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ABSTRACT

Many applications of imitation learning require the agent to avoid mode collapse and
mirror the full distribution of observed behaviours. Existing methods that address this
distributional realism typically rely on hierarchical policies conditioned on sampled types
that model agent-internal features like persona, goal, or strategy. However, these methods
are often inappropriate for stochastic environments, where internal and external factors of
influence on the observed agent trajectories have to be disentangled, and only internal factors
should be encoded in the agent type to be robust to changing environment conditions. We
formalize this challenge as distribution shifts in the marginal and conditional distributions
of agent types under environmental stochasticity, in addition to the familiar covariate shift in
state visitations. We propose Robust Type Conditioning (RTC), which eliminates these shifts
with adversarial training under randomly sampled types. Experiments on two domains,
including the large-scale Waymo Open Motion Dataset, show improved distributional
realism while maintaining or improving task performance compared to state-of-the-art

baselines.

1 INTRODUCTION

Learning to imitate behaviour is crucial when reward design is in-
feasible (Amodei et al.l [2016; [Hadfield-Menell et al., 2017 [Fu et al.]
2018} [Everitt et al.,[2021)), for overcoming hard exploration problems
(Rajeswaran et al.,[2017;[Zhu et al.} 2018)), and for realistic modelling
of dynamical systems with multiple interacting agents

Foleyl [2009). Such systems, including games, driving simulations,
and agent-based economic models, often have known state transition

functions, but require accurate agents to be realistic. For example,
for driving simulations, which are crucial for accelerating the devel-
opment of autonomous vehicles (Suo et al.l 2021} gl et al. [2022),
faithful reactions of all road users are paramount. Furthermore, it is
not enough to mimic a single mode in the data; instead, agents must
reproduce the full distribution of behaviours to avoid sim2real gaps
in modelled systems (Grover et al.} 2018}, [Liang et al.,[2020), under-
explored solutions in complex tasks (Vinyals et al, and subop-
timal policies in games requiring mixed strategies [1950).

Current imitation learning (IL) methods fall short of achieving such
distributional realism by matching all modes in the data. The re-

Figure 1: Realised trajectories depend on
the internal agent type, expressing goals
and preferences, and external factors such
as the behaviour of other agents.

quired stochastic policy cannot be recovered from a fixed reward function and adversarial methods, while
aiming to match the distribution in principle, exhibit mode collapse in practice. Furthermore, progress on
distributional realism is hindered by a lack of suitable IL benchmarks, with most relying on unimodal data
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and only evaluating per-episode task performance (as measured by rewards), but not mode coverage. By
contrast, many applications require distributional realism in addition to good task performance. For example,
accurately evaluating the safety of autonomous vehicles in simulation relies on distributionally realistic agents.
Consequently, our goal is to improve distributional realism while maintaining strong task performance.

To mitigate mode collapse in complex environments, previous work uses hierarchical policies in an auto-
encoder framework (Wang et al.l 2017} [Suo et al., [2021}; gl et al., 2022). During training, an encoder infers
latent variables from observed trajectories and the agent, conditioned on those latent variables, strives to
imitate the original trajectory. At test time, a prior distribution proposes distributionally realistic latent values,
without requiring access to privileged future information. We refer to this latent vector as an agent’s inferred
type since it expresses intrinsic characteristics of the agent that yield the multimodal behaviour. Depending
on the environment, the fype could, for example, represent the agent’s persona, belief, goal, or strategy.

However, these hierarchical methods rely on either manually designed type representations (Igl et al., [2022)
or the strong assumption that all stochasticity in the environment can be controlled by the agent (Wang et al.}
2017;Suo et al., 2021). Unfortunately, this assumption is violated in most realistic scenarios. For example,
in the case of driving simulations (fig. [T, trajectories depend not only on the agent’s type, expressing its
driving style and intent, but also on external factors such as the behaviour of other road users. Crucially,
despite being inferred from future trajectories during training, agent types must be independent of these
external factors to avoid leaking information about future events outside the agent’s control, which in turn can
impair generalization at test time under changed, and ex-ante unknown, environmental conditions. In other
words, the challenge in learning hierarchical policies using IL in stochastic environments is to disentangle
the internal and external factors of influence on the trajectories and only encode the former into the type.

Consider the example of an expert approaching an intersection at the same time as another car. The expert
passes if the other car brakes and yields to it otherwise. To reconstruct the scene with ease, a naively trained
latent model would not only encode the agent’s intended direction (an internal decision) but also whether to
yield, which depends on the other car (an external factor). This is catastrophic at test time when the latent,
and hence the yielding decision, is sampled independently of the other car’s behaviour. In contrast, if only the
expert’s intent were encoded in the latent, the policy would learn to react appropriately to external factors.

In this paper, we identify these subtle challenges arising under stochastic environments and formulate them
as two new forms of distribution shift for hierarchical policies. Unlike the familiar covariate shift in the
state distribution (Ross et al., [2011)), these marginal and conditional type shifts occur in the distribution of
the inferred latent type. They greatly reduce performance by yielding causally confused agents that rely on
the latent type for information about external factors, instead of inferring them from the latest environment
observation. We propose Robust Type Conditioning (RTC) to eliminate these distribution shifts and avoid
causally confused agents through a coupled adversarial training objective under randomly sampled types. We
do not require access to an expert, counterfactuals, or manually specified type labels for trajectories.

Experimentally, we show the need for improved distributional realism due to mode collapse in state-of-the-art
imitation learning techniques such as GAIL (Ho and Ermon, 2016). Furthermore, we show that naively trained
hierarchical models with inferred types improve distributional realism, but exhibit poor task performance
in stochastic environments. By contrast, RTC can maintain good task performance in stochastic environments
while improving distributional realism and mode coverage. We evaluate RTC on the illustrative Double Goal
Problem as well as the large scale Waymo Open Motion Dataset (Ettinger et al.,[2021) of real driving behaviour.

2 BACKGROUND

We are given a dataset D = {7;} ¥, of N trajectories 7; = sgi), aéi)7 .. sg), drawn from p(7) of one or more
experts interacting with a stochastic environment p(s;1|s¢, a;) where s; € S are states and a; € A are
actions. Our goal is to learn a policy g (a¢|s;) to match p(7) when replacing the unknown expert and generat-
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ing rollouts 7 ~ p(7) = p(80) HtT;Ol 1o (a|8:)p(8t+1|8¢, ar) from the inital states sg ~ p(sg). We simplify
notation and write 7 ~ mwg(7) and 7 ~ D(7) to indicate rollouts generated by the policy or drawn from the
data respectively. Expectations E;.p and E;r, are taken over all pairs (s¢, a:) € 7 and (8;,a¢) € 7.

Previous work (e.g.,[Ross et al.,2011; Ho and Ermon, [2016)) shows that a core challenge of learning from
demonstration is reducing or eliminating the covariate shift in the state-visitation frequencies p(s) caused by
accumulating errors when using 7rg. Unfortunately, Behavioural Cloning (BC), a simple supervised training
objective optimising maxg E,~p [log we(a:|st)] is not robust to it. To overcome covariate shift, generative
adversarial imitation learning (GAIL) (Ho and Ermon, [2016) optimises 7rg to fool a learned discriminator
Dg(ay, 3;) that is trained to distinguish between trajectories in D and those generated by 7g:

mein m(gx Ezomg [log(D¢(dt, .§t))] +E up [log(l — Dy(ay, st))} . €))
The policy can be optimised using reinforcement learning, by treating the log-discriminator scores as costs,
ry = —log Dg(ay, 8;). Alternatively, if the policy can be reparameterized (Kingma and Welling, [2013)

and the environment is differentiable, the sum of log discriminator scores can be optimised directly without
relying on high-variance score function estimators by backpropagating through the transition dynamics,
Laav(T) = Ezm, [, —log Dg(ay, 3¢)]. We refer to this as Model-based GAIL (MGAIL), though in
contrast toBaram et al.|(2016)), we assume a known differentiable environment instead of a learned model.

In this work, we are concerned with multimodal distributions p(7) and how mode collapse can
be avoided when learning mg. To this end, we assume the dataset is sampled from p(r) =
p(s0) [ p(g) Hf:o p(a¢|st, g)p(sir1lst, ar)dg, where g is the agent type, expressing agent characteristics
such as persona, goal, or, strategy. Learned agents matching p(7), i.e., with p(7) = p(7), are distributionally
realistic, whereas realism describes single trajectories when 7 lies in the support of 7, i.e. p,(7) > 0. As we
show in section @ current non-hierarchical adversarial methods (Ho and Ermon, [2016) exhibit mode collapse
and are not distributionally realistic.

To combat mode collapse, hierarchical methods (e.g., Wang et al., [2017; [Lynch et al.| [2020; |Suo et al.|
2021; [Igl et all, 2022) often rely on an encoder to infer latent agent types g, from trajectories during
training, g. ~ eg(g.|7), and optimise the control policy g (a:|3;, §.) to generate trajectories 7. similar to 7:
72@ ~ p(%e‘ge) = p(So) HZ—‘:_Ol Tr@(a’t‘gta ge)p(§t+1 |a’t7 §t)7 with ge ~ €9 (gelT)' If ground truth trajectories
are not accessible during testing, a prior pg(g,,) can be used to sample distributionally realistic types §,,.
Existing methods use, for example, open loop training (Wang et al., | 2017), factored latent types g, (Suo et al.,
2021)), manually specified encoders (Igl et al.,[2022), or combine state-based goals with latent types (Lynch
et al., 2020). We indicate by subscript g, or g, whether the inferred type and trajectory are drawn from
the prior distribution pg(g,) or encoder eg(g.|7). Subscripts are omitted for states and actions to simplify
notation. Inferred types and predicted trajectories without subscripts indicate that either sampling distribution
could be used.

3 MARGINAL AND CONDITIONAL TYPE SHIFTS

Hierarchical policies are a powerful method for improving distributional realism in imitation learning.
However, as we discuss in this section, existing methods either require inflexible, manually designed
encoders or require deterministic environments when learning encoders for latent type representations. This
assumption is often violated in practice, e.g., in multi-agent settings with stochastic agents, leading to reduced
performance. We highlight this restriction by describing how hierarchical policies in stochastic environments
suffer from two additional forms of distribution shift. In contrast to the familiar shift in the state visitation
distribution p(s) (Ross et al., 2011), these shifts are in the marginal and conditional type distributions.

Model The simplified model in fig. 2] has two sources of randomness in the data D: the future environmental
noise &, for example the random actions of other agents, and the multimodal type g of the expert we are
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mimicking. & constitutes external factors while g encodes agent-internal decisions influencing the trajectory.
Here, the state s is a deterministic function of only & as we disregard cross-temporal dependencies. The expert
action a depends on type g and state s and we abridge 7 = (s, a). To accurately express the multimodality
in the expert policy 7(als, g) introduced by the latent type g, we learn a hierarchical policy mwg(als, §).
During training, when real trajectories 7 are available, the inferred type §,. is drawn from the encoder
eo(g.|7). During testing, without access to 7, a prior pg(g,,) is used. Actions are drawn from the control
policy g (a|s, §) and optimisation is performed to minimise a reconstruction loss between ground truth and
predicted actions, Ly (a, @). Crucially, for this class of architectures, a distribution shift can occur when
sampling the inferred type from the prior pg(g,,) instead of the encoder eq(g.|7). This can come in two forms.

Marginal Type Shift Firstly, the
marginal type shift is a mismatch
between the marginal type dis-
tribution under the encoder, i.e.,
p(§.) = Ep(r) [€0(g.|7)] and the prior
pe(g,), which is trained to minimise
KL[p(g.)llpe(g,)]- Because the prior
is mode covering, it might sample . . o R
inferred types not seen during training. (a) Encoder: §, ~ eo(§|7) (b) Prior: g, ~ po(g,,)-
In the context of VAEs (Kingma and| Figure 2: Simplified, non-temporal setup with environmental noise p(€)
Welling, 2013)), this is also known as and multi-modality induced by the unobserved agent type p(g). We denote
the prior hole problem (Rezende and T = (s, a). The inferred type g is sampled from eg (g, |7) during training
Viola, [2018)) and is caused by limited (left) and pe(g,,) otherwise (right). The control policy is mwe(als, g).
expressiveness of the parametric prior. Circles are random variables and squares deterministic functions. The loss
L(a, &) penalises differences between a and a.
Conditional Type Shift The second
distribution shift is specific to imitation learning in stochastic environments and has not been, to our knowledge,
previously formalised. This conditional type shift occurs if the inferred type g, ~ eg(g,|7) is not independent
of the environmental noise £ that brought about 7. This induces a shift from the training distribution
p(§.1€) = Ep(rje) [€6(g.]7)], which depends on &, to the prior distribution p(§,1€) = pe(g,), which does
not. Intuitively, if the encoder captures information about £ in g, during training when the future is known,
then during testing the randomly sampled types §,, will not match the now unknown future generated by &,
creating a distribution shift in p(g|€) and hence p(g|s). Because the control policy mg(a|s, §) conditions on
pairs (s, §), changes in the conditional distribution p(g|s) induce a covariate shift in its inputs.

Lsim(av &)

Causal Confusion Training the policy g (a|s, §) under types §, containing information about & results
in causally confused policies: rather than learning the correct causal dependency of G on £ through the
observation s, the policy wrongly relies on g, thereby not generalising to new state-type pairs (s, §,,) during
testing when types g,, are sampled independently of & from the prior. As an extreme case, g, could encode the
exact action a that the policy would learn to decode to minimise the training loss £(a, @) = 0, while entirely
ignoring observations s. This policy would fail under randomly drawn types when appropriate reactions to s
are required. If, however, the encoder only captured information about the true type g, the policy would learn
to correctly infer appropriate actions from (s, §) and hence generalise during testing.

Recall the pass/yield interaction described in the introduction. In this situation, g expresses the expert’s
intended direction and £ the other car’s behaviour. If the inferred latent g, prescribes whether to yield, it
depends on £ and hence renders some combinations of (£, §,.) unseen during training. But these combinations
will occur during testing when g, is sampled independently of £, resulting in out-of-distribution samples and
distributional shift. For example, neither agent yielding results in a collision. Furthermore, because during
training, g, correctly prescribes the required behaviour, the policy learns to rely on g, instead of inferring the
correct information about £ directly from observations of the other car.
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Figure 3: Robust Type Conditioning (RTC): The control policy 7e(a:|8¢, §) is trained under inferred types § sampled
from both the encoder eg (g, |7) and the prior pe(g,). The reconstruction loss L (7, 7e) avoids mode collapse. The
adversarial loss Laa (7p) under prior types prevents causally confused policies and ensures good task performance. Lprior
optimises the prior to sample distributionally realistic types and the information bottleneck loss L, reduces covariate shift.

To summarize, learning hierarchical policies in stochastic environments does not generalise well due to
marginal and conditional shifts in the inferred latent type. This translates to reduced task performance through
causally confused policies that rely on the inferred type not only to determine the behavioural mode but also
for information about the environment that cannot be known in advance during testing.

4 ROBUST TYPE CONDITIONING

We present Robust Type Conditioning (RTC), a method for improving distributional realism in imitation
learning. Unlike previous hierarchical methods with learned type encoders, RTC does not require the
environment to be deterministic for good task performance. RTC follows the auto-encoder framework
discussed in sections [2]and 3] but avoids causally confused policies and distribution shifts in state-types pairs
(s, §) between training and testing. The two core augmentations of RTC are: i) including prior-sampled types
during training to avoid causally confused policies and ii) restricting the information quantity communicated
through the type, which reduces conditional type shift by minimising the amount of information the type
g, contains about &, i.e., I(§,; &), while maintaining high mutual information 7(§.; g) with the true type g.

To learn realistic and distributionally realistic behaviour, RTC combines four losses: the reconstruction loss
Lyec, the information bottleneck loss Ljp, the adversarial loss Lagy, and the prior loss Lyyior (see fig. E[):

Lrrc = ED(T)69(§8|7)1T9(‘F6|Q8) [‘Crec (7-7 7A—€) + 6‘Cib+)\advcadv(7ﬁe) + ‘Cprior(T)}

. @)
+ ]ED(T)Pé(Qp)Tfe(fp\gp) [ AadvLagv (Tp) + Eprior(T)} )

where pg(g,) is a learned prior and 7 (7|g) is shorthand for generating trajectories 7 by rolling out the

learned control policy 7g(é@|3, §) in the environment. We denote by @ parameters of sampling distributions
that are not updated through backpropagation and \,4, and ( are scalar weights.

We now introduce the individual terms. First, L. is a reconstruction loss between 7 and 7, which prevents
mode collapse by penalizing the agent for being unable to mimic 7. This also optimises the encoder to capture
useful information about the trajectory 7 in the inferred type §,. The loss Ly can take different forms. For
example, in section[6.1] we use the BC loss Ly () = — log we(a¢|s¢, §.) while in section[6.2] we minimise
the Lo distance between agent positions in s; and §;. State-based losses like the Ly reconstruction loss
require access to a training environment able to resimulate the conditions of the original trajectory 7 as we
assume that 7 is still approximately optimal.

The 10ss Lyrior(T) = Eg_~ez(g.|7) [l0g po(g.)] optimises the prior to propose distributionally realistic types,
even if 7 is unavailable. Unfortunately, as discussed in section[3] this can induce marginal and conditional type
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shifts. To eliminate these, we add the adversarial loss Laay(7) = Y, —log Dg(a¢, 8;), where Dy (@, 3¢) is
a learned discriminator (see section [2)). Crucially, and unlike previous methods, L,y is also minimised under
inferred types sampled from the prior (second line in eq. (2))), in addition to those sampled from the encoder.
If g, and g,, maintain the same support, this reduces causal confusion in the policy because any information
about £ contained in g is now unreliable since it might have been sampled randomly from the prior.

One can also view sampling from the prior as a causal intervention do(§) in which g is changed independently
of the environmental factor €. |De Haan et al.|(2019) show that causal confusion can be avoided by applying
such interventions and optimising the policy to correctly predict the counterfactual expert trajectory distribu-
tion, in our case Pexpert(7|€, do(§)). Unfortunately, we do not have access to this counterfactual trajectory.
Instead, we rely on the generalisation of 7wy to get us ‘close’ to such a counterfactual trajectory for types
do(§) and then refine the policy locally using the adversarial objective.

So far, we have reduced the causal confusion of learned hierarchical policies and hence assured good task
performance. We have not, however, removed the conditional distribution shift in the latent type, which is
caused by encoding information about external factors &, instead of information about the true type g, in the
latent type .. A possible failure case is that the policy simply learns to ignore the latent type, resulting in
good task performance but unimproved distributional realism.

As a solution, we employ an informational bottleneck on types §. ~ eg(g,.|7) which filters information about
& while letting information about g pass, thereby preventing this failure case and allowing for strong task
performance and distributional realism. To see why, note that all information about £ is also communicated
through the visited states s to which the control policy 7rg has access (see fig. [2). By contrast, information
about g can only be accessed by the policy through g,.. Consequently, if the information bandwidth of g,
is limited or costly, preference is given to information about the true expert type g as information about &
can also be inferred directly from s. Both continuous type representations using a variational information
bottleneck with L, = KL[p(g.)||N(g.;0, )] (Alemi et al.l [2016) and discrete type representations using
straight-through gradient estimation work well in practice (see section|[6.2).

To accommodate optimisation under inferred types drawn from both the encoder eg and the prior pg, we
split each minibatch B = {T(b)}{)v ® of Ny trajectories sampled from D into two parts. For the fraction f of
trajectories in B the rollouts 7. are generated from types sampled from the encoder §, ~ eg(g,.|7) and all
four losses are optimised (first line in eq. ). For the remaining fraction (1 — f) of trajectories types are
sampled from the prior pg (gp) and only L,qy and Lo are optimised (second line in eq. ).

Optimisation of L,4, and L. can either be performed directly, similar to MGAIL (Baram et al., 2016), by
using a differentiable environment and reparameterised policies and encoder (Kingma and Welling, [2013)) or
by treating them as rewards and using RL methods such as TRPO (Schulman et al., 2015} [Ho and Ermon,
2016) or PPO (Schulman et al.}|2017). The losses Lyior and Ly, can always be optimised directly.

5 RELATED WORK

Several previous works combine adversarial training with autoencoder architectures in the image domain.
Makhzani et al.|(2016) use an adversarial loss on the latent variable in place of the KL-regularization used in
VAEs. However, this eliminates the information bandwidth regularization for continuous latents which we
show to be important for hierarchical imitation learning. Larsen et al.|(2016) aim to learn a similarity metric
for visual inputs using latent representations of the discriminator. This is valuable for imitation learning from
raw images (Rahmatizadeh et al.l 2018]), but is not required for our experimental domains. Lastly, Chrysos
et al.[(2018)), similar to our work, use an additional autoencoding loss to better capture the data distribution in
the latent space. However, they consider denoising images instead of imitation learning under stochasticity.

Hierarchical policies have been extensively studied in RL (e.g., [Sutton et al.| [1999; [Bacon et al., [2017;
Vezhnevets et al.,|2017; Nachum et al.,|2019; Igl et al.,2020) and IL. In RL, they improve exploration, sample
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efficiency and fast adaptation. By contrast, in IL, hierarchies are used to capture multimodal distributions,
improve data efficiency (Krishnan et al., 2017; |Le et al., 2018)), and enable goal conditioning (Shiarlis et al.,
2018)). Similar to our work, [Wang et al.|(2017) and |[Lynch et al.| (2020) learn to encode trajectories into latent
types that influence a control policy. Crucially, both only consider deterministic environments and hence avoid
the distribution shifts and unwanted information leakage we address. They extend prior work in which the type,
or context, is provided in the dataset (Merel et al.|2017). [Khandelwal et al.|(2020) and [Igl et al.| (2022) use
manually designed encoders specific to road users by expressing future goals as sequences of lane segments.
This avoids information leakage but cannot express all characteristics of human drivers, such as persona,
and cannot transfer to other tasks. Futures states in deterministic environments (Ding et al.,[2019), language
(Pashevich et al.l 2021])), and predefined strategy statistics (Vinyals et al.,|2019) have also been used as types.

Information theoretic regularization offers an alternative to learning hierarchical policies using the auto-
encoder framework (Li et al.l 2017; Hausman et al., | 2017)). However, these methods are less expressive since
their prior distribution cannot be learned and only aim to cluster modes already captured by the agent but not pe-
nalize dropping modes in the data. This provides a useful inductive bias but often struggles in complex environ-
ments with high diversity, requiring manual feature engineering (Eysenbach et al.,[2019; [Pathak et al.l 2019).

Lastly, TrafficSim (Suo et al., 2021} uses IL to model driving agents and controls all stochasticity in the scene
but uses independent prior distributions for separate agents. Hence, while no conditional distribution shift in
p(g|€) can occur (as € is constant), distribution shifts in p(g(l) \Q(])), and hence the joint marginal p(g(l’N))
can occur for latent types §, §\) of agents i # j with i,j € {1...N} and gty = [g<1> . .g<N)]
when drawn from the encoder, goals g(” and gU ) are coordinated through conditioning on the joint agent
future, while they are independent when drawn from the prior. They use a biased “common sense” collision
avoidance loss, motivated by covariate shift in visited states. Our work suggests that marginal type shift might
also explain the benefits gained. In contrast, our adversarial objective is unbiased. See appendix for more
related work on agent modelling in multi-agent settings, behavioural prediction and causal confusion.

6 EXPERIMENTS

We show in two stochastic environments with multimodal expert behaviour that i) existing adversarial
methods suffer from insufficient distributional realism, ii) existing hierarchical methods cannot achieve good
task performance and distributional realism and iii) RTC improves distributional realism while maintaining
excellent task performance. We discuss differences in realism, coverage and distributional realism in fig.[6]

We compare the following models: MGAIL uses a learned discriminator and backpropagates gradients
through the differentiable environment. It also optimises a BC loss as we found this to improve performance.
Symphony (Igl et al., [2022)), building on MGAIL, utilises future lane segments as manually specified types
(see appendix [A.5). Our implementation of Symphony outperforms the results from (Igl et al.| 2022)) due
to the additional use of a value function. InfoMGAIL (Li et al.}[2017) augments MGAIL to elicit distinct
trajectories for different types. This introduces an inductive bias but does not directly penalise mode collapse.
Our methods, RTC-C and RTC-D, use a continuous or discrete type respectively. We also perform the
ablation Hierarchy-NoPT (No Prior Training) which only uses the first line in eq. (2), ie. f = 1.
Hierarchy-NoPT is similar to existing hierarchical methods, such as the proprietory TrafficSim (Suo
et al.| 2021), in that it learns the prior but does not use it during training, only inference. It thereby does not
account for distribution shifts in the latent types, as discussed in section 3}

6.1 DOUBLE GOAL PROBLEM

In the double goal problem, the expert starts from the origin and creates a multimodal trajectory distribution
by randomly choosing and approaching one of two possible, slowly moving goals located on the 2D plane.
Stochasticity is introduced through randomized initial goal locations and movement directions. Nevertheless,
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Figure 4: Top: Visualization of ten randomly sampled goal pairs and associated trajectories. Bottom: Training curves,
exponentially smoothed and averaged over 20 seeds. Shading shows the standard deviation. The inset shows the
distribution at the last training step. Boxes show quartiles, whiskers extreme values, diamonds outliers, and stars the mean.

the lower and upper goal {g,;, g, } remain identifiable by their location as y; < 0 for g; and y,, > 0 for g,, (see
fig. Ié-_l[) While both goals are equally easy to reach, the expert has a preference P(G = g;) = 0.75. Sufficiently
complex expert trajectories prevent BC from achieving optimal performance, requiring more advanced
approaches. The expert follows a curved path and randomly resamples the selected goal for the first ten steps
to avoid a simple decision boundary along the z-axis in which experts in the lower half-plane always target
goal g;. RTC uses the BC loss as reconstruction 1oss Lrec(7) = — log we(a¢|st, §.) and continuous types. All
policies use a bimodal Gaussian mixture model as action distribution. Performance is measured as the number
of steps for which the agent is within 6 = 0.1 distance of one of the goals. We take h; = sign(yr) of the final
agent position [z, yr] to indicate the approached goal and measure distributional realism as the divergence
between the empirical distributions, JSD (pagent (/s ) | Pexpert (725 ) ). Details can be found in appendix

Figure [] shows that MGAIL improves task performance compared to BC. Our method, RTC, improves
it further, possibly because given a type, the required action distribution is unimodal. Importantly, RTC
substantially improves distributional realism, achieving lower JSD values. To analyse this result, we show
Pagent(hs =—1), the frequency of targeting the lower goal. Not only is RTC’s average value of prrc(hs=—1)
closer to the true value of 0.75, it is also more stable across seeds, resulting in a lower JSD. The bias
introduced by InfoMGATIL reduces task performance without improving distributional realism. As expected,
the ablation Hierarchy—-NoPT achieves excellent distributional realism through the learned hierarchy but
suffers reduced task performance due to unaccounted distribution shifts. Lastly, the rightmost plot of fig. 4]
shows that the information bottleneck is necessary.

6.2 WAYMO OPEN MOTION DATASET (WOMD)

To evaluate RTC on a complex environment we use the Waymo Open Motion Dataset (Ettinger et al.|[2021))
consisting of 487K segments of real world driving behaviour. Distributionally realistic agents are critical
for driving simulations, for example for estimating safety metrics. Diverse intents and driving styles cause
the data to be highly multimodal. Stochasticity is induced through the unpredictable behaviour of other cars,
cyclists and pedestrians. We use Ly (7, 7) = Z;T Lituver (S, 8) where Lyyper is the average Huber loss of
the four vehicle bounding box corners. More details can be found in appendix [A-4]
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Table 1: Averages and standard deviation over 10 training runs on WOMD.

Collision Off-road MinADE  Curvature JSD  Progress JSD

rate (%) | time (%) | (m) | (x1073) | (x1073) |
Data Distribution 1.16 0.68 - - -
MGAIL 539+0.68 089+£0.12 1.34+0.08 1.32 + 1.48 3.81 +£1.29
Symphony 6.39+095 090£006 140+0.12 0.97 +0.62 6.44 +5.25

InfoMGAIL - C 521+£037 0.89+£0.14 1.29+0.07 1.24+£0.93 440 £ 147
InfoMGAIL - D 482+029 084+010 135=£0.11 0.77 £ 0.44 4.01 145
Hierarchy-NoPT | 35.08 £0.44 1.83+042 1.12+0.01 1.76 £ 2.05 2.54 +£0.63
RTC-C 423+0.16 0.68+:0.04 1.15+£0.10 0.43+0.06 2.17 £ 0.65
RTC-D 421+024 074£006 112+0.10 0.89+0.66 2.56 £0.54

We use the percentage of segments with collisions and time spent off-road as proxy metrics for task
performance. Mode coverage is measured by the minimum average displacement error, minADE =

E o p{#1Kmo [minﬁ % ZtT:l T .§i7t)], where ¢ is the Euclidean distance between agent positions

and we find the minimum over K = 16 rollouts (hierarchical methods use K independently sampled types).
Lower minADE implies better mode coverage, but does not directly measure the relative frequency of modes,
e.g., low probability modes may be overrepresented. To measure distribution matching in driving intent, we
use the Curvature JSD (Igl et al.l [2022): in lane branching regions, such as intersections, it maps trajectories
to the nearest lane and extracts its curvature as feature he,,. To compute JSD (pagent (hcur) ||Pexpert (Peur))
the value of h.,, is discretize into 100 equisized bins. To measure the driving style distribution, we extract
the progress feature gy = 9(80, §7) and use the same discretization to compute the JSD.

Results are provided in table[T} Both versions of RTC improve task performance (collisions and off-road
events) and distributional realism metrics (minADE and divergences) compared to the flat MGAIL baseline, as
well as previous hierarchical approaches (Symphony, InfoMGAIL and Hierarchy—NoPT). Both type
representations, RTC—C and RTC-D, perform similarly, showing robustness of RTC to different implementa-
tions. The advantage of RTC in achieving both good task performance and distributional realism becomes
clearest by comparing it to Hierarchy—NoPT. While Hierarchy—-NoPT achieves some improvements
in distributional realism, is has nearly an order of magnitude more collisions. This is a consequence of the
distributional shifts discussed in section[3] which RTC is able to avoid. On this task, good task performance
of distributionally realistic methods is particularly impressive, as one might expect them to collide more
frequently than the flat MGATIL baseline: MGAIL prioritises easier to learn modes (e.g. driving straight) over
difficult ones (e.g. turning left), so higher distributional realism likely implies driving more manoeuvres with
higher risk of collision.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

This paper identified new challenges in learning hierarchical policies from demonstration to capture multi-
modal trajectory distributions in stochastic environments. We expressed them as marginal and conditional
type shifts, in addition to the covariate shift of state visitations in IL. We proposed Robust Type Conditioning
(RTC) to eliminate these distribution shifts and showed improved distributional realism while maintaining or
improving task performance on two stochastic environments, including the Waymo Open Motion Dataset
(Ettinger et al., [2021). Future work will address conditional distributional realism by not only matching
the marginal distribution p(7), but the conditional distribution p(7|€) under a specific realization of the
environment. For example, drivers might change their intent based on the current traffic situation or players
might adapt their strategy as the game unfolds. Achieving such conditional distributional realism will require
new models, metrics, and augmentations of RTC.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Unlike our work, agent modelling (Grover et al., 2018}; |Papoudakis and Albrecht, |2020) often assumes
knowledge of agent identities in multi-agent systems and aims at learning a useful representation for each
identity. In contrast, we neither know the true type g of the imitated agent, nor the identity of external
stochastic noise source £. Furthermore, applications of opponent modelling in RL settings (e.g., Papoudakis
and Albrecht, [2020; |He et al., [2016; [Raileanu et al., [2018; [Hernandez-Leal et al.| 2019} Xie et al., [2020) are
generally unconcerned about distributional realism and do not consider distribution shifts.

Behaviour Prediction (BP) also forecasts future trajectories. Unless future steps are predicted independently
of the evolution of the scene (e.g., not auto-regressively) (Chai et al., 2019} |Cui et al., [2019; [Phan-Minh et al.|
2020; [Liu et al., |2021)), these methods also suffer from covariate shift in the state visitations (Bengio et al.}
2015 |Lamb et al., [2016). Furthermore, if hierarchical methods are used to capture the multimodality in the
data (Tang and Salakhutdinovl, 2019} [Casas et al.,[2020; Ivanovic and Pavonel 2019} Salzmann et al.| |2020j
Yuan et al.,[2021; [Hu et al., |2021)), they are vulnerable to the same marginal and conditional type shifts we
consider. While none of these works take these challenges into account, they often use small discrete latent
spaces (e.g., Tang and Salakhutdinov, 2019} Ivanovic and Pavone} 2019;|Salzmann et al.| 2020), mitigating
the severity of the distribution shifts and future information leakage by limiting the information bandwidth of
latent types. Furthermore, prediction quality metrics such as displacement-based metrics or log-likelihood are
less sensitive to yield lower performance due to covariate shift, which primarily impacts interactions with the
environment, such as collisions.

As discussed in section [3] the conditional type shift is exacerbated by causally confused policies relying
on the latent type for information about environmental noise. Unlike in most literature on causal confusion
(De Haan et al., 2019)), our nuisance variables are hence not part of the current state, but the learned latent
state. Distribution shift is induced not through earlier actions but through sampling from the prior instead of
the encoder. Prior work on causal confusion typically relies on problem specific regularization (e.g. 'Wen et al.,
2020; Park et al.l 2021) or has access to an expert or task rewards (e.g.|De Haan et al.,|2019; Ortega et al.|
2021). Instead, our work relies on generalisation over latent types to generate counterfactual trajectories. This
generalisation is enabled by the information bottleneck and results are refined by the adversarial loss.

A.2 LIMITATIONS AND SOCIETAL IMPACT

While RTC notably improves distributional realism (see section[6)), it does not achieve it perfectly, especially
in the long tail of the data distribution. This has implications for its use, for example in economic simulations
to evaluate policy proposals or in driving simulations to evaluate autonomous vehicles, where this limitation
has to be taken into account and the simulation results should not be trusted unconditionally.

As RTC is application agnostic, the societal impact depends on where it is used. Here, we focus on agent-based
simulations as we anticipate this to create the highest impact. Examples include better policy decisions
through economic simulations, safer autonomous vehicles through driving simulations, better Al in games
or improved safety precautions for large crowds of people. For other use-cases, e.g., in armed conflicts, the
societal impact will depend on the intention of the simulation. Furthermore, we stress once more, that for
many use-cases, precautions have to be taken to account for remaining errors in the learned agents.

Lastly, depending on the use case, algorithmic bias has to be taken into account if mode-collapse might be
prevented more effectively by RTC for certain strata in the population.
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A.3 DETAILS ON DOUBLE GOAL PROBLEM

The agent observation

St = [shgl’t’guﬂﬁ atfl] € RS with St = [mfn yt]a gi}t = [xi,h yi,t]7 i€ {U, l} (3)
contains the 2D position of the agent, s;, as well as two marked locations g, ;, g,, , of the lower and upper
goal. Because the current agent position cannot uniquely identify the currently selected goal, the observation
also contains the last agent action a;_; with the simple transition function s, 1 = s; + a;. The goal locations
are randomly sampled at the beginning of each episode. The lower (upper) goal is always located in the
lower (upper) half of the x, y plane. Their horizontal and vertical distances from the initial agent position
are uniformly sampled within rectangular bounds x§9 ) e [1.8,2.2] and |y§g )| € [0.3,0.7]. Each episode has

a fixed horizon of T' = 30 steps over the course of which each goal moves by ||s£gT) - 87(;?0) | =0.15ina
random direction.

For the first 10 timesteps, the agent randomly resamples the target goal with P(G = g;) = 0.75 to avoid a
simple decision boundary along the z-axis in which experts in the lower half-plane always target goal g;. The
expert action is
d; 01 0
a; =0.1 HAth 0 005
The expert approaches the goal faster along the x-axis, hence creating a curved path. To avoid over-shooting,
the step-size reduces by +/||A¢|| as the agent proceeds towards the goal.

where d; = [ } Ay and A; = (g, — st). 4)

All networks use simple MLPs with two latent layers and a latent dimension of 256. To capture their shape,
the discriminator acts on entire trajectories, aggregating across time using max-pooling over a 32 dimensional
per-timestep embedding. All policies are parameterised as Gaussian mixture models with two modes. RTC
uses a continuous bottleneck of size 2 with additional regularization term L5 (1) = SK L [eg(§.|7) ||V (0, I)]
to regulate the information bandwidth of g,. We use the BC loss for L. (7, 7.) = — log we(a¢|st, §,)-

Batch size is 1024 for training and 10K for evaluation. Results shown in fig. [f] are evaluated every 100
steps and exponentially smoothed with a decay rate of 0.9. The learning rate is 0.01 for BC (lower learning
rates performed worse) and 0.004 for both MGAIL and RTC, which were tuned independently for values
Ir € [0.02,0.01,0.004,0.002,0.001]. f = 0.5 was used to split between Bencoder and Byior (N0 tuning was
performed). Lastly, without further tuning, \,qy = 1 was used. Training time is about 7h without hardware
acceleration.

A.4 DETAILS ON WAYMO OPEN MOTION DATASET

The Waymo Open Motion Dataset (Ettinger et al., 2021) (published under Apache License 2.0) consists of
segments of length 9s sampled at 10H z. The available training and validation splits in the dataset consist of
487K and 49K segments each, which are used for training and testing the agent respectively. Due to memory
constraints, we filter for segments with less than 256 agents and 10K points describing the lane geometry -
resulting in 428 K train and 39K test segments. 250 segments from the training split are used for validation
to select the training checkpoint for evaluation. In each segment, we learn to control two agents at a frequency
of 3.33H z, repeating actions three times. Similar to (Igl et al., 2022), the actions of other agents are replayed
from the logged data. The collision metric measures the number of segments, in percent, for which at least
one pair of bounding boxes overlaps for at least one timestep. The off-road metric similarly detects for how
much time the agent’s bounding box overlaps with off-road areas.

The state s; = [s,E“), s§55>, SEDS), sU)] contains the agent’s position and heading s,E“), static features
SESS) such as lane boundaries, expressed as a set of points, dynamical features sgDS) such as traffic light

states, and the positions and headings of all other road users SERU).
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Figure 5: Waymo Open Motion Dataset: Performance on the validation set during training. Distributional realism
metrics are not shown as their evaluation is high variance on the small validation set.

Similarly to section[6.1I] we use an additive transition model in which the policy predicts the change in the
agents state 351)1 = sga) + a;. Dynamic features and roadgraph users are replayed from the logged data,

similar to (Igl et al., [2022).

All positions and headings are first normalised to be relative to the observing ego-agent. MLPs are used to
encode each object and point individually and per-type max-pooling is used to aggregate over a variable
number of inputs. The resulting three embeddings (one for the ego-agent, one for other road-users and one for
the scene), each of size 64, are concatenated and passed either to the policy, discriminator or value function,
whose encoders are not shared and which consist of MLPs with two latent layers of size 64 for discriminator
and value function and 128 for the policy. The inference encoder eg for RTC only observes future agent
positions sga% which are each concatenated with an eight-dimensional learned positional embedding and
individually encoded to dimension 128 and max-pooled along the time dimension. A Gaussian mixture model
with 8 modes was used for all policies, although we find empirically that typically only up to three are used
after training.

We train for 200K gradient steps and select the model checkpoint for evaluation with the lowest sum of
collision rates and off-road time on the validation set. To stabilize training for all methods, we discount
gradients through time with v = 0.9 and bootstrap from a learned value function every 10 steps. We anneal f
from 1 to fiin = 0.5 over the course of training. Initially, high values of f encourage meaningful information
in g, while lower values address covariate and type shifts and improve performance. A learning rate of
0.0001, which was tuned for MGAIL, was used for all evaluated methods. Each batch contained 24 segments
and training was performed on a single V100 (per seed) and required about 4-5 days. We used \,qy = 4.0 and
B = 0.01 for L;,(7) for continuous type representations of size 2. Discrete type representations used three
one-hot vectors of size 16, trained using Straight Through gradient estimation. We found performance to be
marginally better for three vectors, compared to one, without noticeable performance increases for additional
or larger vectors. Smaller vectors with only four values only performed slightly worse. The Huber loss L.
uses 0 = 30.

A.5 DETAILS ON SYMPHONY BASELINE

Symphony implements the hierarchical policy proposed in|Igl et al.| (2022) (called 'MGAIL+H’ in their
results). Agent types represent high-level driving intent and are expressed as a sequence of road-segments
to be followed. They are encoded into a latent vector by expressing them as a fixed-length sequence of
points {[z;, y;] }i\;l Each point is concatenated with a positional embedding, then encoded individually, and
subsequently max-pooled along the time-dimension. The pooled embedding is provided as additional inputs
to both the discriminator and the policy.
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During training, lane sequences are extracted from the given data trajectory 7. The prior pg(§), which is used
during testing when no ground truth trajectories 7 are available, predicts a categorical distribution over all
possible sequences of lane-segments which the agent could follow in a scene. To allow for a variable number
of such sequences, the logits are predicted individually per sequence.

A.6 DETAILS ON INFOGAIL BASELINE

Like RTC, InfoMGAIL (L1 et al.l2017) is a general method for learning a hierarchical agent from demon-
strations. What makes it a suitable baseline is that, like in RTC, the higher level policy captures a distribution
over alternative trajectories that can be taken. It does so in an unsupervised fashion by introducing an
additional reward that incentivizes the policy to produce state-action pairs from which an additionally trained
discriminator (also called ’posterior’) can infer the type on which the policy was conditioned. In other words,
it rewards the policy for producing distinct trajectories for different types, where the type is drawn from a
fixed prior when generating rollouts.

A crucial difference between InfoMGAIL and RTC is that InfoMGAIL’s goal is to disentangle trajectories,
but it does not target distributional realism directly. In particular, because the prior from which the types
are sampled is fixed, it might not even be able to properly capture the true distribution of trajectories. This
is especially true for the uniform discrete prior used in the original InfoMGAIL paper, which assumes a
uniform distribution over trajectory modes. Furthermore, the additional posterior reward introduces bias,
potentially harming task performance. Lastly, because mode collapse is not directly penalized in the additional
loss (only ’non-distinctiveness’ of trajectories), it might not improve distributional realism at all.

In our experiments, we augment InfoMGATIL in several ways:

e We not only try discrete latents, but also continuous ones. For continuous priors we use the same
GMM as posterior as we use as prior in RTC.

e We additionally provide the posterior with the initial state as input. Unlike in the examples used
in the InfoMGAIL paper, we believe that for more complex WOMD data, the current state is
insufficient to determine modes.

e To make it comparable in our setup, we optimise it using Info(M)GAIL, i.e. the posterior score of
the true type is added as differentiable loss term, not as reward for TRPO. The network architecture
of the posterior is the same one as we used for our MGAIL discriminator.

e We greatly increase the number of latent dimensions. In (Li et al.,2017), 2 and 3 dimension were used
for the two experiments. We tried d € [3, 10, 30, 100]. We also tried \; € [0.01,0.03,0.1,0.3,1.0]
as regularization strength for the additional loss term.

e Lastly, we are also adding a BC term to InfoMGAIL as we found this stabilizes training greatly.

e In contrast to the original implementation, we are not using pre-training and do not make use of
additional shaping rewards.

A.7 COVERAGE AND DISTRIBUTIONAL REALISM METRICS

While coverage is easy to achieve on the Double Goal Problem, we measure it on the Waymo Open Motion
Dataset (section [6.2)) using

T
. 1 .
minADE =E__p 15 n, [rr;ln T ; 0(st, Si,t)]
using a fixed number of K = 16 rollouts per segment. Intuitively, the more modes are covered by a given
agent, the closer one of all K rollouts should be to a given trajectory from the dataset, resulting in a lower
minADE.
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Figure 6: Differences between realism, coverage and distributional realism. The data distribution P(Xp) € A(X) is
shown in green, blue denotes a learned distribution Py(X1) € A(X). (a) Data from learned distribution is realistic,
i.e. supp(X 1) C supp(Xp), but not distributionally realistic. (b) The learned distribution achieves coverage but not
distributional realism: the frequencies of modes are not matched. (c) The learned distribution is distributionally realistic.
In practice, the dimensionality of X is often too high, requiring us to measure distributional realism only in selected features
h(X). Consequently, distributional realism in h(X) does not necessarily imply good realism, i.e. task performance.

We want to measure distributional realism as the divergence between the expert distribution peypert (7) and the
predicted distribution p,gen (7). However, since the space of possible trajectories is far too large to directly
measure JSD (Dagent (7) ||Pexpert (7)), We extract scalar features i from trajectories and measure the divergence
on those features. For the Double Goal Problem, we would like to capture whether the agent is approaching
g; or g,,, for which we extract hy = sign(yr), i.e. whether the agent is in the lower or upper half of the
plane at the last timestep. In the driving domain, we measure progress as the total distance travelled over the
9s segment, i.e., hsgyie = 0(80, §7). Measuring this distance as a straight line avoids measurement noise
through swerving or jittering of the agent. Lastly, to measure high-level intent, i.e. whether the agent prefers
going left, right or straight at branching points such as intersections, we follow |Igl et al.| (2022) and extract as
feature A, i.€., the curvature of the lane segments being followed right after possible branching points in
the road.
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