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Abstract

Query rewriting (QR) is a critical technique001
in e-commerce search, addressing the lexical002
gap between user queries and product descrip-003
tions to enhance search performance. Exist-004
ing QR approaches typically fall into two cat-005
egories: discriminative models and genera-006
tive methods leveraging large language models007
(LLMs). Discriminative models often strug-008
gle with natural language understanding and009
offer limited flexibility in rewriting, while gen-010
erative LLMs, despite producing high-quality011
rewrites, face high inference latency and cost in012
online settings. These limitations force offline013
deployment, making them vulnerable to issues014
like information staleness and semantic drift.015
To overcome these challenges, we propose a016
novel hybrid pipeline for QR that balances ef-017
ficiency and effectiveness. Our approach com-018
bines offline knowledge distillation to create019
a lightweight but efficient student model with020
online reinforcement learning (RL) to refine021
query rewriting dynamically using real-time022
feedback. A key innovation is the use of LLMs023
as simulated human feedback, enabling scal-024
able reward signals and cost-effective evalua-025
tion without manual annotations. Experimental026
results on Amazon ESCI dataset demonstrate027
significant improvements in query relevance,028
diversity, and adaptability, as well as positive029
feedback from the LLM simulation. This work030
contributes to advancing LLM capabilities for031
domain-specific applications, offering a robust032
solution for dynamic and complex e-commerce033
search environments.034

1 Introduction035

Context. Product search is a central component of036

e-commerce platforms like Amazon or eBay, en-037

abling users to discover relevant items from vast038

catalogs. In these platforms, users often face chal-039

lenges when formulating queries, leading to sub-040

optimal search experiences. These challenges are041

magnified in scenarios where users may not use042
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Figure 1: Overview of an E-commerce search pipeline
with Query Rewriting module installed.

precise or correct terminology, employ synonyms, 043

or mix languages in their search phrases due to in- 044

eptitude of language proficiency. Additionally, the 045

search terms might be misspelled or overly general, 046

making it difficult for traditional search systems to 047

retrieve relevant products. For example, a user may 048

search for “dress”, which is too broad, while others 049

might input “summer dress”, “boho maxi dress”, or 050

“red evening gown”, each reflecting different intents 051

but lacking clarity without additional context. As e- 052

commerce platforms continue to grow in both scale 053

and diversity, ensuring accurate and relevant prod- 054

uct retrieval becomes increasingly difficult, neces- 055

sitating the need for advanced query rewriting tech- 056

niques. query rewriting (QR) refers to the process 057

of transforming an input query into one or more 058

alternative queries that are semantically similar but 059

may be phrased differently, thereby improving the 060

likelihood of retrieving more relevant products. In 061

the context of e-commerce platforms, effective QR 062

is crucial for bridging the gap between user intent 063

and the diverse ways products can be described in 064

the catalog (Figure 1). 065

Previous literature. Query rewriting (QR) meth- 066

ods can be broadly categorized into discriminative 067

and generative approaches. Further details about 068

existing work are provided in Appendix A. 069

Discriminative methods (Xu and Croft, 2017; 070

Mandal et al., 2019; Li et al., 2022; Shekarpour 071

et al., 2017; Diaz, 2016) focus on reformulating 072

queries by identifying similar terms from a pre- 073
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defined query rewriting set, leveraging sparse re-074

trieval techniques to find relevant products. For ex-075

ample, using traditional Information Retrieval (IR)076

techniques, a query like “laptop under 500” might077

be rewritten as “budget laptop” or “cheap laptops”078

by detecting semantically similar phrases. While079

computationally efficient, these methods face criti-080

cal limitations. They often struggle with long-tail081

queries, where reformulation sets lack appropri-082

ate alternatives, leading to inadequate or irrelevant083

rewrites. Furthermore, their reliance on static, pre-084

defined mappings limits flexibility, particularly for085

queries with complex or ambiguous user intent.086

Addressing these challenges requires a more dy-087

namic and adaptable approach capable of handling088

diverse user inputs.089

In response to these limitations, Generative meth-090

ods (Agrawal et al., 2023; Qiu et al., 2021; Jager-091

man et al., 2023), such as those using Large Lan-092

guage Models (LLMs), have gained popularity due093

to their superior language understanding and con-094

textual flexibility. By training on extensive corpora095

of query-reformulation pairs, generative models096

can produce diverse, contextually relevant rewrites.097

For instance, an LLM might reformulate the query098

“best wireless headphones” into alternatives like099

“top-rated wireless earphones” or “best Bluetooth100

headphones”, potentially enhancing the coverage101

and relevance of search results. These methods102

represent a significant leap forward, offering the103

ability to dynamically generate novel query refor-104

mulations without relying on predefined sets.105

However, generative methods also have their draw-106

backs, particularly in real-world e-commerce ap-107

plications. The large-scale nature of LLMs results108

in high inference latency and computational costs,109

making real-time deployment impractical. To miti-110

gate this, LLMs are often deployed in an “offline”111

manner, precomputing query rewrites for popu-112

lar searches and storing them in cache memory113

(Agrawal et al., 2023). While this reduces latency,114

it introduces issues like information staleness, as115

the models are not continuously updated to reflect116

new products, trends, or user behavior. This is117

especially problematic in e-commerce, where prod-118

uct catalogs and user preferences evolve rapidly,119

leading to outdated or irrelevant rewrites. These120

challenges highlight the need for a solution that121

combines the language ability of LLMs with a com-122

pact, efficient, and real-time adaptable framework.123

The online deployment of an efficient and effective124

query rewriting module in e-commerce search sys-125

tems remains a significant challenge for existing 126

approaches. Ideally, such a module should retain 127

the strong language capabilities of an LLM while 128

being compact, resource-efficient, and practical for 129

real-time deployment. 130

Contribution. In this paper, we propose a novel 131

adaptive query rewriting pipeline that effectively 132

balances efficiency and performance, addressing 133

the limitations of current approaches. 134

Our solution employs a dual-phase training frame- 135

work for a large language model (LLM), integrat- 136

ing offline and online training. In the offline phase, 137

we leverage knowledge distillation to create a com- 138

pact and efficient student model, termed the Mini 139

E-commerce Language Model (MiniELM), dis- 140

tilled from a large foundation teacher model while 141

preserving semantic fidelity. In the online phase, 142

MiniELM is fine-tuned using reinforcement learn- 143

ing with dynamic reward signals derived from sim- 144

ulated user feedback. This approach not only re- 145

duces inference costs but also ensures that the 146

model aligns with and captures relevance, diver- 147

sity, and user preferences in product retrievals. 148

A key innovation of our method is the use of 149

simulated human feedback via LLMs, replacing 150

resource-intensive manual annotations. This mech- 151

anism effectively mimics real-world deployment 152

scenarios while enabling scalable evaluation and 153

continuous model refinement. Additionally, we in- 154

troduce reward models that assess query rewrites 155

on relevance, diversity, and coverage of user in- 156

tent, ensuring comprehensive performance metrics. 157

Experimental results on the Amazon ESCI dataset 158

(Reddy et al., 2022) validate MiniELM’s effective- 159

ness across both offline and online stages, demon- 160

strating its superiority over baseline methods. In 161

summary, our contributions are as follows: 162

• Propose MiniELM, a lightweight and efficient 163

query rewriting model derived through knowl- 164

edge distillation. 165

• Introduce a two-phase training framework in- 166

tegrating offline knowledge distillation and 167

online reinforcement learning. 168

• Develop scalable reward models and lever- 169

age LLM-based simulated feedback to refine 170

query rewriting dynamically. 171

• Validate MiniELM through extensive experi- 172

ments on the Amazon ESCI dataset, showcas- 173

ing its effectiveness and superiority. 174
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Figure 2: High-level diagram of MiniELM’s training pipelines: Offline training combines supervised fine-tuning
(SFT) and knowledge distillation (KD) for a robust QR foundation, while online training leverages RL updates from
custom reward signals and simulated human feedback to adapt to e-commerce dynamics.

2 Problem Statement175

Let D = {Qi}Ni=1 represent the dataset of real176

user queries collected from the historical data of e-177

commerce systems, where Qi =
{
t1i , t

2
i , . . . , t

mi
i

}
.178

Here, tji denotes the jth token in the ith user query.179

The objective of the query rewriting (QR) task is180

to produce a corresponding set of rewritten queries,181

Y =
{
Q̃i

}N

i=1
, where Q̃i is the rewritten version182

of Qi. For simplicity, we omit the index i whenever183

the context is clear.184

Since there is no definitive ground truth for an ideal185

rewritten query, nor should there be—this would186

restrict the flexibility of potential rewrites—we187

instead define a set of novel metrics to evaluate188

the quality of a rewritten query Q̃ relative to the189

original query Q. These metrics are computed by190

comparing the lists of products retrieved by the e-191

commerce search engine for the original query Q192

and the rewritten query Q̃, denoted as PQ and PQ̃,193

respectively. The key metrics are as follows:194

• Relevant score r(Q,PQ̃): Measures how195

well the results retrieved for the rewritten196

query align with the intent of the original197

query Q.198

• Diversity score d(PQ, PQ̃): Quantifies the199

diversity in the product list returned for the200

rewritten query compared to the original.201

• Click/Add2cart/Purchase rate score202

c(PQ̃)/a2c(PQ̃)/p(PQ̃): Estimate the likeli-203

hood of user engagement with the product204

list returned for the rewritten query. These205

metrics simulate user behavior through206

Reinforcement Learning with Artificial 207

Implicit Feedback (RLAIF) (Lee et al., 2024) 208

in the online training pipeline. 209

Details on the calculation of these metrics, which 210

serve both as reward signals and evaluation criteria, 211

are provided in Section 3.2. 212

3 Method 213

Our approach for QR employs a dual-phased 214

pipeline that integrates offline and online training 215

methodologies (Figure 2). This pipeline leverages 216

the natural language understanding of large lan- 217

guage models (LLMs) while addressing efficiency 218

and adaptability challenges through knowledge dis- 219

tillation and simulated user feedback. In the offline 220

phase, we create MiniELM, a compact yet powerful 221

model optimized for query rewriting, using super- 222

vised fine-tuning (SFT) on a custom Q2Q dataset 223

and knowledge distillation (KD) to retain seman- 224

tic fidelity while reducing computational overhead. 225

This ensures MiniELM inherits the capabilities of 226

a larger teacher model while aligning with domain- 227

specific objectives in query rewriting. The online 228

phase then dynamically adapts MiniELM to pri- 229

oritize relevance and diversity while evolving to 230

reflect simulated user preferences and updates in 231

the product catalog. Together, these phases form a 232

cohesive framework: the offline phase establishes 233

a robust and efficient foundation, and the online 234

phase continuously refines and personalizes the 235

model for real-world deployment. 236

3.1 Offline Training Phase 237

The offline phase serves as a warm-start mecha- 238

nism for the query rewriting (QR) model, ensuring 239
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Table 1: Rewrittings generated by different LLMs given user query: “i love you through and through board book”.

Model Rewritten Query

Llama 3 8B love board books for toddlers and young children that express deep affection and devotion
GPT2-large board books about unconditional love and family bonds

that it is both highly effective in rewriting queries240

and computationally efficient with minimal over-241

head.242

A key challenge in applying vanilla LLMs to e-243

commerce QR is their tendency to generate long-244

tail rewrites (as shown in Table 1), which are often245

suboptimal and difficult to process in downstream246

search pipeline stages (Peng et al., 2024; Zhang247

et al., 2021). To mitigate this issue, we first apply248

supervised fine-tuning (SFT) using a curated Q2Q249

dataset derived from the Amazon ESCI dataset250

(Reddy et al., 2022). This step adapts the model251

to the QR task, aligning its outputs with domain-252

specific requirements and improving rewrite qual-253

ity. Our approach trains two model variants: a254

Teacher model (T ), a large-scale LLM with strong255

language understanding, and a Student model (S),256

a smaller, more efficient version optimized for re-257

duced computational overhead.258

Subsequently, a KD strategy is applied to trans-259

fer the Teacher model’s knowledge to the Student260

model. This two-step process - fine-tuning and dis-261

tillation - ensures that the Student model inherits262

the Teacher’s strong performance while maintain-263

ing efficiency. Fine-tuning first allows the Teacher264

to learn optimal QR patterns, which are then dis-265

tilled into the smaller model, preventing excessive266

performance degradation during compression. The267

outcome of this offline training phase is MiniELM,268

a fine-tuned and distilled Student model that forms269

the foundation for the subsequent online phase.270

Figure 3: Illustration for Query-Product bi-partite graph.

SFT with Custom Q2Q dataset. We construct a271

custom query-to-query (Q2Q) dataset using exist-272

ing queries from the Amazon ESCI dataset (Reddy273

et al., 2022). The ESCI dataset represents data274

as triplets (Q,P,R), where Q is a user query, P275

is a product in the Amazon catalog, and R is the 276

relevance score between them. Leveraging this 277

structure, we create a bipartite graph that maps the 278

relevance relationships between the query set and 279

the product set (illustrated in Fig. 3). From this 280

graph, we identify query pairs that are mapped as 281

relevant to at least k similar products (e.g. labeled 282

as “E” or “S” in the ESCI dataset). These query 283

pairs are treated as candidate equivalents. To en- 284

sure semantic accuracy, the final set of candidate 285

query pairs is filtered using a strong LLM (Llama 286

3.3, 70B version in our case), which verifies the se- 287

mantic equivalence of the queries. Final selections 288

(e.g. “men shoes” and “shoes for men” - Figure 3) 289

are then included in the custom Q2Q dataset. This 290

building procedure is beneficial as it completely 291

remove human manual annotations out of the loop, 292

unlike existing works (Agrawal et al., 2023; Peng 293

et al., 2024). Building on this curated Q2Q dataset, 294

we fine-tune both the teacher model T and the stu- 295

dent model S on these query-to-query pairs. This 296

targeted fine-tuning process ensures that both mod- 297

els are aligned with the task of generating accurate 298

query rewritings within the e-commerce context. 299

By focusing on equivalence in query rewriting, this 300

method significantly mitigates the long-tail queries 301

generated by vanilla LLMs. 302

KD from T to S. After SFT on both T and S, an 303

additional step of Knowledge distillation is further 304

employed to transfer the language capabilities of 305

T to S. In this process, we employ the techique 306

introduced in (Gu et al., 2024), with the center 307

idea circulate around reverse Kullback-Leibler di- 308

vergence (KLD) during distillation: 309

DKL(PS ||PT ) =
∑
x

PS(x) log
PS(x)

PT (x)
(1) 310

This loss minimizes the student model’s tendency 311

to overestimate low-probability regions of the 312

teacher’s distribution, enabling it to focus on high- 313

relevance predictions (major modes) of T . This 314

benefit brought about with reverse KLD is partic- 315

ularly favorable for generation task of T or S that 316

involve a great scale dictionary, unlike normal clas- 317

sification tasks. 318
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After the process, we attain the fine-tuned and319

distilled version of Student S - MiniELM, that320

addresses the computational inefficiencies associ-321

ated with deploying large-scale LLMs in real-time322

search systems, while maintaining great language323

ability and sense for E-Commerce QR task.324

3.2 Online Training Phase325

The online training phase extends the offline foun-326

dation by enabling MiniELM to adapt dynamically327

to the e-commerce environment through real-time328

learning during deployment process (Figure 2b).329

This phase employs reinforcement learning (RL)330

to fine-tune the model using gradient policy opti-331

mization (Schulman et al., 2017; Rafailov et al.,332

2024), ensuring that MiniELM remains responsive333

to updates in product catalogs and user behavior.334

Online reward signal. To effectively guide this335

real-time learning, the online training phase relies336

on carefully designed reward signals (defined in337

Section 2), which capture the multifaceted objec-338

tives of query rewriting. The relevance score en-339

sures alignment between the original and rewritten340

queries, maintaining consistency with users’ origi-341

nal intents. Diversity measures the extent to which342

the rewritten query expands product coverage by343

retrieving distinct items compared to the original344

query. While both metrics can be calculated of-345

fline and provide a baseline reward signal, they fail346

to capture user interest in the retrieved products347

- a critical indicator of query quality. To address348

this, an online feedback score is derived from349

simulated user interactions using a judge model -350

named M2. This score, combined with relevance351

and diversity, ensures the model balances query352

expansion with relevance to user preferences and353

broader exploratory needs. All of these metrics are354

quantified as follow.355

• Relevant score r(Q,PQ̃): We begin by fine-356

tuning a bert-base-uncased model M1357

(Devlin et al., 2019) on (Q,P,R) pairs from358

the ESCI dataset to evaluate the relevance be-359

tween arbitrary query-product pairs. The rele-360

vance score is then computed as: r(Q,PQ̃) =361
1

|PQ̃|
∑

iM1 (Q,Pi)∀Pi ∈ PQ̃.362

• Diversity score d(PQ, PQ̃): This metric mea-363

sures the proportion of distinct products re-364

trieved by the rewritten query compared to the365

original list. It is defined as: d(PQ, PQ̃) =366
|PQ̃|−|PQ∩PQ̃|

|PQ| .367

• Click/Add2cart/Purchase rate score 368

c(PQ̃)/a2c(PQ̃)/p(PQ̃): An LLM judge 369

model M2 is carefully prompted to assess 370

the quality of a rewritten query based on its 371

associated product list PQ̃ (detailed prompts 372

are covered in Appendix B). The model takes 373

as input the simulated user’s bio information, 374

drawn from a pre-synthesized profile pool 375

(details on the pool generation process are 376

provided in Appendix B), along with the 377

original query Q and the product list PQ̃. 378

It then simulates up to k interactions that 379

the user might perform with the products. 380

User interactions are categorized into three 381

levels of increasing interest: clicking (c(PQ̃)), 382

adding to cart (a2c(PQ̃)) and purchasing 383

(p(PQ̃)). For each product list PQ̃, M2 is 384

prompted to separately predict the number of 385

interactions for each category. For instance, 386

c(PQ̃) =
M2(bio,Q,PQ̃)

|PQ̃| estimates the number 387

of products clicked, normalized by total 388

number of products in the list. Ideally, the 389

interaction count should reflect the quality of 390

PQ̃, where higher-quality rewrites yield more 391

positive user interactions. 392

Online DPO. We chose online Direct Policy Op- 393

timization (DPO) (Rafailov et al., 2024) as our 394

reinforcement learning (RL) algorithm to further 395

align our student model, as it offers significant ad- 396

vantages aligned with our online deployment goals. 397

Unlike traditional RL methods, DPO does not re- 398

quire a pre-collected or annotated dataset. Instead, 399

feedback from the judge model M2, along with rel- 400

evance and diversity metrics, serves as the reward 401

signal, replacing the need for manual annotations 402

(Figure 2c). 403

At each training step, a query is sampled from the 404

query dataset D (here ESCI dataset) and a rewriting 405

pair is generated based on the current policy. The 406

judge model M2 evaluates the pair by simulating 407

user feedback and other reward signals, selecting 408

the response with better generation quality as the 409

preferred output Q̃+ and the other as the rejected 410

output Q̃−. The policy is then updated using the 411

DPO loss function: 412

LDPO(θ) = − 1

B

∑
i

logσ

β log
πθ

(
Q̃+

i | Qi

)
πθ

(
Q̃−

i | Qi

)
 (2) 413

Here, B is the mini-batch size, σ denotes 414

sigmoid function, and πθ is the MiniELM model 415
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with trainable parameters θ. The loss intuitively416

minimizes the negative log-likelihood of correctly417

predicting the preference order.418

Unlike RLHF (Christiano et al., 2017), DPO avoids419

the iterative training of a separate reward model,420

eliminating the need for labor-intensive data col-421

lection and annotation. By directly leveraging pref-422

erence pairs and optimizing a simpler loss, DPO423

is more lightweight and efficient, making it ideal424

for real-world e-commerce deployment to align our425

MiniELM.426

4 Experiments and Results427

The primary goal of our experiments is to evaluate428

our proposed approach using the ESCI dataset. We429

begin by measuring performance across three of-430

fline metrics, followed by five online signals. The431

experiments demonstrate how knowledge distilla-432

tion (KD) enhances query rewriting capabilities433

in the offline phase, while reinforcement learning434

(RL) improves performance across the five online435

signal scores. Finally, we qualitatively analyze spe-436

cific query rewriting tasks to highlight how the on-437

line phase further refines and improves the model.438

4.1 Experiment Setting439

4.1.1 Dataset440

We use two different datasets for offline and online441

training, both based on Amazon ESCI (us locale)442

dataset (Reddy et al., 2022).443

Offline phase dataset. We build our custom Q2Q444

dataset from the training split of the Amazon ESCI445

dataset. Out of 74, 888 unique queries, 23, 543446

query pairs are identified as equivalent after a two-447

step filtering process. Since the relation is non-448

directional, both (Q, Q̃) and (Q̃,Q) are included.449

We allocate 20% of the dataset for evaluation, with450

the rest used for training and validation.451

Online phase dataset. For the simulation of452

MiniELM’s online deployment, we perform Re-453

inforcement Learning update with the train split454

of ESCI dataset, while occasionally assessing the455

whole pipeline performance after fix number of456

iterations with test split of the same dataset.457

4.1.2 Metrics458

Offline metrics. Since during offline training459

phase, we have access to rewritten queries - served460

as the models’ ground truth, we employ existing461

widely-used metrics to assess models’ performance:462

(1) ExactMatch checks if the response is exactly463

the same as the reference text; (2) RoughL mea- 464

sures the overlap between the generated response 465

with ground truth via their longest common subse- 466

quences; (3) XEntropy reports the Cross Entropy 467

loss for generating the response. 468

Online metrics. As mentioned in Section 2, we 469

have no access to ideal rewritten queries during 470

online deployment of MiniELM. Hence, we use 471

the set of our custom metrics for evaluation, mea- 472

suring quality of rewritten results base on desired 473

characteristics (e.g. Relevance, diversity, positive 474

simulated human feedback). 475

4.1.3 Implementation Details 476

For both offline and online training, we adopt two 477

LLM families for training and evaluation, sug- 478

gesting that MiniELM enhance the QR task per- 479

formance regardless of choice for vanilla models. 480

Two LLM families selected are widely use GPT2 481

models (Radford et al., 2019) and state-of-the-art 482

open-source Llama 3 models (Dubey et al., 2024). 483

Thoughout our experiments, we chose Llama-3.1- 484

8B-Instruct as our judge model. For simulating 485

ordinary E-commerce search engine, Elasticsearch 486

with default configuration is adopted. 487

Offline phase. We select different Teacher-Student 488

pairs for two selected model families. For GPT2, 489

GPT2-large is selected as T , while base version is 490

adopted as S. In parallel, Llama 3.1 8B variance 491

is selected as T and S is 1B variance of Llama 3.2 492

model. We keep the training hyper-parameters of 493

SFT and KD process the same as (Gu et al., 2024) 494

for our custom Q2Q dataset. 495

Online phase. We perform simulation of actual 496

deployment and RL update with DPO mechanism 497

(Rafailov et al., 2024) for 1000 iterations, peform- 498

ing evaluation check after 50 updates. We adopt 499

batch size of 16, simulating one mini-batch DPO 500

update for every 16 received user queries. 501

4.2 Main Results 502

4.2.1 Evolution of MiniELM via training steps 503

Offline Phase Result Table 2 presents the results 504

of the offline training phase across different back- 505

bone LLM models, where V denotes the Vanilla 506

(untrained) model and P represents the fine-tuned 507

model. Two key insights emerge from these results. 508

First, the supervised fine-tuning (SFT) process sig- 509

nificantly enhances the performance of both the 510

Teacher (T ) and Student (S) models on the query 511

rewriting (QR) task. A notable limitation of vanilla 512

LLMs is their tendency to generate long-tail queries 513
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Table 2: Result of different MiniELM variances on
ESCI Dataset within offline training phase.

Model ExactMatch RoughL XEntropy Mean Length

V 0 4.453 8.1314 217.196
S

P 3.125 42.256 4.632 4.265

V 0.042 6.592 7.433 147.187
T

P 5 44.996 4.204 9.257

V 3.125 42.256 4.632 4.265L
la

m
a

3

T → S
P 4.5 43.217 4.764 4.296

V 0 0.692 9.567 213.228
S

P 2.833 34.817 8.08 2.993

V 0 0.831 8.454 211.98
T

P 1.75 38.982 4.684 3.318

V 2.833 34.817 8.08 2.993

G
PT

2

T → S
P 2.875 35.577 3.739 3.081

with excessive length, which complicates down-514

stream processes in the e-commerce search pipeline515

(Zhang et al., 2021; Kekuda et al., 2024; Peng et al.,516

2024) (e.g., aligning and matching with product cat-517

alogs in e-commerce databases). The SFT process518

effectively mitigates this issue, enabling the fine-519

tuned models to produce reformulations that are520

more concise and better aligned with the ground521

truth. Second, knowledge distillation (KD) training522

consistently improves the performance of the Stu-523

dent model (S), narrowing its gap with the Teacher524

model (T ). This outcome reinforces the rationale525

behind the offline training strategy, achieving the526

dual goals of equipping MiniELM with familiarity527

in the QR task while ensuring it remains efficient528

and adept at natural language understanding.529

Table 3: Result of different MiniELM variances on
ESCI Dataset within online training phase.

Metrics Llama GPT2

T → S RL T → S RL

Relevant 0.663 0.707 0.569 0.654
Diversity 0.769 0.81 0.693 0.753
Click 0.513 0.533 0.489 0.511
Add2cart 0.498 0.516 0.466 0.508
Purchase 0.468 0.503 0.443 0.502

Online Phase Result We evaluate the performance530

of MiniELM before and after the online simulation531

process with both choices of backbone LLMs to532

assess the impact of reinforcement learning (RL)533

training. The results are presented in Table 3.534

The data reveals a clear improvement across all535

recorded metrics, highlighting the positive evolu-536

tion of rewritten queries over the deployment pe-537

riod as a result of effective RL updates. Specifically,538

RL training not only improves the relevance and539

diversity of the product lists PQ̃ retrieved using540

Table 4: Average relevant products returned per query
on the ESCI dataset using different methods.

Method cov(Q̃) Gain (%)

Supervised 111 0
RLQR 145 30.6
CLOVER 132 18.9
DRQR 130 17.1
Task-Oriented QR 114 2.7

MiniELM (Our) 171 54.1

the reformulated queries Q̃ but also increases the 541

positive feedback from simulated human evalua- 542

tors (represented by LLMs) within the e-commerce 543

context. This improvement is crucial in addressing 544

the limitations observed in static models, where 545

performance may stagnate or degrade over time 546

without continuous updates. 547

4.2.2 Comparison with existing baselines 548

Baselines. To demonstrate the effectiveness of 549

MiniELM in the E-commerce query rewriting task, 550

we compare it against the following methods: 551

(i) Supervised (Raffel et al., 2020): T5 model 552

is supervisedly trained with standard beam 553

search for inference, serving as the founda- 554

tional baseline for evaluating other methods. 555

(ii) RLQR (Agrawal et al., 2023): Combines gen- 556

erative models with reinforcement learning 557

(RL) to improve product coverage by return- 558

ing more distinct relevant products. Primarily 559

designed for offline query rewriting. 560

(iii) CLOVER (Mohankumar et al., 2021): A 561

diversity-focused RL algorithm that generates 562

high-quality, diverse reformulations, optimiz- 563

ing for human-assessed quality. 564

(iv) DRQR (Wang et al., 2020): An RL method 565

using a reward function combining F1 score 566

and Query Performance Predictor (QPP). 567

(v) Task-Oriented QR (Nogueira and Cho, 568

2017): Employs RL to maximize relevant 569

products retrieved, reformulating queries 570

based on initial search results. 571

Setting. We adopt a pipeline configuration similar 572

to (Agrawal et al., 2023) using the ESCI dataset (re- 573

ferred to as Aicrowd in (Agrawal et al., 2023)). For 574

the model setup, the LLM used as our MiniELM 575

is the base variant of the T5 model (Raffel et al., 576

2020), while the teacher model T in the offline 577

phase is its corresponding large variant. This al- 578

ternated choice of backbone LLM is similar to 579
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Table 5: Qualitative analysis of MiniELM’s rewritten queries over online training process.

t0 red necklace maternity shorts boho dress 3/4 sleeve blouse

t1 red necklaces women shorts boho blouse dress with 3/4 sleeves
t2 necklaces in red mom shorts boho 3/4 sleeve blouse dress
t3 necklaces in red color maternity shorts for woman boho dress 3/4 sleeve blouses for

women
t4 red necklace for women comfortable maternity shorts boho 3/4 sleeve blouses for women
t5 affordable red necklaces for women maternity shorts for pregnant women casual boho 3/4 sleeve blouses for

women

Figure 4: Rewards for both chosen and rejected rewrit-
ten queries during online RL training.

(Agrawal et al., 2023) configuration, ensuring min-580

imum bias and fairness in comparison. The pri-581

mary metric for performance evaluation is Prod-582

uct Coverage (cov(Q̃)), as defined in (Agrawal583

et al., 2023). Product Coverage is determined by584

counting the number of distinct relevant products585

returned by all reformulated queries. Following586

(Agrawal et al., 2023), we set the number of refor-587

mulated queries per original query to 10. Our eval-588

uation focuses exclusively on the EN data points589

within the test split of the ESCI dataset. By replicat-590

ing the experimental setup and metrics, we directly591

leverage the results reported in (Agrawal et al.,592

2023), ensuring fairness and consistency. This ap-593

proach also eliminates the need to reimplement594

baseline methods due to the unavailability of their595

private source code.596

Result. Table 4 presents the results of all evaluated597

methods. Notably, our MiniELM outperforms all598

investigated baselines, including RLQR (Agrawal599

et al., 2023), which is the second-best approach, de-600

spite not being explicitly trained to maximize Prod-601

uct Coverage. This superior performance can be602

attributed to the implicit learning of Product Cov-603

erage through our Relevance and Diversity reward604

signals. These signals emphasize retrieving dis-605

tinct yet relevant products that complement those606

retrieved for the original queries, highlighting the607

importance of diversifying results while maintain-608

ing query relevance.609

4.3 Additional Analysis 610

This analysis examines MiniELM’s performance 611

evolution and query quality during the online phase. 612

Figure 4 illustrates the evolution of reward signals 613

during the online training phase using DPO for 614

both accepted and rejected rewritten queries. The 615

queries are generated using the MiniELM model 616

variant with a GPT2 backbone. To highlight trends, 617

rewards are smoothed using a 5-window mean av- 618

erage. 619

As shown, both MiniELM’s rewrites consistently 620

improve over time, reflected in rising reward scores. 621

This improvement highlights the effectiveness and 622

consistency of our RL training process, demonstrat- 623

ing the model’s ability to utilize feedback from 624

LLMs (acting as simulated human evaluators) to 625

refine query rewritings and enhance overall perfor- 626

mance. 627

We also perform a qualitative analysis to observe 628

how the same user queries are rewritten over time 629

during the online training phase, with some exam- 630

ples summarized in Table 5. As training progresses, 631

we observe that the rewritten queries increasingly 632

include additional information. Notably, the added 633

terms are typically generic, ensuring that the origi- 634

nal intent of the initial queries remains preserved 635

while enhancing their relevance and comprehen- 636

siveness. 637

5 Conclusion 638

This paper introduces MiniELM, a hybrid query 639

rewriting pipeline for e-commerce that optimizes 640

latency, cost, and adaptability. It balances perfor- 641

mance and efficiency through offline knowledge 642

distillation and online reinforcement learning. Ex- 643

periments show improved query relevance, diver- 644

sity, and user engagement. By leveraging LLM- 645

simulated interactions, MiniELM adapts to evolv- 646

ing user behavior and catalogs without costly anno- 647

tations, offering a scalable, cost-effective solution 648

for dynamic e-commerce. 649
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Limitations650

While the current implementation demonstrates sig-651

nificant contributions, there are limitations that re-652

quire further investigation. MiniELM is currently653

tailored for English queries, limiting its usability654

in multilingual e-commerce platforms. Expanding655

the framework to accommodate multiple languages656

would improve its generalization. Moreover, while657

simulated feedback effectively accelerates online658

adaptation, incorporating real human feedback—or659

a hybrid approach combining both simulated and660

real feedback—could further enhance its perfor-661

mance.662

Ethical Considerations and Broader663

Impact664

MiniELM introduces improvements in query665

rewriting for e-commerce, but its deployment666

should be taken with care to avoid potential ethical667

concerns related to bias and transparency. Since668

the model learns from historical data, it may re-669

inforce existing biases, favoring popular brands670

or frequently searched products while underrepre-671

senting niche sellers. Transparency is another key672

concern, as users and merchants have limited visi-673

bility into how and why their queries are rewritten.674

Without interpretability mechanisms, MiniELM’s675

query modifications could lead to unintended shifts676

in search results, affecting user trust and seller visi-677

bility.678

Despite these concerns, MiniELM has the poten-679

tial for significant positive impact on e-commerce680

search experiences if it is correctly deployed. By681

bridging lexical gaps and enhancing query diversity,682

it improves product discoverability, allowing users683

to find relevant items more easily, even with am-684

biguous or misspelled queries. This benefits both685

consumers and smaller sellers, as it enables lesser-686

known products to surface in search results. Addi-687

tionally, MiniELM’s adaptive reinforcement learn-688

ing mechanism ensures that query rewrites evolve689

with changing trends, reducing reliance on static690

query expansion rules. For e-commerce platforms,691

this leads to better search efficiency, increased user692

engagement, and a more scalable approach to query693

understanding without costly human annotations.694
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A Related Works 809

A.1 Discriminative Method 810

Discriminative methods frame query rewriting as 811

a retrieval task, expanding original queries with 812

relevant terms using pseudo-relevance feedback, 813

thesaurus-based techniques, and search log-based 814

methods. These approaches represent a progression 815

toward addressing semantic drift, adaptability, and 816

personalization challenges. 817

Pseudo-relevance feedback methods, such as those 818

by Xu and Croft (Xu and Croft, 2017), identify 819

expansion terms from top-ranked documents of 820

an initial query, blending global corpus analysis 821

with local feedback. While effective against word 822

mismatches, they are prone to semantic drift from 823

noisy or irrelevant top results, necessitating more 824

stable resources. 825

Thesaurus-based methods mitigate this instability 826

by using predefined lexical resources like WordNet. 827

Mandal et al. (Mandal et al., 2019) advanced this 828

approach with synonym extraction and Boolean 829

query generation, improving recall. However, the- 830

saurus dependency limits adaptability to dynamic 831

trends or rare queries, prompting the need for real- 832

time, user-driven solutions. 833

Search log-based techniques address these limita- 834

tions by leveraging user interactions, such as query 835

transitions and clicks, to generate rewrite candi- 836

dates dynamically. Li et al. (Li et al., 2022) demon- 837

strated their adaptability to evolving trends and 838

contextual personalization. Yet, biases toward fre- 839

quently searched queries hinder their performance 840

on long-tail terms, emphasizing the need for ap- 841

proaches that combine real-time insights with ro- 842

bust language understanding. 843

These advancements highlight the evolution of 844

discriminative methods toward adaptive and user- 845

informed query rewriting, while still grappling with 846

semantic reliability, trend adaptability, and query 847

diversity. 848

A.2 Generative Method 849

Generative methods have revolutionized query 850

rewriting by leveraging advanced neural archi- 851

tectures and training paradigms. Prominent ap- 852

proaches include reinforcement learning (RL)- 853

enhanced methods, transformer-based models, and 854

Large Language Model (LLM)-driven techniques. 855

RL-based methods optimize generative models for 856

task-specific goals, such as balancing relevance and 857

diversity, using custom reward functions. Agrawal 858

10



et al. (Agrawal et al., 2023) demonstrate their abil-859

ity to align queries with human preferences and860

maximize product coverage, though scalability and861

performance on long-tail queries remain challeng-862

ing.863

Transformer-based models, like the cyclic transla-864

tion framework by Qiu et al. (Qiu et al., 2021), uti-865

lize pre-trained architectures to maintain semantic866

consistency between rewritten and original queries.867

This approach excels in handling frequent and dy-868

namic queries but depends heavily on the quality869

of pre-trained models and translation mechanisms.870

LLMs, as demonstrated by Jagerman et al. (Jager-871

man et al., 2023), generate semantically rich, di-872

verse query expansions through strategies like zero-873

shot, few-shot, and Chain-of-Thought prompting.874

PRF-enhanced prompts further improve contextual875

understanding, but these models face challenges876

in fine-tuning for specific goals and impose high877

resource demands. Product-agent systems, such as878

those by Zhou et al. (Zhou et al., 2024), extend879

LLM capabilities by integrating APIs and knowl-880

edge graphs, enabling dynamic query adaptation881

and addressing standalone LLM limitations.882

Generative methods, particularly LLMs, face chal-883

lenges in real-time e-commerce applications due884

to high inference latency and computational costs,885

making them unsuitable for direct online deploy-886

ment. As a workaround, LLMs are often used in an887

”offline” manner, where rewritten queries for popu-888

lar searches are precomputed and cached (Agrawal889

et al., 2023; Jagerman et al., 2023). While this890

reduces latency, it introduces issues of staleness,891

as offline models are not continuously updated to892

reflect new products, trends, or user behaviors. In893

dynamic e-commerce environments, this can result894

in reformulations that fail to align with evolving895

trends or updated product categories, ultimately de-896

grading the relevance and quality of search results.897

B Prompts for Human Simulation and AI898

Feedback Labeling899

In this section we list the prompts we use to simu-900

late the users’ bio information and their interactions901

with product lists.902

Human Simulation. We first defined a pool of903

user profiles by synthesizing their demographics904

(e.g., gender, age, location, income) and prefer-905

ences (e.g., price sensitivity, brand affinity, style,906

material). By randomly sampling profiles from this907

pool, we simulate diverse user interactions for the908

same queries and product lists. The full prompt 909

used to generate the profile pool is summarized in 910

Table 6. 911

Simulating interaction. Given the original query 912

Q and the list of products returned by its corre- 913

sponding rewritten query Q̃, we randomly sample 914

a user bio to simulate their interaction with the 915

product list PQ̃. Table 7 shows the prompt used 916

to simulate click behavior, with similar prompts 917

constructed for “add to cart” and “purchase” inter- 918

actions. 919
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User simluation Simulate the behavior of a random e-commerce user with specific demographics and
preferences influencing product choices:
Demographics:
Gender: Affects preferences in apparel or cosmetics.
Age: Influences style, spending, and product types (e.g., 18-25, 26-35, 36-50).
Location: Impacts climate-related, cultural, and trending products (e.g., North Amer-
ica, Europe, Asia).
Income: Determines spending power (low, middle, high, luxury).
Preferences:
Price Sensitivity: Willingness to pay beyond budget (low to high).
Brand Affinity: Preference for familiar or famous brands (low to high).
Style: Casual, business, luxury, trendy, minimalist, or classic.
Material: Preference for specific or eco-friendly materials when relevant.

Task You are now a simulated user of this ecommerce platform.
Choose bio and preferences for the simulated user.

Table 6: Prompt used to synthesize user profile.

Instruction User Profile: {simu bio}
Criteria for a good list of products: 1. A good list of products for a query is which
has accurate representation of the user intent, demographics and preferences.
2. It should have a diverse set of products matching the query.
3. It should not have products too different from the query.
4 . The main product requested (Eg. toys for kids - toys is the main product) must be
given importance, not the additional clause. The additional clause must be used as a
qualifier.

Task You are now a simulated user of this ecommerce platform and want to search products
using this query:{prompt}.
The site returns a list of product: {list prompt}.
Given the bio and preferences for the simulated user and based on the query, then
answer this final question: How many items from this list will you click? Respond
with a single number only, DO NOT provide other information.

Table 7: Prompt used to synthesize click interaction.
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