to 1 for most of the
denoising process, only close to 0 in the final steps. ② In x0-prediction, compared to the initial
denoising steps, the gap between network output fz

θ and zyτ in the final steps is much weaker and
gradually approaching zero. With

√
ατ → 1 as τ → 1, we can get zyτ −

√
ατf

z
θ → 0, which may

also indicate the limited influence of factor
√
1− ατ .
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Figure A: Quantitative evaluation of the pre-
dicted depth maps ẑyτ along the denoising pro-
cess. The experimental settings are same as Fig. 5
and 6. Six steps are selected for illustration. The
banded regions around each line indicate the vari-
ance, wider areas representing larger variance.

In sec. 4.1, we discussed two basic parameter-
ization types: ϵ-prediction and x0-prediction.
The latest parameterization, v-prediction (Sal-
imans & Ho, 2022), combines these two ba-
sic parameterizations to avoid the invalid pre-
diction values of ϵ-prediction at some time-
steps for progressive distillation. Specifically,
the U-Net denoiser model fθ learns to predict
the combination of added noise ϵ and the clean
sample zy: v =

√
ατ ϵ −

√
1− ατz

y, where√
ατ

2
+

√
1− ατ

2
= 1. During inference,

according to the Eq. 4 of main paper, the pre-
diction ẑyτ =

√
ατz

y
τ −

√
1− ατf

v
θ , where f v

θ
represents the predicted combination, striking
a balance between ϵ (ϵ-prediction) and zy (x0-
prediction). As shown in Fig. A, we conduct
experiments based on the settings in Fig. 5 and
6 of the main paper. The results indicate that
the performance of v-prediction falls between that of x0-prediction and ϵ-prediction, with moderate
variance. However, for dense prediction tasks, minimizing variance is crucial to avoid unstable pre-
diction. Therefore, v-prediction may not be the optimal choice. In contrast, x0-prediction achieves
the best performance with the lowest variance, which is why we replace the standard ϵ-prediction
with the more suitable x0-prediction.

E QUALITATIVE COMPARISONS

In Fig. B, we further compare the performance of our Lotus with other methods in detailed areas.
The quantitative results obviously demonstrate that our method can produce much finer and more ac-
curate depth predictions, particularly in complex regions with intricate structures, which sometimes
cannot be reflected by the metrics. Also, as illustrated in Fig. C, Lotus consistently provides accu-
rate surface normal predictions, effectively handling complex geometries and diverse environments,
highlighting its robustness on fine-grained prediction.

2
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Figure B: Qualitative comparison on zero-shot affine-invariant depth estimation. Lotus demon-
strates higher accuracy especially in detailed areas.
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Figure C: Qualitative comparison on zero-shot surface normal estimation. Lotus offers im-
proved accuracy particularly in complex regions.
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F EXPERIMENTS ON MORE DENSE PREDICTION TASKS:
SEMANTIC SEGMENTATION AND DIFFUSE REFLECTANCE

Input Image Ground Truth Prediction

(a) Semantic Segmentation

Ground Truth Prediction

(b) Diffuse Reflectance

Figure D: Experiments of Lotus on (a) semantic segmentation and (b) diffuse reflectance. The
high-quality results indicate that our method, even without task-specific designs, can be effectively
applied not only to geometric dense prediction tasks, but also to semantic dense prediction tasks.

Table A: The quantitative results of seman-
tic segmentation on Hypersim (Roberts et al.,
2021) testing set. Mean values are reported
from 10 independent runs.

Method mIoU ↑ mAcc ↑
Direct Adaption 14.1 61.3
Lotus-G 21.2 65.6

Table B: The quantitative results of diffuse
reflectance prediction on Hypersim (Roberts
et al., 2021) testing set. Mean values are re-
ported from 10 independent runs.

Method L1 ↓ L2 ↓
Direct Adaption 0.198 0.206
Lotus-G 0.109 0.135

To validate the generalization ability of our method on other dense prediction tasks, we further
train it on semantic segmentation and diffuse reflectance prediction. Both tasks are trained using
the training set of the Hypersim dataset (Roberts et al., 2021) and evaluated on their corresponding
test sets. For semantic segmentation, we report the mean intersection over union (mIoU) and mean
accuracy (mAcc). For diffuse reflectance prediction, we evaluate using the L1 and L2 distances to
the ground truth. To enable fast evaluation, we randomly select 500 paired testing samples. In our
experiments, we do not redesign any specific modules or loss functions for these tasks and maintain
the original training protocol of Lotus unchanged. As shown in Tab. A and Tab. B, we compare our
method with the baseline, Direct Adaption (Fig. 4 in the main paper), to assess its effectiveness.
The results show that our method outperforms the baseline across all metrics. Additionally, we
provide qualitative visualizations for these two tasks in Fig. D, demonstrating accurate and high-
quality results. Both the quantitative and qualitative results indicate that our method, even without
task-specific designs, can be effectively applied not only to geometric dense prediction tasks, as
shown in the main paper, but also to semantic dense prediction tasks.
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G FREQUENCY DOMAIN ANALYSIS OF THE DETAIL PRESERVER
TAKE MONOCULAR DEPTH ESTIMATION AS AN EXAMPLE

We use fast Fourier transform (FFT) to compute the Discrete Fourier Transform (DFT) of the input
images and depth map estimations with and without Detail Preserver. The entire 2D frequency
domains are divided into 8 frequency groups exponentially using the base of 2, i.e., the first group
covers the 2D frequency map in a circle with a radius of 2, the second group covers the annular region
with radii from 2 to 4, the third group covers radii from 4 to 8, and so on. This exponential grouping
allows us to analyze the frequency components across progressively larger ranges, capturing both
low-frequency and high-frequency characteristics.

(a) Frequency domain energy distribution compar-
isons among input image, and depth estimations w/
and w/o Detail Preserver.

(b) Frequency domain energy ratio between the depth
estimations w/ and w/o Detail Preserver.

(c) Frequency energy ratio between
input image and GT depth.

(d) Frequency energy ratio be-
tween input image and depth es-
timations w/ Detail Preserver.

(e) Frequency domain energy ra-
tio between the input image and
depth estimations w/o Detail Pre-
server.

Figure E: Frequency Domain Analysis of the Detail Preserver We use Hypersim (Roberts et al.,
2021) dataset to transfer the input image and depth estimation w/ and w/o Detail Preserver into 2D
frequency domains, using FFT. 100 pairs of {input image, depth estimation w/ Detail Preserver,
depth estimation w/o Detail Preserver} are randomly selected for this frequency domain analysis.
Hypersim is a photorealistic synthetic dataset. Not only can Hypersim offer dense GT labels without
None areas (which is important during FFT), its depth annotations are much fine-grained compared
with real-world datasets like NYUv2 (Silberman et al., 2012) and KITTI Geiger et al. (2013).

In order to more clearly demonstrate the effect of our proposed Detail Preserver, we first analysis
the experiments using Hypersim (Roberts et al., 2021) dataset to display the difference in frequency
domain energy between the details from both geometry and texture (the input images); and the
details from purely the geometry (the GT depth maps). As shown in Fig. Ec, the frequency domain
energy between the input images and the depth annotations are plotted. Clearly we can see that the
input images has much higher frequency energy in high-frequency areas, i.e., group 4, 5, 6, and 7,
indicating that the details in surface textures mainly contribute to high-frequency energy; while the
details in geometries, which can be expressed by depth maps, are mainly concentrated into (relative)
middle and low frequency areas, i.e., group 0, 1, 2, and 3.
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As shown in Fig. Ea and Eb, collaborating with the Detail Preserver effectively drag the frequency
domain energy of depth estimation to the input image, especially on middle and low frequency
domains, i.e., the frequency group 0, 1, 2 and 3, highlighting the Detail Preserver’s effectiveness
in enhancing the geometrical details that should be reflected into depth predictions, like the fences
around roads and houses (Fig. 8 of our main paper).While for high-frequency components, i.e.,
the frequency group 4, 5, 6, and 7, which may be primarily caused by the highly detailed textures,
like the signs on the road and patterns on house surfaces, the energy in these areas between depth
estimations with and without Detail Preserver is quite similar, indicating that the Detail Preserver
does not copy this high-frequency and geometry-independent texture.

By comparing Fig. Ec, Ed and Ee together, we can see that Detail Preserver effectively enhances the
details of geometries. This insight is evident by this phenomenon: the frequency domain energy ratio
between input and depth estimation w/ Detail Preserver, is closer to the frequency domain energy
ratio between input and GT depth, compared with the frequency domain energy ratio between input
and depth estimation w/o Detail Preserver.

H EVALUATE THE LOTUS-G GIVEN RANDOMNESS &
LOTUS’S PERFORMANCE ON DIODE AND OASIS

To ensure a fairer comparison, we re-evaluate the performance of Lotus-G given 10 independent
runs under different seeds, the metric values are reported in “mean (±std)” format. Please see Tab. C
for the Lotus-G’s results in depth estimation, using true-depth space. Please see Tab. D for the Lotus-
G’s results in depth estimation, using disparity space, which delivers better results compared with
true-depth space, becoming the new SoTA in diffusion-based depth estimation. Please see Tab. G
for the Lotus-G’s results in normal estimation.

Table C: Lotus-G’s results in zero-shot affine-invariant depth estimation, using true-depth
space. 10 independent runs are conducted for calculating the mean and std value. The results
on DIODE is also reported.

Dataset AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

DIODE 0.3311 (±1.4285e-04) 3.8836 (±1.3504e-03) 0.7360 (±4.4283e-04) 0.8764 (±5.4613e-04) 0.9304 (±1.4050e-04)

ETH3D 0.0617 (±1.9343e-04) 0.5806 (±9.8765e-04) 0.9605 (±4.3380e-04) 0.9897 (±8.3054e-05) 0.9957 (±7.8772e-05)

KITTI 0.1134 (±5.8194e-05) 3.5379 (±8.9554e-04) 0.8771 (±1.3912e-04) 0.9776 (±6.6427e-05) 0.9930 (±4.0593e-05)

NYUv2 0.0542 (±1.0072e-04) 0.2220 (±1.5572e-04) 0.9661 (±2.5504e-04) 0.9915 (±7.9410e-05) 0.9978 (±2.9075e-05)

ScanNet 0.0603 (±1.7740e-04) 0.1597 (±3.5362e-04) 0.9590 (±1.4926e-04) 0.9893 (±2.3924e-04) 0.9972 (±1.0019e-04)

Table D: Lotus-G’s results in zero-shot affine-invariant depth estimation, using disparity space,
following DepthAnything (Yang et al., 2024a;b) series. 10 independent runs are conducted for
calculating the mean and std value. Compared with Lotus-G in true-depth space, training in disparity
further enhances the performance. The results on DIODE is also reported.

Dataset AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

DIODE 0.2509 (±1.5425e-03) 6.1306 (±7.8108e-02) 0.7197 (±8.6626e-04) 0.8563 (±3.2173e-04) 0.9183 (±3.1710e-04)

ETH3D 0.0638 (±7.9699e-04) 2.3297 (±1.0081e-01) 0.9668 (±1.5741e-04) 0.9906 (±1.1455e-04) 0.9959 (±1.2229e-04)

KITTI 0.0894 (±6.3731e-05) 4.0143 (±4.3817e-03) 0.9196 (±1.9631e-04) 0.9834 (±7.4731e-05) 0.9962 (±4.5661e-05)

NYUv2 0.0540 (±7.1042e-05) 0.2574 (±4.9001e-04) 0.9684 (±1.2029e-04) 0.9919 (±1.0664e-04) 0.9972 (±2.9471e-05)

ScanNet 0.0603 (±3.0487e-04) 0.1770 (±8.4571e-04) 0.9565 (±6.6393e-04) 0.9887 (±3.7136e-04) 0.9966 (±8.8298e-05)

Table E: Lotus-D’s results in zero-shot affine-invariant depth estimation, using true-depth
space. Here we report the additional results evaluated on DIODE dataset.

Dataset AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

DIODE 0.3258 3.9068 0.7442 0.8816 0.9341
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Table F: Lotus-D’s results in zero-shot affine-invariant depth estimation, using disparity space.
Here we report the additional results evaluated on DIODE dataset.

Dataset AbsRel↓ RMSE↓ δ1↑ δ2↑ δ3↑

DIODE 0.2473 6.2254 0.7269 0.8579 0.9190

Table G: Lotus-G’s results in zero-shot surface normal estimation. 10 independent runs are
conducted for calculating the mean and std value. The results on OASIS is also reported.

Dataset Mean↓ Med.↓ 11.5◦↑ 22.5◦↑ 30.0◦↑

iBims-1 17.4988 (±2.7417e-02) 30.7278 (±2.5334e-02) 66.0755 (±1.2659e-01) 79.0048 (±5.5158e-02) 82.6573 (±4.3533e-02)

NYUv2 16.9408 (±6.8807e-03) 26.5460 (±1.0066e-02) 59.1155 (±1.7356e-02) 77.3557 (±5.5966e-03) 83.2440 (±6.5455e-03)

OASIS 24.9383 (±1.8569e-02) 33.5827 (±4.8186e-02) 27.6380 (±7.0119e-02) 59.9048 (±4.4011e-02) 73.0071 (±5.2791e-02)

ScanNet 15.2911 (±3.0187e-02) 24.6885 (±7.0719e-02) 63.9744 (±4.0399e-02) 80.2099 (±3.6255e-02) 85.2410 (±7.3020e-02)

Sintel 35.2239 (±5.1357e-02) 45.2638 (±9.9847e-02) 19.8710 (±3.6971e-02) 42.1712 (±1.5937e-02) 54.7647 (±1.4493e-02)

Table H: Lotus-D’s results in surface normal estimation. Here we report the additional results
evaluated on OASIS dataset.

Dataset Mean↓ Med.↓ 11.5◦↑ 22.5◦↑ 30.0◦↑

OASIS 25.6502 18.7791 27.5248 58.7390 71.6746

For monocular depth estimation, no matter in true-depth space (Tab. C) and disparity space (Tab. D),
the variance is usually in e−3 ∼ e−5, which is ignorable. While in normal estimation, as illustrated
in Tab. G, though the variance is lager, the mean values correspond to the Tab. 2 of main paper
correctly. We also report the performance evaluated on additional benchmarks: DIODE (Tab. E, and
F) and OASIS (Tab. H), for depth and normal estimation, respectively.

I COMPARISON BETWEEN LOTUS-G AND DIFFUSION-E2E-FT

Please see Tab. I for the comparisons between Lotus-G and Diffusion-E2E-FT (Garcia et al., 2024)
in monocular depth estimation.

Table I: Quantitative comparison on zero-shot affine-invariant depth estimation between Lotus-
G and Diffusion-E2E-FT (Garcia et al., 2024). The best and second best performances are
highlighted. Lotus-G outperforms Diffusion-E2E-FT. Here we copy the metrics from the original
Diffusion-E2E-FT paper. Rankings are calculated on AbsRel↓, δ1↑, and training data.

Method Training NYUv2 (Indoor) KITTI (Outdoor) ETH3D (Various) ScanNet (Indoor) DIODE (Various) Avg.
Data AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ AbsRel↓ δ1↑ δ2↑ Rank

Lotus-G-Depth 59K 5.4 96.6 99.2 11.3 87.7 97.8 6.2 96.1 99.0 6.0 96.0 99.0 33.1 73.6 87.6 2.0

Diffusion-E2E-FT 74K 5.4 96.5 - 9.6 92.1 - 6.4 95.9 - 5.8 96.5 - 30.3 77.6 - 1.7

Lotus-G-Disparity 59K 5.4 96.8 99.2 8.9 92.0 98.3 6.4 96.7 99.1 6.0 95.7 98.9 25.1 71.2 85.6 1.6

J THE EFFECT OF DIFFERENT TIME-STEPS t IN ONE-STEP DIFFUSION

In Sec. 4.2 of our main paper, we reduce the number of training time-steps of diffusion formulation
to only one, and fixing the only time-step t to T . In this section, we evaluate the effect of different
time-steps t in one-step diffusion, rather than exclusively fixing t = T . Since our model follows
the diffusion formulation, which predicts the annotation starting from noise in one step, the input to
the denoiser model remains the concatenation of Gaussian noise and the image latent. As shown in
Tab. J, we conduct experiments on Hypersim dataset (Roberts et al., 2021) and evaluated on NYUv2
dataset (Silberman et al., 2012), without employing the detail preserver or mixture dataset training.
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The results indicate that the model performs best when t = T (t = 1000). Changing t leads to a
slight degradation in performance.

Table J: The effect of different time-steps t in one-step diffusion. In this experiment, the models
are trained on Hypersim dataset (Roberts et al., 2021) and evaluated on NYUv2 dataset (Silberman
et al., 2012), without employing the detail preserver or mixture dataset training.

Time-step t = 1000 t = 750 t = 500 t = 250 t = 1

AbsRel ↓ 5.587 5.631 5.727 5.663 5.737
δ1 ↑ 96.272 96.165 96.087 96.141 96.080

K APPLICATIONS OF LOTUS

Thanks to its superiority, Lotus can seamlessly support a variety of applications. Fig. F illustrates
four key applications: ① Depth to Point Cloud. The depth maps estimated by Lotus are projected
into 3D point clouds; ② Joint Estimation. By incorporating a task switcher, Lotus can perform
multiple tasks simultaneously, such as joint depth and normal map estimation with 100% shared
network parameters; ③ Single-View Reconstruction. Using Lotus’s normal predictions, high-quality
meshes can be reconstructed through through Bilateral Normal Integration (Cao et al., 2022); ④
Multi-View Reconstruction. Leveraging per-view depth and normal predictions from Lotus, high-
quality meshes can be reconstructed with MonoSDF (Yu et al., 2022), without RGB supervision,
showcasing Lotus’s robustness and accurate spatial understanding. These applications emphasize
the importance of Lotus in the field of computer vision. Its accuracy and efficiency will help in
addressing increasingly complex problems.

Figure F: Applications of Lotus. ① Depth to 3D Point Clouds. ② Joint Estimation: Simultaneous
depth and normal estimation with 100% shared parameters. ③ Single-View Reconstruction: Re-
constructing 3D meshes from normal predictions. ④ Multi-View Reconstruction: Reconstructing
high-quality meshes using depth/normal predictions without RGB supervision.

L FUTURE WORK

While we have applied Lotus to two geometric dense prediction tasks, it can be seamlessly adapted
to other dense prediction tasks requiring per-pixel alignment with great potential, such as panoramic

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

segmentation and image matting. Additionally, our performance is slightly behind DepthAny-
thing (Yang et al., 2024a) which utilizes large-scale training data. In the future, scaling up the
training data, as reveal in Fig. 7 and Tab. 3 (“Mixture Dataset”) of the main paper, has great poten-
tial to further enhance Lotus’s performance.
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