Supplementary Material

A Proof of Lemma 1

We first note that F;(y) is 2-strongly convex for any t = 0, ..., T, and Hazan and Kale [2012] have

proved that for any 3-strongly convex function f(x) over K and any x € KC, it holds that

eI < 100 — 1)
where x* = argmin, . f(x).

Then, we consider the term A = Zthl Gllys, — ¥, |l2- T < 2d, we have

T
A=Y "Glys —¥r,ll2 < TGD < 2dGD
t=1
where the first inequality is due to Assumption 2. If T" > 2d, we have
2d T
A :Z G”yTt — Y HQ + Z G”yﬂ — Y. HQ
t=1 t=2d+1
T
<2dGD+ Y Gllyr =i llo+ 5, = vl + 15, = yrll2)-
t=2d+1
Because of (21), for any ¢ € [T + 1], we have

lye = ¥illz < VFor(ye) — Feoa(v7) < VAt +2)7%/2
where the last inequality is due to Fy_1(y:) — Fi—1(y7) < v(t+2)~«.

Moreover, for any ¢ > 7, we have
Iy, = yil3 <Fa(yy,) = Fialy))

i—1
:anl(yz) - anl(y;‘) + <77 Z gcmy:t - y:>

k=
1—1
E ey,

k=T

ly7, = vill2
2
<nG(i —m)lly7, —yill2
where the first inequality is still due to (21) and the last inequality is due to Assumption 1.

<1

Because of ' =t + d; — 1 > t, we have 7 > 7;. Then, from (25), we have
t'—1

Iz, = ¥5,lla <0Gl —7) =nG > |Fil-
k=t
Then, by substituting (24) and (26) into (23), if T > 2d, we have
T t'—1
A<2GD+ Y G|\ Aln+2)7 240G > | Ful + Al +2)7°72
t=2d+1 k=t
T T -1
<2dGD+ > 2G\A(r+2)7 240G >0 N |F
t=2d+1 t=2d+1 k=t
T T t'-1
<2dGD+ > 2G\A(r— 1) 409G > N |F
t=2d+1 t=2d+1 k=t

where the second inequality is due to (7; + 2)~*/% > (7 +2)~*/2 for 7, < 7 and o > 0.

To bound the second term in the right side of (27), we introduce the following lemma.
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Lemma7 Lety =1+ Zf;} |Fi| forany t € [T +d). If T > 2d, for 0 < o < 1, we have
S - s d T (8)
t=2d+1

For the third term in the right side of (27), if T' > 2d, we have
t'—1 T ¢—1 T t+d—1 d—1 T+k

SIDSEAES 95 SIETESD ob SHETHS S SRt
t=2d+1 k=t t=1 k=t t=1 k=t k=0 t=1+k
(29)
d—1T+d-1
<> i =ar
k=0 t=1
where the second inequality is due to
t'—1<t'=t+d;—1<t+d-1
By substituting (28) and (29) into (27) and combining with (22), we have
4G
A< 24GD +2Gdy7 + 5 ﬁTl o/2 4 nG2dT. (30)
Then, for the term C = ZTer ! s ! G||yﬁ — yill2, we have
Ts+1—1 T+d—1Tt+1—1
> Glyn —villa+ Y., > Glys —vil2
1=Ts t=s+1 =7

THd—1Te+1—1
SIFIGD+ D Y Glllyn —villa+ ys, = yillz + lly; = yill2)

t=s+1 i=7¢
T+d—1Te41—1

SEIGD+ Y Y G (VAm+ )T 4Gl ) + VA +2)7?) (D

t=s+1 i=71¢

T+d—1Te41—1 T+d—1Te+1—T—1
SIFIGD+ > Y 26 A +2) PG Y Yk
t=s+1 i=7¢ t=s+1 k=0
T+d—1Te41—1 TH+d—1Tg41—7¢—1
<RIGD+ > Y 26 Am - 406 Y Yk
t=s+1 i=71¢ t=s k=0

where the first inequality is due to Assumption 2, the second inequality is due to (24) and (25), and
the third inequality is due to (7 +2)~*/2 > (i +2)~*/? for 7, < i and o > 0.
Moreover, forany t € [T+ d — 1] and k € F3, since 1 < dj, < d, we have

t—d+1<k=t—dp+1<t
which implies that

|Fe| <t—(t—d+1)+1=d. (32)
Then, it is easy to verify that

Tep1 — Tt — 1 < Ty — 1 = | Fe| < d.
Therefore, by combining with (31), we have
T+d—1T¢41—1 T+d—1

_ Fi)?
< _ a/2 2 | t
C’_dGDth;l :ZT 2G /(i — 1) +nG ; -
T+d—1Te41—1 T+d-1 dl}-l

<dGD + 2G /(s — 1)~ *2 4 pG2 ¢ (33)

T+d—1T¢41—1 nszT
=dGD+ Y > 2GA(n -1+ —

t=s+1 i=7¢
Furthermore, we introduce the following lemma.
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Lemma8 Let 7, = 1+ Y.\_1 | Fi| forany t € [T + d] and s = min {t|t € [T +d — 1], |F;| > 0}.
For 0 < o <1, we have

T+d—1Te+1—1

YooY () <d T (34)

t=s+1 i=7

By substituting (34) into (33), we have
4G 2dT
C < dGD +2G/7d + \le o/2 ”Gz (35)

We complete the proof by combing (30) and (35).

B Proof of Lemma 2

At the beginning of this proof, we recall the standard definition for smooth functions [Boyd and
Vandenberghe, 2004].

Definition 2 A function f(x) : K — R is called a-smooth over K if for all x,y € K, it holds that
) < fx) (V). y —x) + 5y —x|3.

It is not hard to verify that F;(y) is 2-smooth over K for any ¢ € [T']. This property will be utilized
in the following.

For brevity, we define hy = Fy_ 1 (y¢)—Fi_1(y;) fort =1,..., T+1and hy(y;—1) = Fy_1(yi—1)—
Fiy(yf)fort=2,..., T+ 1.

For t = 1, since y; = argmingx ||y — y1/3, we have

8D? 8 D2
hi = F Fi 0< E— 36
1 0(y1) O(YI) = \/g \/m ( )
Then, forany 7'+ 1 >t > 2, we have
hi(yi—1) =Fi-1(yi—1) — Fi-1(y7)
=F2(yi-1) — Fi—2(y;) + (N8e,_1» Yi-1 — ¥7)
<Fio(yi-1) = Fi—2(y{_1) + (18, 1, Yt-1 — Y1) 37

<hi—1 +1lge, s l2llye-1 — ¥l
Shey +0llge, ll2llye—1 —yiillz +1llge, . l2llyi—1 — yill2
Shir +0Gllyi1 = yioalla + Gy — yill2

where the first inequality is due to y;_; = argmin, Fi_5(y) and the last inequality is due to

Assumption 1.

Moreover, for any 7'+ 1 > t > 2, we note that F;_5(x) is also 2-strongly convex, which implies
that

[yei-1 —yiallz < \/Ft 2(yi-1) — Fia(y; 1) < Vhia (38)
where the first inequality is due to (21).
Similarly, forany T+ 1>t > 2
Iyi—1 = ¥i 13 <Fea(yioy) = B (yy)
=Fi2(yi-1) = Fe2(y7) + (18,1 Y1 — ¥1)
<nlge, . ll2llyioy — yill2
which implies that

lyi—i —vill2 < nllge, . [l2 < nG. (39)
By combining (37), (38), and (39), forany 7'+ 1 >t > 2, we have
he(yi-1) < he—1 +nG/hi—1 + n*G>. (40)

16



Then, forany T+ 1 >t > 2, since F;_1(y) is 2-smooth, we have
he =F1(ye) — Fio1(yy)
=F 1(yt-1+oi1(vicr —yi-1)) — Froa(yyp) (41)
<hi(yi-1) + (VE1(yi-1), 001 (Vic1 = yi-1)) + 051 [[Vie1r — e 3.
Moreover, for any ¢ € [T, according to Algorithm 1, we have

o = arg[mi?w(vt —¥0), VE(y)) + 0?[[ve — yil3. 42)
c€l0,1

Therefore, for t = 2, by combining (40) and (41), we have

hy <hy + GV hy +1*G? 4+ (VFi(y1),01(vi — y1)) + oil[vi — y1[3

D? 8D? 43)
2 2 2
<hi +nG\/h1 +n*G 772( 2)3/2 <4D* = 3

where the second inequality is due to (42), and the first equality is due to (36) and n = W.
Then, forany ¢t = 3,...,T +1, by defining 0;_, = 2/+/t + 1 and assuming h;_1 < m, we have

he <hi(yi-1) + (VE1(yi-1),00-1(Vicr —yi-1)) + (011 [Vir — i1 3
<hi(ye-1) + (VE1(ye-1), 001 (y; —yi-1)) + (0112 Ivics — yeal3
<(1—oi_Dhi(yi-1) + (012 Ivicr — yialls
<(1 =0} )(he1 +1Gy/ by +°G?) + (0]_,)*D?
<1 =0} Dhi1 + GVl +0*G + (0]_,)° D

2 8D? 2D? D? 4D?
- ( N t+1> Vil T2 ) AT 2 i
2 8D? 2D? D? 4D?
1- v +
( t+1>\/m t+1  2(t+1) t+1

(44)

<

<<1 2 > 8D? +8D2
- Vit VEF1T  t+1

_ ( ) 1 > 8D* _ 8D?
VE+HT) VE+1 ~ Vit +2
where the first inequality is due to (41) and (42), the second inequality is due to v;_1 €
argming ¢ (VFi—1(yi—1),y), the third inequality is due to the convexity of F;_1(y), the fourth
inequality is due to (40), and the last inequality is due to

1 1 1
(1_\/t+1> \/t+1§\/t+2 (45)
for any ¢ > 0.
Note that (45) can be derived by dividing (¢ + 1)/t + 2 into both sides of the following inequality
VEF2VE+T - V2 < (VEH T+ )VE+T—VE+2<t+1+Vi+1—VEi+2<t+1.
By combining (36), (43), and (44), we complete this proof.

C Proof of Lemma 3

In the beginning, we define y; = argminy, x F;1(y) for any ¢ € [T + 1], where Fy(y) =
t
13i=1(8e ) + Iy = vl
Then, it is easy to verify that
T

T T
Z<gcuyt _X*> :Z<gcmyt +Z gctaYt - . (46)
t=1

t=1 t=1
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Therefore, we will continue to upper bound the right side of (46). By applying Lemma 2, we have
T T T
> geoye—¥i) <D lgel2llye = yilla <> GVFa(yr) — Foa(yy)
t=1 t=1 t=1
T

3/4
23 2¢/2GD - 8v2GD(T + 2)
— (t+2)1/4 3

where the second inequality is due to (21) and Assumption 1, and the last inequality is due to
Yooy (t+2)7V < 4(T 4 2)3/4/3.

(47)

Then, to bound Zthl (gc,,yi — x*), we introduce the following lemma.

Lemma 9 (Lemma 6.6 of Garber and Hazan [2016]) Let { f;(y)}1_, be a sequence of loss functions
and let'y; € argmingc S, fi(y) for any t € [T). Then, it holds that

T T
;my:) —ryrg,g;my) <0

To apply Lemma 9, we define fl( ) =n(ge,,y) + |ly — y1//3 and ft(y) = n(g.,,y) forany ¢t > 2.
Note that Fy(y) = Zz 1 fi(y) and Yiy1 = argming e Fi(y) forany ¢ = 1,...,T. Then, by

applying Lemma 9 to { f;(y)}7_,, we have

T ~ T _
S ilyi) - 0 filx
t=1

which implies that

N (e Yip —x7) < X" = y1ll5 = llys — vall3.

According to Assumption 2, we have

T D2
S (8o, yi — x7) < ,”X —yili< =
t=1 77
Then, we have
T T T
Z - Z(gct’yt+1 x") + Z<gcu}’: ~Yit1)
t=1 t=1 t=1
D d * *
— Z lIge, l2llyF = ¥iill2
SN i (48)
D2
<— +nTG?
n
f GDT/4
<V2GD(T +2)3/4 + ==
< ( ) 7

where the second inequality is due to (39) and Assumption 1, and the last inequality is due to
n= \/§G(T+2)3/4 :
By substituting (47) and (48) into (46), we complete the proof.

D Proof of Lemma 4

We first consider the term £ = ZtT 1 36 D

38D 38T D?
B= Z Py yalls < L2 < 35a0? “9)

ly: — yrll2. T < 2d, it is easy to verify that
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where the first inequality is due to Assumption 2.

Then, if T' > 2d, we have
T

38D 36D
E= Tt + T T
; lye = yrllz + =5 - ;:H lye = yrll2
T (50)
2 3BD * * * *
<36dD* + == Y (Iye = ¥illz+ Iy7 = v7 2 + 17, = ynll2) -
t=2d+1
Because F;_1(y) is (t — 1)S-strongly convex for any ¢t = 2,...,T + 1, we have
2(F;_ — F_1(y; 2
||yt _ y;<||2 < ( t 1(yt) t l(yt)) < 717& (51)
(t-=1)B (t—1)t=p

where the first inequality is due to (21) and the second inequality is due to Fy_1(y;) — Fi—1(y;) <
v(t—1)°.

Before considering [ly; — y% ||, we define fi(y) = (g.,,y) + gIIy — vy} forany t =1,...,T.
Note that Fi(y) = S__, fi(y). Moreover, for any x,y € K and t = 1,..., T, we have

700 = )] = (g x = v+ Dllx =il = Sy il

:‘<g(:taX_Y>+B<X_Yt+y_YtaX_Y>‘ (52)

2

<llge.ll2llx =yl + 5 (||X =vielz + lly = yell2)lx = yll2
<(G+BD)|lx - Y||2
where the last inequality is due to Assumptions 1 and 2.

Because of (21), for any ¢ > 5 > 1, we have
2(Fi-1(y;) — Fiea(y)))

2B ) — B i) + 2550 (A - i) )
a (i—-1)p

20— )G + BD)lly; — yill2

B (i—-1)p

where the last inequality is due to y; = argming ¢, Fj_1(y) and (52).

Note that all gradients queried at rounds 1, ..., ¢ — d must arrive before round ¢. Therefore, for any
t>2d+ 1, wehave 14 = 1—1—22;11 |Fr| >t—d+1>t—dand
N " 2(t —m)(G+ BD 2d(G + gD
Iyi =yl <ZEZTNEL D)  24(E 2 5D)
(t—1)p (t—1)p
where the first inequality is due to ¢ > 7, > 1 and (53).
By combining (50) with (51) and (54), if T' > 2d, we have

, 38D « 2y 2d(G + D) 2y
E§3BdD +?t:;d+l ( (ﬁ—l)l_a5+ (t—l)ﬂ + (Tt_l)l—aﬁ>

T
<38dD* + 33D )

(54)

4 3D(G+ D) ZT: !
(e — 1) B 2.4

t=2d+1
T 27
<38dD* + 38D — 4+ 3D(G+BD)dInT
2\
DW
<3BdD? + 3dD+\/23~ + 6 mT (1+0)/2 L 3D(G + BD)dInT
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where the second inequality is due to (7, — 1)}~ < (t — 1)1 =% fort > 7, > 1 and a < 1, and the
last inequality is due to Lemma 7 and 0 < 1 — o < 1.

By combining (49) with the above inequality, we have

6D v 257 p(i+a)/2

E <33dD? +3dD+\/287 + +3D(G + BD)dInT.

Then, we proceed to bound the term C' = ZT+d ! Z?:*Tlt_l G|ly+ — ¥ill2. Similar to (31), we first
have
TH+d—1Te41—1

C<IRIGD+ Y D Gllyn = yrle+lys, = ¥illz + Iy} = vill2). (55

t=s+1 i=7¢
By combining (55) with | F;| < d, (51), and (53), we have

T+d—1Te41—1
'L*Tt G‘l’ﬂD
<dGD
cxon 328 6 (| G =)

T+d—1Te4+1—1 .
2(i — 7)(G + BD)
<dGD+ Y Y G( th1)1 5+ (i (Zt)(l)ﬂ ) (56)

t=s+1 i=7¢

TH+d—17e41—1
<dGD + 2 @)
46D + 26\ | 7 /5 FXY i

t=s+1 i=7¢

where the first inequality is due to (73 — 1)1’0‘ <(i—-1)1"*for0<m—1<i—1landa < 1,and
the last inequality is due to Lemma 8,0 < 1 —a < l,and i — 74 < 741 — 1 — 70 < | F| < d.

Recall that we have defined
I—{ 0, if | Fy| = 0,
CT Um 41, Tey1 — 1}, otherwise.
It is not hard to verify that
U T = (IR +1,..., T}, TN = 0,Vi # j. (57)
By combining (57) with (56), we have

T
c<dGD+2dG,/27 ,/27 e ARG 2dc:fGJ{)§D)

t=|F,|+1
T
2 2y 4 2d D
<dGD + 2dG /v /7 G T2 13 G(G +B8D) (58)
t=2 (t - 1)6
<dGD + 240G /27 2y 4G AG sz 2dG(G+ﬁD)(1+lnT).
81+« B
Next, we proceed to bound the term A = thl Gllys, —¥r, 2. Similar to (23), if T > 2d, we have
T
A<2dGD+ Y Glllyr —yilla+ s = ¥5, 2+ 1y5, = yrll2)
t=2d+1
T
2~y 2(ry — 1)(G + BD) 2y
<2dGD + G + + 59
2 < (n - D)1-oB (v —1)B (o —1eg ) O
d 2 L 2G(G+BD)' < ||
oD+ Y 26—k Y 1A
t=2d+1 (r—1)i=ef 2d+1 B k=t Zz p 1 Fil
where the second inequality is due to (51) and (53), and the last inequality is due to 7, > 7, > 1 and
(v =m) _ Shce 1l _ Z |7
VS TR =

Then, we introduce the following lemma.
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Lemma 10 Let hy = Y| | Fi|. IfT > 2d, we have

t'—1

Z Z ‘]:k <d+dInT.

t=2d+1 k=t

By applying Lemmas 7 and 10 to (59) and combining with (22), we have

A <2dGD + 2dG, /27 , /27 4Gy 260G+ ﬁDﬂ)d(l +InT) o)

Finally, by combining (58) and (60), we complete this proof.

E Proof of Lemmas 5 and 6

Recall that F-(y) defined in Algorithm 2 is equivalent to that defined in (12). Let ft(y) = (8c,,y) +
g >|ly — yi|3 forany ¢ = 1,..., T, which is 3-strongly convex. Moreover, as proved in (52), functions
f1( )y, fr(y) are (G + BD)—Lipschitz over K (see the definition of Lipschitz functions in Hazan

[2016]). Then, because of V f;(y:) = g, it is not hard to verify that decisions y1, ..., yr+1 in our
Algorithm 2 are actually generated by performing OFW for strongly convex losses (see Algorithm 2

in Wan and Zhang [2021] for details) on functions f1(¥), ..., fr(y). Note that when Assumption 2

holds, and functions f1(y), ..., fr(y) are S-strongly convex and G’-Lipschitz, Lemma 6 of Wan
and Zhang [2021] has already shown that
16(G' + BD)?(t — 1)'/3

Fi1(ye) = Fia(yy) < 5

forany t = 2,...,T+1. Therefore, our Lemma 5 can be derived by simply substituting G’ = G+3D
into the above inequality.

Moreover, when Assumption 2 holds, and functions f; ¥), -+, fr (y) are B-strongly convex and
G’'-Lipschitz, Theorem 3 of Wan and Zhang [2021] has already shown that

= ; I 1 2772/3 / 9
S Ry =3 filx) _OV2AG +66D) T 2G +BBD) T

We notice that 27 ((ge,. ye = x°) = llye = x*I3) = £7, fulye) = X0y fulx"). Therefore,
our Lemma 6 can be derived by simply substituting G’ = G + 8D into the above inequality.

F Proof of Lemma 7

Since the gradient g1 must arrive before round d + 1, forany 7" > ¢ > 2d + 1, it is easy to verify
that 7 = 1+ >/ |]-'| > 1+Zd+1 |.7-'| > 2. Moreover, for any i > 2and (i+1)d >t >1id+1,

since all gradients querled atrounds 1, ..., (i — 1)d 4+ 1 must arrive before round id + 1, we have
t—1
=14 |F|>(@-1)d+2. (61)
i=1
Then, we have
T |T/d]d T
Yo m-)2= Y (-0 Y (-
t=2d+1 t=2d+1 t=|T/d]d+1
LT/dj 1 (i+1)d |T/d|—
< > Y (w1 Prd<d+ Z (i —1)d+1)7/?
1=2 t=id+1 1=2
\7/d) -1 L7/d)
Sd-i- Z dl_a/2(i— 1)—@/2 S d+ Z dl—a/QZ'—a/Q
i=2 i=1

<d+ %dl’“/z (IT/d)' ™" <d v 5= 2_qi-a/
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where the first inequality is due to (7; — 1)~®/2 < 1 for @ > 0 and 7; > 2, and the second inequality
is due to (61) and v > 0.

G Proof of Lemma 8

t—1
Because of 7w =1+ ) ._; | F;|, we have
T4+d—1Te41—1

> Y -

t=s+1 i=1

d—
Sy A
- —1
L S | F)es
T4+d—1

=y - +T+Zd:1 ( ! - . > (62)
et i 1B 5 (s [FDerz (i 1Fil)er

Ttd—1 i T4d—1 ) 1
< S s df —— -
tzzs;rl (i, [Fil)o/2 tzzs;rl ((Zf_i \Fie2 (i, fi|)a/2>
T+d—1 Thd—1
| Ft| d | Ft
< n < S 5| W
t:zs;rl Sics [Fil)/2 | Flo/? t:zs;rl Sis [Fil)o2

where the first inequality is due to (32) and (3/_! [ F;[)*/2 < (320, |Fi)*/2.
Let hy = Zzzs |Fi| forany t = s,...,T +d — 1. Since 0 < o < 1, it is not hard to verify that

T+d—1 T+d—1 T+d—1
> +z Aoy s
t o - (x 2 a 2
t=s+1 (X izs | Fil) /2 t=s+1 / t=s+1 ¥ Pt /
T+d
= hrpa 1d_ SRR SR ()
Z a/2 /2 r= /2 z
t=sp1 Jheo1 ¥ hs x |Fs| L
<2 _pr-en,
T2—-«
Finally, we complete this proof by combining (62) with (63).
H Proof of Lemma 10
It is not hard to verify that
-1 T t+d—1 d-1 T4k
> Y Els AL AL S S
t=2d+1 k=t t=s k=t t=s k=t k=0t=s+k

d—1T+d-1 TH+d—1
LI

where the first inequality is due to s < d < 2d 4 1, and the second inequality is due to t' — 1 =
t+d; —2<t+d-—1.

Moreover, we have

T+d—1 T+d—1 T+d-1  h,
Z |]:t| |]:| Z / Fs| 1.
t=s t=s+1 Y he- hs t=st1 Jhe1 T

|| /’LM 'l T
=— —dr=14+In— <1+InT
herhs x:c Jrnl}_sl_ +1In

where the last equality is due to hs = |F,| and hpig—1 = T.

Finally, we complete this proof by combining the above two inequalities.
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