
AI4X 2025, Singapore, 8–11 July 2025
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1. Introduction
Machine-learning interatomic potentials (MLIPs)

have become a reliable tool in computational mate-
rials science. Since 2020, many MLIPs that explic-
itly includemagneticmoments have been developed
and used for investigating magnetic materials (see,
e.g. the papers [1, 2, 3], where the Curie and the Neel
temperatures were predicted with magnetic MLIPs
for different magnetic materials).
In this work, we use one class of magnetic MLIPs,

namely, collinear magnetic moment tensor poten-
tials (mMTPs), to investigate the Fe-Al and CrN sys-
tems. Magnetic MTPs were proposed in [4] for
single-component magnetic systems and then gen-
eralized to the case of multi-component magnetic
materials [5]. To create training sets needed to fit
mMTPs, we use spin-polarized density functional
theory (DFT) with hard constraints onmagnetic mo-
ments [6].

2. Fe-Al
We appliedmMTP to investigate the bcc Fe-Al sys-

tem with different concentrations of Al and Fe and
different ways in which Al and Fe atoms occupy the
supercell sites. We demonstrated that the equilib-
rium magnetic moments of the unit cell and the
equilibrium lattice parameters (see Fig. 1) for dif-
ferent Fe-Al structures calculated with mMTPs are
in good correspondencewith the ones obtainedwith
DFT. We also showed that the theoretical calcula-
tions conducted in this study qualitatively reproduce
the experimentally observed anomalous volume-
composition dependence in the Fe-Al system at T =
300 K (see Fig. 1). A detailed description of our study
on the Fe-Al system is provided in [7].

3. CrN
Another material investigated in this study with

mMTP is chromium nitride (CrN) in the B1 phase
(rock-salt structure) in the paramagnetic state (B1-
CrN). To automate the creation of a training set
needed for fitting mMTP, we generalized the active
learning (AL) algorithm originally proposed in [9]
for non-magnetic MTP to accommodate mMTP. The
scheme of the AL process is illustrated in Fig. 2.
To describe the paramagnetic state, we averaged

over different randomly disordered collinear mag-
netic states. Using the actively trained mMTP in
the paramagnetic state, we calculated the elastic
constants and phonon spectrum (see Fig. 3) and
demonstrated that these properties predicted with
our mMTP align closely with those obtained with

Fig. 1: Lattice parameters calculated at T = 0 K and
T = 300 K using mMTP. Experimental points at
T = 300 K are taken from [8] and DFT calculations
were obtained at T = 0K. This figure is taken from
the paper [7].
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Fig. 2: Protocol of magnetic MTP active training.

DFT. In addition, we used the quasi-harmonic ap-
proximation to predict thermal properties, namely,
the lattice thermal expansion coefficient (see Fig.
4) and the specific heat capacity of paramagnetic
B1-CrN. Both thermal properties predicted with the
mMTP are in good agreement with experimental re-
sults. A detailed description of our study on the CrN
system can be found in [10].
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Fig. 3: Phonon spectrum for B1-CrN in the paramag-
netic state obtained with the fitted mMTP (solid
lines) and DFT [11].

Fig. 4: Linear thermal expansion coefficient for B1-
CrN in the paramagnetic state obtained with the
fitted mMTP (dashed and solid line) and experi-
mentally [11].
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