
Appendix: Deep Neural Networks as Point Estimates

for Deep Gaussian Processes

A Nomenclature

Table A.1: Nomenclature
indices

n 2 N Spherical harmonic degree, level or frequency
j 2 {1, . . . , Nd

n} Spherical harmonic orientation (indexes harmonics in a level)
m 2 {1 . . .M} inducing variables
i 2 {1 . . . N} datapoints
` 2 {1 . . . L} layers of a DGP

constants

N number of datapoints
M number of inducing variables
P number of outputs of the GPs
L number of layers in a DGP
d� 1 data input dimension, data + bias is d dimensional
↵ = d�2

2 specifies Gegenbauer polynomial
Nd

n number of spherical harmonics of degree n on Sd�1 (see Eq. (B.3))
�n eigenvalue (Fourier coefficient) of degree n for a zonal kernel
�n eigenvalue (Fourier coefficient) of degree n for the activation function
Ñ truncation level (maximum frequency Gegenbauer polynomial in approximation)
⌦d�1 surface area of Sd�1 = {x 2 Rd : ||x||2 = 1} (see Eq. (B.2))

functions

�n,j(·) Spherical harmonic of degree n and orientation j

C(↵)
n (·) Gegenbauer polynomial of degree n and specificity ↵

k(·, ·) kernel function
s(·) shape function such that for zonal kernels k(x,x0) = s(x>x0)
gm(·) m-th inducing function
�(·) activation function (e.g., max(0, t) or softplus)

B A primer on Spherical Harmonics

This section gives a brief overview of some of the useful properties of spherical harmonics. We refer
the interested reader to Dai and Xu [55] and Efthimiou and Frye [56] for an in-depth overview.

Spherical harmonics are special functions defined on a hypersphere and originate from solving
Laplace’s equation. They form a complete set of orthogonal functions, and any sufficiently regular
function defined on the sphere can be written as a sum of these spherical harmonics, similar to the
Fourier series with sines and cosines. Spherical harmonics have a natural ordering by increasing
angular frequency. In Fig. B.1 we plot the first 4 levels of spherical harmonics on S2. In the next
paragraphs we introduce these concepts more formally.

We adopt the usual L2 inner product for functions f : Sd�1 ! R and g : Sd�1 ! R restricted to the
sphere

hf, giL2(Sd�1) =
1

⌦d�1

Z

Sd�1

f(x) g(x) d!(x), (B.1)
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Figure B.1: Spherical Harmonics on S2

where d!(x) is the surface area measure such that ⌦d�1 denotes the surface area of Sd�1

⌦d�1 =

Z

Sd�1

d!(x) =
2⇡d/2

�(d/2)
. (B.2)

Definition 1. Spherical harmonics of degree (or level) n, denoted as �n, are defined as the restriction
to the unit hypersphere Sd�1 of the harmonic homogeneous polynomials (with d variables) of degree
n. It is the map �n : Sd�1 ! R with �n a homogeneous polynomial and ��n = 0.

For a specific dimension d and degree n there exist

Nd
n =

2n+ d� 2

n

✓
n+ d� 3

d� 1

◆
(B.3)

different linearly independent spherical harmonics on Sd�1. This grows O(nd) for large n. We refer
to the complete set as {�d

n,j}
Nd

n
j=1. Note that in the subsequent we will drop the dependence on the

dimension d. The set is ortho-normal, which yields

h�n,j ,�n0,j0iL2(Sd�1) = �nn0�jj0 . (B.4)

Theorem 1. Since the spherical harmonics form an ortho-normal basis, every function f : Sd�1 ! R
can be decomposed as

f =
1X

n=0

Nd
nX

j=1

bfn,j�n,j , with bfn,j = hf,�n,jiL2(Sd�1). (B.5)

Which can be seen as the spherical analogue of the Fourier decomposition of a periodic function in R
onto a basis of sines and cosines.

B.1 Gegenbauer polynomials

Gegenbauer polynomials C(↵)
n : [�1, 1] ! R are orthogonal polynomials with respect to the weight

function (1� z2)↵�1/2. A variety of characterizations of the Gegenbauer polynomials are available.
We use, both, the polynomial characterisation for its numerical stability

C(↵)
n (z) =

bn/2cX

j=0

(�1)j �(n� j + ↵)

�(↵)�(j + 1)�(n� 2j + 1)
(2z)n�2j , (B.6)

and Rodrigues’ formulation:

C(↵)
n (z) =

(�1)n

2nn!

�(↵+ 1
2 )�(n+ 2↵)

�(2↵)�(↵+ n+ 1
2 )

(1� z2)�↵+1/2 dn

dzn

h
(1� z2)n+↵�1/2

i
. (B.7)
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The polynomials normalise by
Z 1

�1

h
C(↵)

n (z)
i2
(1� z2)↵�

1
2 dz =

⌦d�1

⌦d�2

↵

n+ ↵
C(↵)

n (1) =
⇡21�2↵�(n+ 2↵)

n!(n+ ↵)�(↵)2
, (B.8)

with C(↵)
n (1) = �(2↵+n)

�(2↵)n! . Also note the following relationship n+↵
↵ C(↵)

n (1) = Nd
n .

There exists a close relationship between Gegenbauer polynomials (also known as generalized
Legendre polynomials) and spherical harmonics, as we will show in the next theorems.
Theorem 2 (Addition). Between the spherical harmonics of degree n in dimension d and the
Gegenbauer polynomials of degree n there exists the relation

Nd
nX

j=1

�n,j(x)�n,j(x
0) =

n+ ↵

↵
C(↵)

n (x>x0), (B.9)

with ↵ = d�2
2 .

As a illustrative example, this property is analogues to the trigonometric addition formula:
sin(x) sin(x0) + cos(x) cos(x0) = cos(x� x0).

Theorem 3 (Funk-Hecke). Let s(·) be an integrable function such that
R 1
�1 ks(t)k(1� t2)(d�3)/2dt

is finite and d � 2. Then for every �n,j

1

⌦d�1

Z

Sd�1

s(x>x0)�n,j(x
0) d!(x0) = �n �n,j(x), (B.10)

where ban is a constant defined by

�n =
!d

C(↵)
n (1)

Z 1

�1
s(t)C(↵)

n (t) (1� t2)
d�3
2 dt, (B.11)

with ↵ = d�2
2 , !d = ⌦d�2

⌦d�1
=

�( d
2 )

�( d�1
2 )

p
⇡

.

Funk-Hecke simplifies a (d�1)-variate surface integral on Sd�1 to a one-dimensional integral over
[�1, 1]. This theorem gives us a practical way of computing the Fourier coefficients for any zonal
kernel.

C Analytic computation of eigenvalues for zonal functions

The eigenvalues of a zonal function are given by the one-dimensional integral:

�n =
!d

C(↵)
n (1)

Z 1

�1
s(t)C(↵)

n (t) (1� t2)
d�3
2 dt, (C.1)

where C(↵)
n (·) is the Gegenbauer polynomial of degree n with ↵ = d�2

2 and !d = ⌦d�2/⌦d�1

denotes the surface area of Sd�1 (see Appendix B for analytical expressions of these quantities). The
shape function s(t) determines whether this integral can be computed in closed-form. In the next
sections we derive analytical expressions for the eigenvalues of the Arc Cosine kernel and ReLU
activation function in the case the d is odd. For d even, other kernels (e.g., Matérn) or activation
functions (e.g., Softplus, Swish, etc.) we rely on numerical integration (e.g., Gaussian quadrature) to
obtain these coefficients. We will show that both approaches lead to highly similar results.

C.1 Arc Cosine kernel

The shape function of the first-order Arc Cosine kernel [13] is given by:

s : [0,⇡] ! R, s : x 7! sinx+ (⇡ � x) cosx, (C.2)

where we expressed the shape function as a function of the angle between the two inputs, rather than
the cosine of the angle. For notational simplicity, we also omitted the factor 1/⇡.
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Using a change of variables we rewrite Eq. (C.1)

�n =
!d

C(↵)
n (1)

Z ⇡

0
s(x)C(↵)

n (cosx) sind�2 x dx, (C.3)

Substituting C(↵)
n (cosx) by its polynomial expansion (Eq. (B.6)), it becomes evident that we need a

general solution of the integral for n, m 2 N
Z ⇡

0
[sin(x) + (⇡ � x) cos(x)] cosn(x) sinm(x)dx. (C.4)

The first term can be computed with this well-known result:

Z ⇡

0
sinn(x) cosm(x)dx =

8
><

>:

0 if m odd
(n�1)!! (m�1)!!

(n+m)!! ⇡ if m even and n odd,
(n�1)!! (m�1)!!

(n+m)!! 2 if n,m even.
(C.5)

The second term is more cumberstone and is given by:

I :=

Z ⇡

0
(⇡ � x) sinn(x) cosm(x)dx (C.6)

which we solve using integration by parts with u = ⇡ � x and dv = sinn(x) cosm(x)dx, yielding

I = u(0)v(0)� u(⇡)v(⇡) +

Z ⇡

0
v(x0)dx0, (C.7)

where v(x0) =
R x0

0 sinn(x) cosm(x)dx. This gives v(0) = 0 and u(0) = 0, simplifying I =R ⇡
0 v(x0)dx0.

We first focus on v(x0): for n odd, there exists a n0 2 N so that n = 2n0 + 1, resulting

v(x0) =

Z x0

0
sin2n

0
(x) cosm(x) sin(x)dx = �

Z cos(x0)

0
(1� u2)n

0
umdu (C.8)

Where we used sin2(x) + cos2(x) = 1 and the substitution u = cos(x) =) du = � sin(x)dx.
Using the binomial expansion, we get

v(x0) = �
Z cos(x0)

0

n0X

i=0

✓
k

i

◆
(�u2)iumdu =

n0X

i=0

(�1)i+1

✓
k

i

◆
cos(x0)2i+m+1 � 1

2i+m+ 1
. (C.9)

Similarly, for m odd, we have m = 2m0 + 1 and use the substitution u = sin(x), to obtain

v(x0) =
m0X

i=0

(�1)i
✓
k

i

◆
sin(x0)2i+n+1

2i+ n+ 1
. (C.10)

For n and m even, we set n0 = n/2 and m0 = m/2 and use the double-angle identity, yielding

v(x0) =

Z x0

0

✓
1� cos(2x)

2

◆n0✓
1 + cos(2x)

2

◆m0

dx. (C.11)

Making use of the binomial expansion twice, we retrieve

v(x0) = 2�(n0+m0)
n0,m0X

i,j=0

(�1)i
✓
n0

i

◆✓
m0

j

◆Z x0

0
cos(2x)i+jdx. (C.12)

Returning back to the original problem I =
R ⇡
0 v(x0)dx0. Depending on the parity of n and m we

need to evaluate:
Z ⇡

0
cos(x0)pdx0 =

(
(p�1)!!

p!! ⇡ if p even
0 if p odd,

or
Z ⇡

0
sin(x0)pdx0 =

(
(p�1)!!

p!! ⇡ if p even
(p�1)!!

p!! 2 if p odd.
(C.13)
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For m and n even we require the solution to the double integral
Z ⇡

0

Z x0

0
cos(2x)pdxdx0 =

(
(p�1)!!

p!!
⇡2

2 if p even
0 if p odd.

(C.14)

Combining the above intermediate results gives the solution to Eq. (C.1) for the Arc Cosine kernel.
In Table C.1 we list the first few eigenvalues for different dimensions and compare the analytical to
the numerical computation.

Table C.1: Eigenvalues for the first-order Arc Cosine kernel Eq. (6) computed analytically and
numerically for different degrees n and dimensions d. In the experiments we set values smaller than
10�9 to zero.

d = 3 d = 5 d = 7

n numerical analytical numerical analytical numerical analytical

0 0.375 0.375 0.352 0.352 0.342 0.342
1 0.167 0.167 0.1 0.1 0.0714 0.0714
2 0.0234 0.0234 0.00977 0.00977 0.00534 0.00534
3 �2.44e�09 �3.53e�17 1.59e�09 4.24e�17 7.79e�10 5.3e�17
4 0.000651 0.000651 0.000153 0.000153 5.34e�05 5.34e�05
5 �2.01e�09 �7.07e�17 1.86e�10 �1.01e�16 �2.11e�10 �2.52e�17
6 9.16e�05 9.16e�05 1.37e�05 1.37e�05 3.34e�06 3.34e�06
7 �1.23e�09 2.83e�16 1.53e�10 2.36e�17 �1.44e�10 �4.5e�17
8 2.29e�5 2.29e�05 2.38e�06 2.38e�06 4.26e�07 4.26e�07
9 �1.78e�10 1.7e�15 �2.19e�10 3.7e�16 3.72e�11 1.9e�16

C.2 ReLU activation function

Thanks to the simple form of the ReLU’s activation shape function �(t) = max(0, t), its Fourier
coefficients can also be computed analytically. The integral to be solved is given by

�n =
!d

C(↵)
n (1)

Z 1

0
t C(↵)

n (t) (1� t2)↵�1/2dt. (C.15)

Using Rodrigues’ formula for C(↵)
n (t) in Eq. (B.7) and the identities in Eq. (B.8), we can conveniently

cancel the factor (1� t2)↵�1/2. Yielding

�n = !d
(�1)n

2n
�(↵+ 1

2 )

�(↵+ n+ 1
2 )

Z 1

0
t
dn

dtn

h
(1� t2)n+↵�1/2

i
dt (C.16)

Using integration by parts for n � 2 we can solve the integral [50, Appendix D]
Z 1

0
t
dn

dtn

h
(1� t2)n+↵�1/2

i
dt =

✓
n+ ↵� 1/2

k

◆
(�1)k(2k)! for 2k = n� 2 (C.17)

=
�(n+ ↵+ 1

2 )(�1)n/2�1�(n� 1)

�(n2 )�(
n
2 + ↵+ 3

2 )
(C.18)

Thus, substituting ↵ = d�2
2 , yields

�n =
�(d2 )(�1)n/2�1

p
⇡ 2n

�(n� 1)

�(n2 )�(
n
2 + d+1

2 )
, for n = 2, 4, 6, . . . , (C.19)

and �n = 0 for n = 3, 5, 7, . . . . Finally, for n = 0 and n = 1, we obtain

�0 =
1

2
p
⇡

�(d2 )

�(d+1
2 )

, �1 =
1

2 (d� 1)

�(d2 )�(
d+1
2 )

�(d�1
2 )�(d2 + 1)

. (C.20)

In Table C.2 we compare the analytic expression to numerical integration using quadrature. There is
a close match for eigenvalues of significance and a larger discrepancy for very small eigenvalues. In
practice we set values smaller than 10�9 to zero.
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Table C.2: Eigenvalues for the ReLU activation Eq. (6) computed analytically and numerically for
different degrees n and dimensions d. In the experiments we set values smaller than 10�9 to zero.

d = 3 d = 5 d = 7

n numerical analytical numerical analytical numerical analytical

0 0.25 0.25 0.188 0.188 0.156 0.156
1 0.167 0.167 0.1 0.1 0.0714 0.0714
2 0.0625 0.0625 0.0313 0.0312 0.0195 0.0195
3 9.08e�10 0 5.86e�10 3.37e�17 �2.05e�10 2.69e�17
4 �0.0104 �0.0104 �0.00391 �0.00391 �0.00195 �0.00195
5 �1.54e�09 0 �2.77e�10 6.75e�17 1.27e�10 5.37e�17
6 0.00391 0.00391 0.00117 0.00117 0.000488 0.000488
7 �1.44e�09 2.83e�16 �2.38e�10 1.35e�16 �9.22e�11 0
8 �0.00195 �0.00195 �0.000488 �0.000488 �0.000174 �0.000174
9 6.6e�10 1.7e�15 1.38e�10 �8.1e�16 �1.49e�11 2.15e�15

Figure C.1: ReLU coefficients �n as a function of degree n for different dimensions d.

D GP Regression fit on Synthetic dataset

Figure D.1: Gaussian process Regression fit (µ± 2�) on synthetic dataset with corresponding Log
Marginal Likelihood (LML) for a Zonal Matérn-5/2 (left) and Arc Cosine (right) kernel.

E Implementation and Experiment Details

Our implementation makes use of the interdomain framework [42] in GPflow [57]. Us-
ing the interdomain framework, we only need to provide implementations for the covari-
ances (Eq. (13) and Eq. (14)) in order to create our activated SVGP models. In our
code, we define two classes ActivationFeature and ZonalArcCosine, which inherit from
gpflow.inducing_variables.InducingVariables and gpflow.kernels.Kernel, and are
responsible for computing the Fourier coefficients �n and �n, respectively. The Fourier coef-
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Figure C.2: Spectra of Arc Cosine and Matérn-5/2 (blue), and ReLU and Softplus (orange) for
different levels.

ficients are accessible through the property .eigenvalues on the objects, and are computed
either analytically or using 1D numerical integration, as detailed in Appendix C. Furthermore,
we implement the function gegenbauer_polynomials which evaluates the first Ñ Gegenbauer
polynomials at t 2 [�1, 1] and thus returns [C(↵)

0 (t), C(↵)
1 (t), . . . , C(↵)

Ñ�1
(t)]. The function

gegenbauer_polynomials is implemented using tf.math.polyval, where the coefficients orig-
inate from scipy.special.gegenbauer. With these helper functions and objects in place, we
compute the covariance matrices as follows:
import tensorflow as tf
import gpflow.covariances as cov

@cov.Kuu.register(ActivationFeature , ZonalArcCosine)
def _Kuu(feature: ActivationFeature , kernel: ZonalArcCosine , *, jitter: float = 0.0) ->

TensorType:
"""
Covariance between inducing variables u_m.
"""
W = feature.W # shape: [M, D], M: number of inducing , and D: dimension
r_W = l2_norm(W) # [M, 1]
W = W / r_W # [M, D]
cos_theta = tf.matmul(W, W, transpose_b=True) # [M, M]
c = gegenbauer_polynomials(cos_theta [..., None]) # [M, M, N_tilde]

ratio_coeffs = tf.math.divide_no_nan(
feature.eigenvalues ** 2, kernel.eigenvalues

) # returns 0 if self.kernel coefficient is 0, [N_tilde]
Kmm = tf.einsum("n,...n->...", ratio_coeffs , c) # [M, M]
jittermat = tf.eye(len(feature), dtype=W.dtype) * 1e-5 # [M, M]
return Kmm + jittermat # [M, M]

@cov.Kuf.register(ActivationFeature , ZonalArcCosine , object)
def _Kuf(feature: ActivationFeature , kernel: ZonalArcCosine , X: TensorType) -> TensorType

:
"""
Covariance between f(x) and inducing variable u_m
"""
X = tf.concat ([X, tf.ones_like(X[:, :1])], axis =1) # shape: [N, D]
X = X / tf.reshape(kernel.lengthscales , (1, -1))
r_X = l2_norm(X) # [N, 1]
X = X / r_X

W = feature.W # [M, D]
r_W = l2_norm(W) # [M, 1]
W = W / r_W # [M, D]

cos_theta = tf.matmul(W, X, transpose_b=True) # [M, N]
c = gegenbauer_polynomials(cos_theta [..., None]) # [M, N, N_tilde]
return tf.transpose(r_X) * tf.einsum("n,...n->...", feature.eigenvalues , c) # [M, N]

Thanks to GPflow’s interdomain framework, we can now readily use ActivationFeature
and ZonalArcCosine as our inducing variables and kernel in an gpflow.models.SVGP or
gpflow.models.SGPR model.

The Deep Gaussian process models are implemented in GPflux [58]. The interoperability between
GPflow and GPflux makes it possible to use our classes ActivationFeature and ZonalArcCosine
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in GPflux layers. Therefore, by simply stacking multiple gpflux.layers.GPLayer, configured
with our kernel and inducing variable classes, we obtain our activated DGP models.

E.1 UCI Regression

In the UCI experiment we measure the accuracy of the models using Root Mean Squared Error
(RMSE) and uncertainty quantification using Negative Log Predictive Density (NLPD) given that
this is a proper scoring rule [59]. For each dataset, we randomly select 90% of the data for training
and 10% for testing and repeat the experiment 5 times to obtain confidence intervals. We apply an
affine transformation to the input and output variables to ensure they are zero-mean and unit variance.
The MSE and TLL are computed on the normalised data. An important aspect of this experiment
is that we keep the configuration (e.g., number of hidden units, activation function, dropout rate,
learning rate, etc.) fixed across datasets for a given model. This gives us a sense of how well a method
generalises to an unseen dataset without needing to fine tune it.

The architecture for the 3-layer neural network models (NN, NN+Dropout[24], NN Ensemble,
NN+TS [51]) is shown in Fig. 1a, where the wide layers have 128 units and the narrow layers have the
same number of units as the dimensionality of the data. The wide layers are followed by a Softplus
activation function. The ‘Dropout’ model uses a rate of 0.1, and the ‘Ensemble’ model consists of 5
NN models that are independently initialised and trained. Propagating the means through the layers
of the ADGP exhibits the same structure as the NN model in Fig. 1a as we configured it with 128 of
our Softplus inducing variables for each layer. The ADGP and DGP use the Arc Cosine kernel and
the DGP uses the setup described in Salimbeni and Deisenroth [5]. All models are optimised using
Adam [60] using a minibatch size of 128 and a learning rate that starts at 0.01 which is configured to
reduce by a factor of 0.9 every time the objective plateaus.

E.2 Large Scale Image Classification

In the classification experiment we measure the performance of different models under dataset shifts,
as presented in Ovadia et al. [53]. All models are trained on the standard training split of the image
benchmarks (MNIST, Fashion-MNIST and CIFAR-10), but are evaluated on images that are manually
altered to resemble out-of-distribution (OOD) images. For MNIST and Fashion-MNIST the OOD
test sets consist of rotated digits — from 0°(i.e. the original test set) to 180°. For CIFAR-10, the test
set consists of four different types of corrupted images (‘Gaussian noise’, ‘motion blur’, ‘brightness’
and ‘pixelate’) with different intensity levels ranging from 0 to 5. The figure reports the mean and
standard deviation of the accuracy and the test log likelihood (TLL) over three different seeds.

For MNIST and FASHION-MNIST the models consist of two convolutional and max-pooling layers,
followed by two dense layers with 128 units and 10 output heads. The dense layers are either
fully-connected neural network layers using a Softplus activation function (‘NN’, ‘NN+Dropout’
[24], ‘NN+TS’ [51]), or our Activated GP layers using the Arc Cosine kernel and Softplus inducing
variables (‘ADGP’). The first convolutional layer uses 32 filters with a kernel size of 5, and is then
followed by a pooling layer of size 2. The second convolutional layer is configured similarly, but
uses 64 filters instead of 32. The dense layers have a structure similar to Fig. 1a, where the wide
layers have 128 units and the narrow 10. The wide layers use a Softplus activation function. For
the CIFAR-10 models, we use the residual convolutional layers from a ResNet [54] to extract useful
features before passing them to two dense GP or NN layers with 128 units (or, equivalently, inducing
variables) and 10 output heads. All models are optimised using Adam [60] using a minibatch size of
256.
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