Supplementary Material

A Stochastic Bilevel Optimizer PZOBO-S

We present the algorithm specification for our proposed stochastic bilevel optimizer PZOBO-S.

Algorithm 2 Stochastic PZOBO algorithm (PZOBO-S)

1: Input: lower- and upper-level stepsizes «, 3 > 0, initializations 2y € RP and yo € R?, inner
and outer iterations numbers K and /N, and number of Gaussian vectors ().
2: for k=0,1,..., K do

3: SetYkO:yo, Yko’] :yo,j: 1,...,Q
4:  Generate u, ; = N(0,I) e R, j=1,..,Q
5 fort=1,2,...,Ndo
6: Draw a sample batch S; 1
7: Update Y = th*l —aV,G(zy, Y,ffl; Si-1)
8: forj=1,...,Q do
9: Update Y ; = th;l —aV,G (xk + pug th;l; 'St—l)
10: end for
11:  end for
yN —yN
12: Compute §; = %, i=1,..,Q

13:  Draw a sample batch D
14:  Compute VO(xy,) = V, F(xk, Y, V; Dr) + é Z?zl (6;,VyF(z1,Y,N;Dp)) uy,;

15:  Update x4+1 = o — 6%@(1})
16: end for

B Applicability of Assumptions to Experimental Problems

For the experiments in Sections[4.T)and 4.4] the bilevel problems are relatively simpler with quadratic
or logistic loss with a linear classifier. It can be checked that the strong-convexity, smoothness
properties are satisfied. For the experiments that involve neural networks, e.g., in deep hyper-
representation (Section[4.2)) and in meta-learning (Section[d.3)), the lower-level problem optimizes
only the last-layer parameters and hence is still strongly-convex and smooth. The smoothness of the
upper-level problem is not guaranteed, e.g., for ReLU activations, but can still hold true for smoothed
ReLU variants.

C Comparison to DARTS [35]

C.1 Discussions

DARTS (Differentiable ARchiTecture Search) [35]] was initially proposed for bilevel problems arising
from neural architecture search. Our proposed method has substantial differences from the zeroth-
order-like estimation in DARTS [35] (i.e., eq. (8) therein). First, DARTS estimates a matrix-vector
product, whereas our method estimates the response Jacobian matrix. Second, the estimator in
DARTS uses an outer gradient difference evaluated at points with a gap of the inner gradient. In
contrast, we use an iterate difference evaluated at two points with gap of a Gaussian random vector.
Third, our estimator applies to multiple inner steps with performance guarantee, whereas the estimator
in DARTS applies to only the one-step case.

C.2 Experimental comparison

We compare to DARTS on the bilevel learning problem discussed in [15]], in which the lower-level
problem is a constraint for guaranteeing good performance on a subset of the upper-level data. Such
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Figure 7: Results on 20 Newsgroup dataset. The batch size is fixed to 128 for both methods. Variances
(represented in shadow areas) are computed over 5 different runs.

learning problem can be mathematically formalized as follows
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where L is a classification loss function (e.g., cross-entropy) and the regularization term in the
lower-level problem encourages the inner variables y to be close to the upper variable z.

We conduct the experiments on the 20 News group dataset using linear models for classification and
the cross-entropy loss function is used for training. We split the 11314 total training data points into
two sets of size 9052 and 2262 (corresponding to a 80% - 20% split), and use the latter set for the
inner problem (i.e., m = 9052). We remove the news headers in the dataset in order to reduce the
dimension of the feature vectors and pre-process the data so as to have feature vectors of dimension
D = 99238. The dimension of the inner and outer variables y and x correspond to the number of
parameters in the weight and bias of the resulting linear model applied to the D-dimensional feature
vectors, and thus p = d = 99238 x 20 + 20 for 20-ways classification. Due to the relatively large
number of datapoints, we apply our stochastic algorithm PZOBO-S and fix the batch size to 128
for both PZOBO-S and DARTS. We plot the outer objective obtained during training of PZOBO-S
and DARTS in fig.[/} As it can be seen our method PZOBO-S finds a better descent direction and
decreases the objective more importantly at each step.

D PZOBO with Different Values of Q

In Figure[8] we compare the performance of our PZOBO algorithm with different choices of Q. It
can be seen that increasing the number of explorations ) hurts efficiency (because more rounds of
inner gradient updates are needed) while providing only marginal performance improvement. It is
also shown that the choice of () = 1 achieves the best efficiency with nearly the same accuracy as
other choices of Q > 1.

E Further Specifications for Experiments in Section {4

We note that the smoothing parameter 1 (in Algorithms [T|and [2)) was easy to set and a value of 0.1 or
0.01 yields a good starting point across all our experiments. The batch size ) (in Algorithms[T]and
is fixed to 1 (i.e., we use one Jacobian oracle) in all our experiments.

E.1 Specifications on Baseline Bilevel Approaches in Section[4.1]

We compare our algorithm PZOBO with the following baseline methods:
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Figure 8: PZOBO with different choices of () for HR with two-layer net.

e HOZOG [18]: a hyperparameter optimization algorithm that uses evolution strategies to es-
timate the entire hypergradient (both the direct and indirect component). We use our own
implementation for this method.

o AID-CG [17, 149]: approximate implicit differentiation with conjugate gradient. We use its
implementation provided at https://github.com/prolearner/hypertorch

e AID-FP [17]: approximate implicit differentiation with fixed-point. We experimented with its
implementation at the repositery https://github.com/prolearner/hypertorch

e ITD-R (REVERSE) [11]: an iterative differentiation method that computes hypergradients
using reverse mode automatic differention (RMAD). We use its implementation provided at
https://github.com/prolearner/hypertorchl

E.2 Hyperparameters Details for Shallow HR Experiments in Section [4.1]

For the linear embedding case, we set the smoothing parameter x4 to be 0.01 for PZOBO and HOZOG.
We use the following hyperparameters for all compared methods. The number of inner GD steps is
fixed to N = 20 with the learning rate of a = 0.001. For the outer optimizer, we use Adam [31] with
a learning rate of 0.05. The value of 7 in eq. (8] is set to be 0.1. For the two-layer net case, we use
© = 0.1 for PZOBO and HOZOG. For all methods, we set N = 10, « = 0.001, 8 = 0.001, and use
Adam with a learning rate of 0.01 as the outer optimizer.

E.3 Specifications on Problem Formulation and Baseline Stochastic Algorithms in Section [4.2]

The corresponding bilevel problem is given by

. 1 .
m/\lnﬁout(/\) = Do Z L (w*(A)f(@i; A),y:)
out (zi,9i)€Dout
1
st. w*(\) = argmin Lin(w,\), Lin(w, ) = Br] > E(wf(xi;)\),yi)+§||w|\2
weReEXP in
(%i,9:)€Din

where f(x;; A) € RP corresponds to features extracted from data point z;, £(-, -) is the cross-entropy
loss function, ¢ = 10 is the number of categories, and D;, and D, are data used to compute
respectively inner and outer loss functions. Since the sizes of D, and D, are large in the case of
MNIST dataset, we apply the more efficient stochastic algorithm PZOBO-S in Algorithm 2] with a
minibatch size B = 256 to estimate the inner and outer losses L;,, and Lqut.

We compare our method PZOBO-S to the following baseline stochastic bilevel algorithms.

e stocBiO: an approximate implicit differentiation method that uses Neumann Series to esti-
mate the Hessian inverse. We use its implementation available at https://github.com/
JunjieYang97/StocBiol

e AID-CG-S and AID-FP-S: stochastic versions of AID-CG and AID-FP, respectively. We use
their implementations in the repository https://github.com/prolearner/hypertorch.
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E.4 Specifications for Few-shot Meta-Learning in Section

Problem formulation. The problem can be expressed as

md}n Emeta ¢7 = Z [’D (b’

st wt = argmm Ladapt (@, W) : Zﬁs (¢, w;), ©))

where we collect all task- speciﬁc parameters into w = (wy, ..., w,,) and the corresponding min-
imizers into w* = (wj,...,w},). The functions Ls, (¢, w;) = ﬁ > ces; (L(o,wi; Q) + R(w;))
and Lp, (¢, w}) = ﬁ dem (¢, w}; &) correspond respectively to the training and test loss
functions for task 7;, with R a strongly-convex regularizer and £ a classification loss function. In
our setting, since the task-specific parameters correspond to the weights of the last linear layer, the
inner-level objective Ladaps (¢, W) is strongly convex with respect to w = (w1, ..., Wy, ). We note that
the problem studied in Sectionf.2]can be seen as single-task instances of the more general multi-task
learning problem in eq. (9). However, in contrast to the problem in Section .2] the datasets D;
and S; are usually small in few-shot learning and full GD can be applied here. Hence, we use ESJ
(AlgorithmT) here. Also since the number m of tasks in few-shot classification datasets is often very
large, it is preferable to sample a minibatch of i.i.d. tasks by Py at each meta (i.e., outer) iteration
and update the meta parameters based on these tasks.

Experimental setup. The minilmageNet dataset [55]] is a large-scale benchmark for few-shot
learning generated from ImageNet [50] Russakovsky. The dataset consists of 100 classes with each
class containing 600 images of size 84 x 84. Following [2]], we split the classes into 64 classes for
meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. More specfically, we
use 20000 tasks for meta-training, 600 tasks for meta-validation, and 600 tasks for meta-testing. We
normalize all image pixels by their means and standard deviations over RGB channels and do not
perform any additional data augmentation. At each meta-iteration, we sample a batch of 16 training
tasks and update the parameters based on these tasks. We set the smoothness parameter to be ;1 = 0.1
and use NV = 30 inner steps. We use SGD with a learning rate of & = 0.01 as inner optimizer and
Adam with a learning rate of 5 = 0.01 as outer (meta) optimizer.

F Experiments on Hyperparameter Optimization

Hyperparameter optimization (HO) is the problem of finding the set of the best hyperparamters (either
representational or regularization parameters) that yield the optimal value of some criterion of model
quality (usually a validation loss on unseen data). HO can be posed as a bilevel optimization problem
in which the inner problem corresponds to finding the model parameters by minimizing a training
loss (usually regularized) for the given hyperparameters and then the outer problem minimizes over
the hyperparameters. Hence, HO can be mathematically expressed as follows

InlIl Lyal(A) := ﬁ ZfeDval L (w*(A);€)

St w () = argmin Lo (w, ) = 2 Y een, (L, Q)+ R(w,n), 10

where L is a loss function (e.g., logistic loss), R(w, A) is a regularizer, and D;,- and D,,,; are respec-
tively training and validation data. Note that the loss function used to identify hyperparameters must
be different from the one used to find model parameters; otherwise models with higher complexities
would be always favored. This is usually achieved in HO by using different data splits (here D,,,; and
D,,) to compute validation and training losses, and by adding a regularizer term on the training loss.

Following [11}[17], we perform classification on the 20 Newsgroup dataset, where the classifier is
modeled by an affine transformation, the cost function £ is the cross-entrpy loss, and R(w, \) is a
strongly-convex regularizer. We set one lo-regularization hyperparameter for each weight in w, so
that A and w have the same size.

For PZOBO and HOZOG, we use GD with a learning rate of 100 and a momentum of 0.9 to perform
the inner updates. The outer learning rate is set to be 0.02. We set the smoothing parameter (¢ in
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Figure 9: Classification results on 20 Newsgroup dataset. Left: number of inner GD step N = 5.
Right: number of inner GD steps N = 10.

Algorithm[I] to be 0.01. For AID-FP, AID-CG, and REVERSE we use the suggested hyperparameters
in their implementations accompanying the paper [17].

It can be seen from Figure[9] our method PZOBO slightly outperforms HOZOG and converges faster
than the other AID and ITD based approaches. We note that the similar performance for PZOBO and
HOZOG can be explained by the fact that in HO, the hypergradient expression in eq. (3) contains
only the second term (the first term is zero), which is very close to the approximation in HOZOG
method. However, as we have seen in the other experiments (not for HO), PZOBO is a more robust
and stable bilevel optimizer than HOZOG, and it achieves good performance across many bilevel
problems.

G Problem Dimensions of All Experiments

For the hyper-representation problems, the dimension of the hyperparameter vector (outer variable)
corresponds to the number of parameters in the embedding model. For example, for the deep hyper-
representation problem, the dimension of the hyperparameter vector p corresponds to the number of
weights in the backbone LeNet network. For the shallow hyper-representation problem, the value of p
depends on the input dimension and representations dimension d. For this experiments we always set
the input dimension to be half of the representations dimension d, which corresponds to p = d x d/2
for the linear embedding settings.

For meta-learning experiments, the dimension of the hyperparameter vector (or outer variable)
corresponds to the number of weights in the common embedding model (which is either ResNet12
or CNN4). For hyperparameter optimization experiments, we used one regularization parameter for
each weight in the linear classification model, which means that we have as many hyperparameters
as parameters. The dimension of the input features in the 20 Newsgroup dataset is 130K and we
simply use a linear model without bias term, which corresponds to the number of parameters (and
thus hyperparameters) p = 130K x 20.

H Supporting Technical Lemmas

In this section, we provide auxiliary lemmas that are used for proving the convergence results for the
algorithms PZOBO and PZOBO-S.

In the following proofs, we let L = max{L,, L;} and D be such that ||y*(z)| < D.

First we recall that for any two matrices A € R™*" and B € R"*", we have the following upper-
bound on the Frobenius norm of their product,

1Bl < [A[[|B]| - (1)

The following lemma follows directly from the Lipschitz properties in Assumptions [2and [3]

Lemma 1. Suppose that Assumptions 2| and|3| hold. Then, the stochastic derivatives V F(x,y; &),
VVy,G(x,y;§), and VgG(x, y; &) have bounded variances, i.e., for any (x,y) and £ we have:

o Ee||VF(z,y;6) — Vf(z,y)||* < M?
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° ]EgHVszG(x,y;E) Ve Vyg z,y HF < L2
o Be||V2G(x,y;6) — Vig(n,y)|; < L2

Using Lemma 2.2 in [[14], the following lemma characterizes the Lipschitz property of the gradient
of the total objective ®(z) = f(x,y*(x)).
Lemma 2. Suppose that Assumptions|[I} 2} and[3|hold. Then, we have:

[V®(x2) — V®(21)|| < Lo||lw2 — 21| Va1 € RP, a0 € RP,

2 3
L+ 2L% 47 M 4 PLMAL*+TML | pL? M.
g oy wy

where the constant Le =

We next provide some essential properties of the zeroth-order gradient oracle in eq. (3), due to [46].

Lemma 3. Let h : R” — R be a differentiable function with L-Lipsctitz gradient. Define its
Gaussian smooth approximation h,(x) = E, [h(x + pu)], where > 0 and w € R" is a standard
Gaussian random vector. Then, h,, is differentiable and we have:

o The gradient of h,, takes the form

0 u 7 .

e Forany x € R",
|V, (z) — Vh(2)|| < %L(n +3)%/2,
e Forany x € R",

h(z + pu) — h(x)
7

E, uH2 S4(n+4)HVhH(x)||2+g,u2L2(n+5)3.

Note the first item in Lemma 3]implies that the oracle in eq. (3) is in indeed an unbiased estimator of
the gradient of the smoothed function f,,.

Lemma 4. Suppose that Assumptionsand hold. The Jacobian J, = % has bounded norm:
L
Ibg

[EAT® (12)

<

Proof of Lemmald] From the first order optimality condition of y*(z), we have Vg (z,y*(x)) = 0.
Hence, the Implicit Function Theorem implies:

Jo==[Vig @,y @)] " VaVyg @y (). (13)
Taking norms and applying eq. (IT)) together with Assumptions[IJand[2]yield the desired result
- L
1Tl < V2V yg (2,7 @) || ]| [V3g (5" @))] IHS/j- (14)
9
O

N

Lemma 5. Suppose that Assumptionsand hold. The Jacobian Jn = ?9?;:}1 has bounded norm:

L
1Tl < o= (15)

Hg

Proof of Lemma[3] The inner loop gradient descent updates writes

yt =yt —aVyg (ve,yi ), t=1,...,N.
Taking derivatives w.r.t. xj, yields

Jp = To1 — oV Vyg (ze,yh ") — adi1Vig (z,yp )
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=Ji-1 (I = aVig (zr,y ) — aVaVyg (ve,y) ")

Telescoping over ¢t from 1 to N yields

N-1 N-1 N-1
InN =D H (I- an}g (zr,91)) — Z VaoVyg (T, yk) H (I- aVig (zk, y"))
t=0 t=0 m=t+1
N-1 N-1
=—aY VoVyg (o) [I (7-aVigewyi). (16)
t=0 m=t+1

Hence, we have

N-1 N-1
1] < @ D> IVaVug (e wi) 1 TT (7 = a5 (e, i) |
t=0 m=t+1

) N-1 N-1

<o L I 11— aVig @y |

t=0 m=t-+1

where (i) follows from Assumption [2]and (i) applies the strong-convexity of function g(z, -). This

completes the proof. O
. vy .
Lemma 6. Suppose that Assumptions |l I and@l old. Then, the Jacobian Jn = T
algorithm PZOBO-S has bounded norm, as shown below. '
L
|In || < —. a7
Hg
Proof of Lemma[B] The proof follows similarly to Lemma 3] O

H.1 Proof of Proposition 1]

Proposition 5 (Restatement of Proposition[T). Suppose that Assumptions[I|and 2| hold. Define the

constant
L L
Lj:(1+> <T+p2>. (18)
Mg Hg Hy

N
Then, the Jacobian Jn(x) = 6ya$(x) is L 7-Lipschitz with respect to x under the Frobenious norm:

HJN(JM)—jN(Z‘Q)HF < Lyg||lzy — 22| Vry € RP zq € RP. (19)

Proof of Proposition[l] Using eq. (I6), we have

N-1 N-1
In(z) = —« Z VaVyg (2,9 (z)) H (I- aV2g(J; y"(x)), =z €RP.
t=0 m=t+1

Hence, for x1 € R? and z5 € RP, we have

| Tn (1) = T (22)||

N-1 N—-1
=o|| 3 V.0 (e1 0 @n) [ (T aVig(ory™ (1))
t=0 m=t+1
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N-1
VoV (22,9 (22)) H (I- an}g (z2,y™(x2))) H
i+1

‘ F
N-1 N-1
<a Y |[VaVyg (w1,9' (@) [[ (T—aVig(z,y™ (1))
t=0 m=t+1
N—1
—VaVyg (22,0 (22)) [[ (I-aVig (e, y™(@2))) ],
m=t+1
i) =
<a ) [[VaVyg (e1,y'(20)) [l Ac(er) = Au(s)]
t=0
N-1
+a | Ae(z2)[[|| V2 Vyg (21,4 (21)) — VaVyg (22, 5" (22)) || (20)
t=0
where we define A, (z) = Hﬁ;ﬂl (I —aVig(x,y™(x))) and (i) follows from eq. .

Next we upper bound the quantity ||At x1) — Ag(x2) H as shown below.
| Ae(z1) = Ar(zo)|| <[|la (Vig (22,4 (22)) — Vig (w2, 4" (22))) Arya(a)
+ (I —aVig (z2, ¥ (22))) (Aegr(z1) — Apga(z2)) ||
<al[Ae1(@)|[[V39 (:vl,zf“( 1) = Vg (2,5 (22)) |
+— V20 (22,5 (@) [ Arcr (1) — Arga ()|
<(1 —ap, HAt+1 (1) — At+1(£l?2)||

2n

L L
+ap(l+ =)(1 - og) N 2|y
g9

where the last inequality follows from Lemma [5]and Assumptions[Tjand 2}
Telescoping eq. (ZI) over ¢ yields
| Ae(z1) — Ap(z2)|| (1= apg)¥ || An_2(a1) — Anv—a(z2)||

N—t—3 I
+ Y ap(l+ ;)(1 — apg) NP1 — apg)™ ||y — |
g

m=0

=(1 = apg)V 2 Vig (w1,9V " (21)) — Vg (w2, 9N (22)) ||
N—t-3 L
+ > Oép(1+l7)(1—aﬂg)N—t_2H$1—$2H
g

m=0
(1) L
<ap(1+ )= ang) Vo —
9

L
+ (N —t—2)ap(l+ /7)(1 — apg)V T |my — ao|
9

(22)

L
=ap(1+ )N — £ = 1)1~ agzg) 2y
g

where (i) follows from Lemma [5| and Assumption 2l Replacing eq. in eq. and using
Assumption 2} we have

H.7N(ZE1) — .7N(£L'2)||F

N-1
<a Z Lap(1 + £)(N —t—1)(1- aug)NﬂFQHxl — 2|
t=0 Mg
N-1 I
+ o T(1+f)(1—aug)N7t71||x1—J:QH
t=0 Hg
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L = L
< a’Lp(1+ —)||z1 — 22| Z m(l — opg)™ "+ —(1+ =)oy — 22|
/’Lg m=0 'ug /Jg
pL L T L
<—=(14 — - +—01+— - 23
<214 Doyl + 204 Ll ) o)

N-1 _
where we use Y, — ma™ !t < L

2,2
o?pg

in eq. 1} which can be obtained by taking derivatives for

the expression ZZ;S) ™ with respect to . Hence, rearranging and using the definition of L 7 in
eq. (I8) finishes the proof. O

Lemma 7. Suppose that Assumptions [I|and 2 hold. Define the constant

L L
LJ(1+>(T+102>-
Hg Hg  Hy

Then, the Jacobian Jy(x) = % is L 7-Lipschitz with respect to x under the Frobenius norm:
| TN (z15+) = TIn (223 ) || < Lg|jan — 22| Vr, € RP xy € RP.

Proof of Lemmal7} The proof follows similarly to that for Proposition O

I Proofs for Deterministic Bilevel Optimization

For notation convenience, we define the following quantities:

vr @k ) —yy (o), T

" J N *
. A dy dy
In.g = In (@, uy) = ; c In=g s Je=oE (24
N N Tk oxy
Ya (Brtpui)—yg (Tk)uT
I J
where u; € RP,j =1,...,(Q are standard Gaussian vectors. Let y%t(xk) be the Gaussian smooth
approximation of y2 (). We collect leu(mk) fori =1,...,d together as a vector y (), which

is the Gaussian approximation of the vector y™ (). If 11 > 0, yY (x.) is differentiable and we let
J,. be the Jocobian given by

Oy (k)
T = “om (25)

N ~ ~
We approximate %Z’; using the average zeroth-order estimator given by Jy = é ZjQ=1 JIn,;- The

hypergradient is then approximated as
Va(z) = Vof (@ryl) + TN Vo (@n, 1)

Q
1 ~

= Vo (wny) + 5 D IVl (@ ui)- (26)

=1

Let§; = yN (@) =y @r) o g e d;,; be the i-th component of ¢;. Hence, we have
517ju—-'—
N 52,3‘“»
jN,j = . ! )
6d,ju;r
IN Vol @,y ) = (81505 ajuy oo baju; )Vyf(zeyp)

= (65, Vyf (@i up))) uj. 27

Using eq. (26) and eq. (27), the estimator for the hypergradient can thus be computed as

Q
TP(wr) = Vo fanyl) + %Z (55,9, F(arayl)) uy.
j=1
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L1 Proof of Proposition 2]

Proposition 6 (Formal Statement of Proposition[2). Suppose that Assumptions[I} 2| and[3|hold. Then,
the variance of hypergradient estimation can be upper-bounded as

o 2 272 N L 2 N L*M?
E||[V®(z)) — VO(zi)|” <2L*D?*(1 — apsy) +4ED (1 —apug)™ +24(4p + 15)W
g9 g9

2 2772 2N
7 24L°M=(1 — apy)
- 6L§M2d7>4(p) + 2 ?
g
48M?(Tpg + Lp)?
+ 4
]

+6u°L% M?d(p + 3)*

(1 - apg)V ' D?

2

d 4
—Dyay = O <(1 — apg)N + % +£ Qp + u2dp3) (28)

where the expectation E['] is conditioned on xy, and y3 .

Proof of Proposition[2] Based on the definitions of V®(x) and @@(wk) and conditioning on x,
and y}, we have

E|[V®(zy) — VO(ay)||”
<2|| Vo f(@ryl) = Vo f (@ yi) | + 2B TN Vo £ (xn ul) — TV f (@, vp)||
<L\l — i||” + 4| T | Vo f rs ) — Vo v

+4E||In = T3V )|
(7') 2112 N L4 N %112 2 5 2
<2L2D%*(1 — apy,) +4ﬁ|\yk —yil|” + AMPE|| I — T[5
g
@) 5 N L N ol 5 2
<2I2D*(1 — apy) +4.5D (1 - apg)™ +4ME||Tn — .| 5 (29)
g

where (i) follows from Lemma[d]and Assumption[3] and (7) and (i7) also use the following result for
full GD (when applied to a strongly-convex function).

? <(1- a,ug)NDQ-

lon' = vi

Next, we upper-bound the last term ]EHj N — J« ||i at the last line of eq. . First note that

E

In = Tl < BB\ T = Tl + 31T = Tl + 317 = I3 (30)
We then upper-bound each term of the right hand side of eq. (30). For the first term, we have

Q
N 9 1 A 2
[T = Tullp =Bl D Ing = Tl

E
j=1
1 I
:@EH > (»7N7j - ~7u> I
j=1
1 Q. ) R X
:@E ZHJN’]_'“7/‘“|‘F+22<‘7Nal_jﬂ’jN’J_‘7”>
J=1 i<j

Q
1 ~
:QQ ;EHJNJ - ju”fv
Jj=

1 ~
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We next upper-bound the term IEHjNJ - Ju ||i in eq. .

EHjN,j _juH2F =E||Jn aJHF ||*7MH2F

)

INE

s. s.
i M& i M&
[ =

3
(104 0L+ S04 57) - S ol

2 3
< ((4p +15)[|VylL [ + Su L (p+ 5)3) : (32)
where (7) follows by applying Lemmalto the components of vector y N (z1) which have Lipschitz

gradients by Proposmon Then, noting that || Vy. u” <2||vyN H + 21?L% (p+3)* and replacing
in eq. (32), we have

E||Jv,; — JH||F<Z( (4p + 15)|| VN |* + 12 L Pa(p)

<2(4p + 15) || Tn|[ 5 + 12 L% dPa(p)

(%) L2
<2(4p + 15)/72 + p* L% dPa(p), (33)
g

where () follows from Lemmaand P, is a polynomial of degree 4 in p. Combining eq. (31) and
eq. (32) yields

M2

o2 Q
We next upper-bound the second term at the right hand side of eq. (30), which can be upper-bounded
using eq. (41) in [28]], as shown below.

E|| Iy — |5 <2(4p + 15) L2 dPa(p). (34)

2L2(1 — Ny Lp)?
j*HQ § ( CVILLg) + (Tlug—: p) (].*Oé,LLg)NilDz. (35)

HjN* Ni i

We finally upper-bound the last term at the right hand side of eq. (30) using Lemma 3]

HJM jNHF ZHVZ/W vy, H

i=1

2
g%L@d(p +3)3. (36)
Substituting eq. (34), eq. (33) and eq. @ into eq. (30) yields

2 6L2(1 — apuy)*N
]EHJN_j*| 'LLLQdele(p)_FM

Qu:  Q I
12 L 32
i (THZ:' /-’) (1—aug)N71D2+%L\Z7
g

Finally, the bound for the expected estimation error in eq. (29) becomes

<6(4p + 15)

d(p+3)3. (37)

- L4 L2 2

E||[V®(xy) — VO (ay)||* <2L2D(1 — apy)N + 4?1)2(1 — apg)N + 24(4p + 15) —— o
g

24L2M2(1 — apy)?N

2
+ L2 M2apa(p) + ; + 6u” L Md(p + 3)°
Q 1
48M?(Tpg + Lp)? _
Hg
This completes the proof. O
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1.2 Hypergradient Estimation Bias

Lemma 8. Suppose that Assumptions|l| 2} and[3|hold. Then, the bias of hypergradient estimation
can be upper-bounded as follows:

|EV®(21) — VO(2x)|| < Dpias = O ((1 — apg)V? + ,udl/2p3/2) . (39)

Proof. First note that We have
|EV®(21) — VO (ay)]|
=Vt roui) = Vi f (wrs v [| + |7, Vo f (s 9i) = Ty f (@) |
<L\ — vi LV f(@eyn ) = TSV f (e yd )|
TV f (@ wi) = TV f (@ yi) |

L
<Ll = will + M\ T = T+ = Vb lanuil) = Vol (v
g

L2
<Lllye" = yil| + M| T = T.|| + ;Hyif — il
g

which, in conjunction with |7, — J| = |7, — jNH + |In — Tl < %Ljdl/Q(p +3)3/2 +
L(l_ZI‘g)N + 2("'.“55‘1/[’) (1 _ Oé,ug)(N_l)/QD, ylelds
o LM(1— N
[EV®(2) — V()| <LD(1 — apy) /2 + gLJMdl/Q(p +3)3/2 4 (ua"g)
g
2MD(Tpg + L _ L*D
+ ( /’629 p) (1 _ aﬂg>(N 1)/2 + 7(1 —()éug)N/Q
Hg ,ug
<0 ((1 - a,ug)N/Q +ud1/2p3/2> _
Then, the proof is complete. O

1.3 Proof of Theorem[I|

Theorem 3 (Formal Statement of Theorem[T). Suppose that Assumptions(I} 2] and[3|hold. Choose the

2
inner- and outer-loop stepsizes respectively as « < + and f = —~, where Ly = L + 2L+ M? +
L LoVK Mg

pLM+L +rML | pL M and let Mg = (1+ 22 )M Further set Q@ = O(1) and up = O (W)
p?

HEI 9
Then, the iterates xj fork =0,..., K — 1 ofPZOBO in Algorithm([I] satisfy:

K

1 K-1
L ((I)(xo) - (I)*) Dvar p
KN ||V (a)|” < “ETE T 4 MaDyias + ot = O (= + (1—apg)™ |,
pre VK VK VK

(40)

with ®* = inf, ®(x), Dyies and Dyq, are defined in Lemma@and Proposition@
Proof of Theorem([I} Using Assumptions and we upper-bound the hypergradient V& () by
* * * -1 *
IVO(@)|| =[IVaf (@, y"(2) = VaVyg (2,57 () [Vig (25" ()] Vyf(z,y" (@)
L
<(1+ 22w @1)

Hg

Then, using the Lipschitzness of function ®(zy), we have

L
(I)(«karl) S(I)(xk) + <V(I>(£Uk),xk+1 — $k> + 7¢H5Uk+1 — kaQ

<P(x) — f(VP(xy), ﬁfb(xk)) + %ﬁﬂ‘%@(xk)”g
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<®(xx) — BVD(xx), V(1) — V() — B||VE(zy) |
+ L2 (V@) + | Ve(ar) - Vo(a)|?) (42)

Let Ei[] = Eu, .. [|#k, ys | be the expectation over the Gaussian vectors uy,1, . . ., ug,q condi-
tioned on ), and y5'. Applying the expectation Ej[] to eq. @) yields

Ekq)(l'k+1) S@(l’k) — B<V@($k),Ek$¢($k) — V(I)(l’k)> — [3||V<I>(xk)”2
+ L2 (Vo (@y)|* + B V() — Vo))
<®(w1) + BV () || |ErVO(2x) — VO(xx)|| — (B — LoB?)||VP(1)
+ LyB2E ||V (1) — V() ||

I

2
<® (1) + BMoDyias — (B — LS?)||V®(21)|” + B°LeDuar (43)
where Dy;,s and D, represent respectively the upper-bound established for for the bias and variance.
Now taking total expectation over Uy, = {u1,1.Q, - - -, Uk,1:Q }» We have
2
B <Ej, — B(1 — LyB)Eys, || V() ||” + BMeDyias + B2 LsDoar (44)

where Ej, = By, _, ®(x1). Summing up the inequalities in eq. fork=0,..., K — 1 yields

K-1
2
Ex <Ey—B(1 = Lyf) Y By, |[V(k)||” + BK Mo Dpias + B7KLyDyar  (45)
k=0
Setting 8 = L(;/?, denoting by ®* = inf, ®(x), and rearranging eq. , we have
1—

1 K-1
v 2 L (@(1’ ) B (I)*) Dvar
K = ];)Euknv(p(xk)H § qb+4>J\4’<I>Dbias+ \/E

. o o 1 . . ) .
Setting @ = O(1)and p = O ( W) in the expressions of Dy, s and D, finishes the proof. [

J Proofs for Stochastic Bilevel Optimization

Define the following quantities

Y]N(ark+/mj;S)—YIN(xk;S) uT
J

H N *
. . Y, Jy
IN; = In (g, uj) = , JIN = &:k , = 33:Z
i (@tpniS) =Y (@kiS) , T
1% J
where u; € R?,j =1,...,Q are standard Gaussian vectors and Y,V is the output of SGD obtained
3 k p
with the minibatches {So, ..., Sny—1}.
Conditioning on x4, and Y}V and taking expectation over u; yields
Y (@t puy;8) =YY (21;8) ) T
ey VoY, (24 S)
EU]‘ In,j = ]Euj = = Ju(S)
Y (whtpuy ;i)—YdN @1:9), T VYN (x;8)

where YZ]\L (z1; S) is the i-th component of vector Y, (x; S), which is the entry-wise Gaussian
smooth approximation of vector YV (z; S). Let B[] = E[|zs, Y] = Ep, u,., be the expectation
over the Gaussian vectors and the sample minibatch D conditioned on zj, and YkN .
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J.1  Proof of Proposition 3]

Proposition 7 (Formal Statement of Proposition [3). Suppose that Assumptions (I} 2] and || hold.

Choose the inner-loop stepsize as o = T fﬂ . Define the constants
g
alL

e
C,o=(1-au <1—04,u ++>,
= (o) (1-amy+ S+ 22

L L
Cpy = (a—&—’y(l—a;@)—i—a) , Cy=—Cyhy
Hg Hg
0.2 L2

I =2(r2C, 2C))——=+2
(TC’Ly—FpC'y)'ugLS—!- 5

(Coy +Cy), A= 2(7'20:811 + pQCZ/)DQ’ (46)

where vy is such that v > % Then, we have:
g

Ij I ML+ :ug)Q(l - aﬂg)cév_l r

2 N
E||\INn — T« <C + :
H N HF T2 (LA pg) (1 —apy) — (L —pg)?  1-C,

Proof of Proposition[]] Based on the SGD updates, we have
Vi=Y""-aV,G (2, Si-1), t=1,...,N.
Taking the derivatives w.r.t. xj, yields
Tt =Jr—1 — aVo VG (2, Y1 8im1) — i1 VoG (2, Vi Sima)
which further yields
Tt = Ju =J1-1 — T — VL VG (21, Y 15821) — aJia VoG (21, Y5 8i1)
+a (VaVyg (z,y5) + T Vg (2, ui)
=J-1 = T — @ (VaVyG (21, Y5 8m1) = VaVyg (21, y7))

— o (Jro1 — ) VoG (2, VT Sia)

+aZ. (Vg (z,yi) = VG (2, Y 158-1)) -
Hence, using the triangle inequality, we have

(%)
|9 = 2l <1 (T = ) (1= 936 (o Y5 800) |
+a||VaVyG (2, Y5 8im1) = VaVyg (@, 40) ||
+ Oé||j* (sz (zkvylf_l;st—l) - Vig (gjkayZ)) HF’
where (i) follows from Assumption We then further have
17 = 717

(1= gt Ficr = T+ @2 TaV,6 (0, Vi 5 S11) — Vo Py (i) [

L2 _ *
0?5 V3G (@0, YiT381-1) = Vig (ons i) [
g
+2a(1 — apg) | Ti1 — Tu|| || Va VG (25, Y5 8m1) = VaVyg (@, 02) ||
Py
VG (@, YT Sin) = Vig (o wi) ||
Py

+2a2u£ V3G (2r, Vi1 8im1) = Vg (@, ui) || | Ve Vo G (0, YiT58i-1) = Va Vg (@r, 4i) |-
g

P3

L
+2a(1 — apg)— || Ti-1 — T
Hg

The terms Py, P, and Ps in the above inequality can be transformed as follows using the Peter-Paul
version of Young’s inequality.

1
Pl SZH\Z—I - ;7*| i‘ + %HvzvyG (xk;Y]:_l;St—l) - Vzvyg (l'k,yZ) Hi‘a Yy >0
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1
Py <o [Fir = T+ 1956 (o ¥E T 800) = Vig i) [ 7> 0

1
P §§||V§G (»Tk,th_l;St—l) — ng,g (r, 1) ||2F
1
+ §HvzvyG (xk, Y;fil;stfl) - vayg (xkvy;:) ||j7

Note that the trade-off constant -y controls the contraction coefficient (i.e., the factor in front of
2
| Fez1 — J*HF). Hence, we have

2

17t = -l

« al 2
< ((1 — )’ + S —ang) + Tﬂg(l - O‘Mg)> 1Fer = Tl
L
+ <a2 + ay(1 — apg) + a2ﬂ> V2V G (21, Y 8i-1) = VaVyg (Tk, yi) Hi
g

+ a2£+a7£(1—au)+a2£ IV2G (24, VY 8im1) — V2 (21, 57) ||
,LLQ I 9 U Y ks Ly ; Ot—1 y ks Uk P

g9 9 g
Let E, ] = E[-|zx, Y/ ']. Conditioning on 2}, and Y}/ " and taking expectations yield
Evr |7 = 7. I
<O ot = T2+ CoyBerr ||V V, G (a0, Y3 811) = Va Vg (2w ||
+ e[| VEG (w0, V{15 Sim1) = Vig (i) [ )
where C, Cyyy and Cy are defined as follows
C, =(1—apy) (1 — g + % + ’;IMI;) Oy = (oz—i—v(l — Q) —&—oz/i) ,Cy = lfngy.

Conditioning on z, and Y,f _1, we have
i1 ||VaVyG (2, Y5 8im1) = VaVig (o0, v5) |
OBy 1| VaVyg (24, YY) = VoV (wr,57) ||
+ 2B, 1| VoV, G (21, Y Sim1) = VaVyg (o, YY) |15

() L2
<o vy -y, (48)
where (i) follows from Lemmaand Assumption Similarly we can derive
LQ
Ea||V3G (a0, Vi3 8im0) = Vig (wni) [ <275 +20° [V = w0 @9)
Combining eq. @7), eq. (@8), and eq. (#9) we obtain
B |7 = T <O T = Tl + 207 Cy + 2OV~ i
2
+ 2%(% +0y). (50)
Unconditioning on z;, and Y,f ~! and taking total expectations of eq. 1) yield
L2
E|J: = T3 CE|lTis = Tl + 267 Cy + OBV = wi|[* + 2% (Coy + Cy)

() 2 2 2 L—p 200 2 o’
SOLE||Tio1 — Te||p + 2(72Cay + p*Cy) (Lﬂ;’) DP+ s
g9 g

L2
+ 2?(000?/ + Cy)7
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where (i ) follows from the analysis of SGD for a strongly-convex function. Let I' = 2(72C,, +
p2Cy)qus + QLS (Cypy + Cy) and X = 2(72Cy,, + p*>C,) D?. Then, we have

) ) L—u 2(t—1)
E|J: — T SCV]E||$_1J*||F+/\<L+MZ> +T. (51)

Telescoping eq. (51)) over ¢ from N down to 1 yields

L — 2t N-—-1
el - 2l <l -2l X (1) e er S

t=0

2
which, in conjunction with (L+“q) <1-—apgandy > L:ﬁ‘-" such that C'y <1 — ayg, yields
g

2 L2 _ (L — p1y)? ¢ r
Bl - 2 <o ek X ( L)
g t=0

(L+ 1g)*(1 — apg 1-0,
- ) L) A (52)
-7 uf, (L+ Ng)2(1 —apg) — (L — Mg)2 1-0,
The proof is then completed. O

2

Lemma 9. Suppose that Assumptions EI EI and | hold. Set the inner-loop stepsize as o = T
g

Then, we have
= 2
E||[E,V® () — VO (zt) ||
NL2 AL + pg)*(1 *C“,“g)c']yv*l
(L + p1g)*(L = aprg) — (L = pg)?

L I — 2N 2
1212 (1 T 2) ( “-") p2y -7 |, (53)
,ug L+ py pgLS

where the expectation E[-] is conditioned on xy, and Y;N.

2 I Mz 2 3
<8M C’ + —C +?Ljd(p+3)
v

Proof of Lemma(9 Conditioning on z;, and YkN , we have
ExV®(zy) = Vo f(or, YY) + TV f (@, Yi).
Recall VO(xy) = V. f(xk, v;) + T, Vyf(xk, ;). Thus, we have
B,V (21)~ V()|
*\][2 1\ 12
<2 Vo f ke, Vi) = Vo (i) ||” + 20| T,V f @, Vi) = TV (2, 97|
<2L?||v;¥ V(i) = T f (e, V)|
+4)| 7Ty V) =TTV f(xk,yz>||2

_|_4 2Hvyf z, YY) — Vyf(xk,y2)|!2

Qor2||vY g

S M|, -

I

L4
2LV —yi|* + 80|, — T |+ 803 T — T + 1z =il
where () applies Lemmalé__l|and Assumptlonl Taking expectation of the above inequality yields

~ L
E|[E,V®(z)) — VI(xy)||” <2L2 (1 - 2ﬂ2) E|J;N - yi||® + 8M2E|Tx — T.|[%
g

+ 8M2E|| T, — I (54)
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Using the fact that Y;¥ (zy; -) has Lipschitz gradient (see Proposition 1)) and Lemma | the last term
at the right hand s1de of eq. @) can be directly upper-bounded as

2
70 = 7l = ZHV (o4 8) = VYN @is )P < G Lydw+3)°, 69

where L 7 is the Lipschitz constant of the Jacobian Jn (and also of its rows VYZ-N (zx; S)) as defined
in Proposition[I] Combining eq. (54), eq. (53)), Proposition[7, and SGD analysis (as in eq. (60) in
[28]) yields

E|[E, Vo (zy) — V()|

L? AL A+ 11g)*(1 = apg ) CF ! r s
<8M? (CN J i} + +51%d(p+3 3)
T Tt )20 —amg) — (L 1o, T g bt
L L—p,\ 2N o2
2014 2= ) D? . 56
" < " ug><(L+ug) +ugL5) 0
This finishes the proof. O

J.2  Proof of Propositiond]

Proposition 8 (Formal Statement of Proposition ). Suppose that Assumptions[I} 2} 3| and [ hold.
Set the inner-loop stepsize as o = . Then, we have:

L+

EHV@(%) — V()P <A+ B (57)

where A = 8M* (14 3-) 255 4 ) L2t (14 ) 24213 Pa(p) + L 52 d L3 Pap)
and By respresents the upper bound establzshed in Lemma EI
Proof of Proposition[8] We have, conditioning on z, and YkN
Ey||V®(2x) — VO(y)|* =Ei ||V (w) — ExV(zy)||* + |[ExVD(2x) — V(i) ||*. (58)
Our next step is to upper-bound the first term in eq. (58).
Ey ||V (2) BV (ay) ||
<O ||V, Pk, Y Dr) = Vi f (ar, V) ||
+ 2B | TN Iy F(wr, YL Dr) = Ty f Y|
M? .
<23 4 18|92 | -
4B T 1V F (e, Y D) vyf<xk,YkN>|»2

M? 1 5

where the last two steps follow from Lemma [I]

Next, we upper-bound the term Ej, ||j N — Ty ||2F

~ 1 N
Eil|In = Tully =5l v = Tz 7€ {1, Q)

Q
1 A
<g (Bl - 19:13)
d N N . 2
sg s (B R [ o)

(60)
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Recall that for a function h with L-Lipschitz gradient, we have
h(z + pu) — h(x)uH2
I
Then, applying eq. (61) to function YV (-; S) yields
VN (g + puys S) — ViV (2n3 S) )12
g
"
2 3
<A+ VYL (s S| + S LE (0 +5)°.

E,

3
§4@+4me¢mW+§#%7@+5P. (61)

E,,

Hence, eq. (60) becomes

. 4p + 15 3u2dL>
A LERA e ZHV W S|P+ 5L 0+ 5)
2(4 15 dL
stHVi@N(xk;S)H + 2 )
Q pt Q
2(4p +15) 2 pPdL%
) n Pa(p), 62
g @
where P;(-) is a polynomial of degree 4 in p. Combining eq. (59), eq. (62) and Lemma 3] yields
~ ~ M? 2 (4p—|— 15 H dLj
Eu90060) ~ B T0(0)* <22 v (14 E)(*HJNHF L pin)
4M?
+ 5 (27 + 2Lt Ps))
, ANdpt15 | 1NIE M2
<8M ((1+Df) ot Df) ;2
1\ 4M? 4]\42
+ (1 + Ff) 0 1> dL%Py(p) + foﬂQdL\zyps(P)
=A, (63)

where A = 8012 ((1 + %f) 2418 4 D%) L 2 +(1 + D%) %;ﬂdﬁﬂ%( )+4M u2dL% Ps(p).

Hg

Taking total expectations on both eq. (38) and eq. (63) and combining the resulting equations, we
have

N 2 = S 2 = 2
E||V®(xy) — VO(2i)||” =E||V®(xk) — ExVP(zp)|” + E||ExVE(2r) — VO(24)||
<A+ B (64)
where B, represents the upper-bound established in eq. (56). This then completes the proof. O

J.3  Proof of Theorem 2]

Theorem 4 (Formal Statement of Theorem [2). Suppose that Assumpnons 1] |2] Bl and [ hold.
Set the inner- and outer-loop stepsizes respectivelly as o = and 3 , where L =

Lpg
max{Ly, Ly} and the constants Ls and Mg are defined as in Theoreml 3l F urther set Q = O(1),
— — 1 — — -
Dy =0(),and p = 0O <\/ﬁp3)' Then, the iterates xy, k = 0,..., K — 1 of the PZOBO-S
algorithm satisfy
L kel X
7 ) B[ Ve(]|
k=0
®*) L B+ A 1
SM-FM@\/Z%—F ! :O(p—f—(l—a,ug)N—i—\@), (65)

VK VK
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where A and B are given by

4p+15 1\ L? M? 1\ 4M?
A=8M*( |14+ — — )= 42— L
° <( +Df> Q +Df> Dy +< +Df) Q" 7Pa)

4M>
+ DfMZdL\QﬂDs (»)

L2 AL+ pg)?(1 — apg)CN 1 r >
By =8M* [ O = g 97 + + o L%d(p+3)°
: ( @+ )2 (L —apig) — (L —p)? T 1=y T 2 Lol +3)

L? L—pu 2N o?
2% (14 2= 9 D?
- ( - I ><<L+N9) +N9LS

and the constants I', A\, and C., are defined in Proposition|2|

Proof of Theorem[2] Using the Lipschitzness of function ®(zy), we have

L
(I)(karl) §<I>(xk) + <V<I>(;vk),xk+1 — .%'k> + %kaﬂ — ka2

<B(a1) — BIVO(r), V() + 257 T0(ar) - V(o) + V()|

<®(ar) — BVO(z), V(1)) + Ly (| V()| + [0 (ax) — V(o))
Hence, taking expectation over the above inequality yields

Ed(z411) <ED(z)) — BE(VD(21), VO (21)) + Ly E|| V(24|

+ LyB°E||Vd(y) — V()| (66)
Also, based on eq. (1)), we have

—E(V®(x1), VO(23)) = — E(V(2y), V(1) — VO (w1)) — E|| V(2|

=E [—(V@(xk),Ekﬁfb(wk) - v<1>(zk)>} — B[ V()|
<E||V®(x1) || |[ExV(z1) — V()| — E[|[ V()|
<MoE|[ExV(zy) — V(1) || — E||VD(a)|,
which, in conjunction with eq. (66), yields
E®(zy41) <E®(z) + ﬁM@E\’Ek§¢($k) — V&(z1)|| — (B— LyB?) EHV@(%)HQ

+ LySPE|| Vo (zy) — V(). (67)

Using the bounds established in Lemma 0] (along with Jensen’s inequality) and Proposition 8] we
have

E®(xp+1) ED(wr) + BMo/Bi — B (1= LyB) E[VO(ar)|” + Lo (B + A).

Summing up the above inequality over k from k = 0 to k =

K — 1 yields
K—1 )
Ed(zx) <E®(wo) + BKMa/Br — B(1 - LyB) Y E[[VO(xr)||” + LyK B> (B1 + A).
k=0
Setting § = L;/f and rearranging the above inequality yield
VR 11E||Vc1> ()| <) 2V L gy /By B
K 2 k) NG Vb1 JE

Setting @@ = O(1), Dy
the proof.

O(l),and u=0 (ﬁ) in the expressions of By and A completes
p

O
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