
Supplementary Material

A Proof of Lemma 1

We first note that Ft(y) is 2-strongly convex for any t = 0, . . . , T , and Hazan and Kale [2012] have
proved that for any β-strongly convex function f(x) over K and any x ∈ K, it holds that

β

2
‖x− x∗‖22 ≤ f(x)− f(x∗) (21)

where x∗ = argminx∈K f(x).

Then, we consider the term A =
∑T
t=1G‖yτt − yτt′‖2. If T ≤ 2d, we have

A =

T∑
t=1

G‖yτt − yτt′‖2 ≤ TGD ≤ 2dGD (22)

where the first inequality is due to Assumption 2. If T > 2d, we have

A =

2d∑
t=1

G‖yτt − yτt′ ‖2 +

T∑
t=2d+1

G‖yτt − yτt′‖2

≤2dGD +

T∑
t=2d+1

G(‖yτt − y∗τt‖2 + ‖y∗τt − y∗τt′‖2 + ‖y∗τt′ − yτt′‖2).

(23)

Because of (21), for any t ∈ [T + 1], we have

‖yt − y∗t ‖2 ≤
√
Ft−1(yt)− Ft−1(y∗t ) ≤

√
γ(t+ 2)−α/2 (24)

where the last inequality is due to Ft−1(yt)− Ft−1(y∗t ) ≤ γ(t+ 2)−α.

Moreover, for any i ≥ τt, we have

‖y∗τt − y∗i ‖22 ≤Fi−1(y∗τt)− Fi−1(y∗i )

=Fτt−1(y∗τt)− Fτt−1(y∗i ) +

〈
η

i−1∑
k=τt

gck ,y
∗
τt − y∗i

〉

≤η

∥∥∥∥∥
i−1∑
k=τt

gck

∥∥∥∥∥
2

‖y∗τt − y∗i ‖2

≤ηG(i− τt)‖y∗τt − y∗i ‖2

(25)

where the first inequality is still due to (21) and the last inequality is due to Assumption 1.

Because of t′ = t+ dt − 1 ≥ t, we have τt′ ≥ τt. Then, from (25), we have

‖y∗τt − y∗τt′‖2 ≤ ηG(τt′ − τt) = ηG

t′−1∑
k=t

|Fk|. (26)

Then, by substituting (24) and (26) into (23), if T > 2d, we have

A ≤2dGD +

T∑
t=2d+1

G

√γ(τt + 2)−α/2 + ηG

t′−1∑
k=t

|Fk|+
√
γ(τt′ + 2)−α/2


≤2dGD +

T∑
t=2d+1

2G
√
γ(τt + 2)−α/2 + ηG2

T∑
t=2d+1

t′−1∑
k=t

|Fk|

≤2dGD +

T∑
t=2d+1

2G
√
γ(τt − 1)−α/2 + ηG2

T∑
t=2d+1

t′−1∑
k=t

|Fk|

(27)

where the second inequality is due to (τt + 2)−α/2 ≥ (τt′ + 2)−α/2 for τt ≤ τt′ and α > 0.

To bound the second term in the right side of (27), we introduce the following lemma.
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Lemma 7 Let τt = 1 +
∑t−1
i=1 |Fi| for any t ∈ [T + d]. If T > 2d, for 0 < α ≤ 1, we have

T∑
t=2d+1

(τt − 1)−α/2 ≤ d+
2

2− α
T 1−α/2. (28)

For the third term in the right side of (27), if T > 2d, we have
T∑

t=2d+1

t′−1∑
k=t

|Fk| ≤
T∑
t=1

t′−1∑
k=t

|Fk| ≤
T∑
t=1

t+d−1∑
k=t

|Fk| =
d−1∑
k=0

T+k∑
t=1+k

|Ft|

≤
d−1∑
k=0

T+d−1∑
t=1

|Ft| = dT

(29)

where the second inequality is due to
t′ − 1 < t′ = t+ dt − 1 ≤ t+ d− 1.

By substituting (28) and (29) into (27) and combining with (22), we have

A ≤ 2dGD + 2Gd
√
γ +

4G
√
γ

2− α
T 1−α/2 + ηG2dT. (30)

Then, for the term C =
∑T+d−1
t=s

∑τt+1−1
i=τt

G‖yτt − yi‖2, we have

C =

τs+1−1∑
i=τs

G‖yτt − yi‖2 +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

G‖yτt − yi‖2

≤|Fs|GD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

G(‖yτt − y∗τt‖2 + ‖y∗τt − y∗i ‖2 + ‖y∗i − yi‖2)

≤|Fs|GD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

G
(√

γ(τt + 2)−α/2 + ηG(i− τt) +
√
γ(i+ 2)−α/2

)

≤|Fs|GD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

2G
√
γ(τt + 2)−α/2 + ηG2

T+d−1∑
t=s+1

τt+1−τt−1∑
k=0

k

≤|Fs|GD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

2G
√
γ(τt − 1)−α/2 + ηG2

T+d−1∑
t=s

τt+1−τt−1∑
k=0

k

(31)

where the first inequality is due to Assumption 2, the second inequality is due to (24) and (25), and
the third inequality is due to (τt + 2)−α/2 ≥ (i+ 2)−α/2 for τt ≤ i and α > 0.

Moreover, for any t ∈ [T + d− 1] and k ∈ Ft, since 1 ≤ dk ≤ d, we have
t− d+ 1 ≤ k = t− dk + 1 ≤ t

which implies that
|Ft| ≤ t− (t− d+ 1) + 1 = d. (32)

Then, it is easy to verify that
τt+1 − τt − 1 < τt+1 − τt = |Ft| ≤ d.

Therefore, by combining with (31), we have

C ≤dGD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

2G
√
γ(τt − 1)−α/2 + ηG2

T+d−1∑
t=s

|Ft|2

2

≤dGD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

2G
√
γ(τt − 1)−α/2 + ηG2

T+d−1∑
t=s

d|Ft|
2

=dGD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

2G
√
γ(τt − 1)−α/2 +

ηG2dT

2
.

(33)

Furthermore, we introduce the following lemma.
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Lemma 8 Let τt = 1 +
∑t−1
i=1 |Fi| for any t ∈ [T + d] and s = min {t|t ∈ [T + d− 1], |Ft| > 0}.

For 0 < α ≤ 1, we have

T+d−1∑
t=s+1

τt+1−1∑
i=τt

(τt − 1)−α/2 ≤ d+
2

2− α
T 1−α/2. (34)

By substituting (34) into (33), we have

C ≤ dGD + 2G
√
γd+

4G
√
γ

2− α
T 1−α/2 +

ηG2dT

2
(35)

We complete the proof by combing (30) and (35).

B Proof of Lemma 2

At the beginning of this proof, we recall the standard definition for smooth functions [Boyd and
Vandenberghe, 2004].

Definition 2 A function f(x) : K → R is called α-smooth over K if for all x,y ∈ K, it holds that
f(y) ≤ f(x) + 〈∇f(x),y − x〉+ α

2 ‖y − x‖22.

It is not hard to verify that Ft(y) is 2-smooth over K for any t ∈ [T ]. This property will be utilized
in the following.

For brevity, we define ht = Ft−1(yt)−Ft−1(y∗t ) for t = 1, . . . , T+1 and ht(yt−1) = Ft−1(yt−1)−
Ft−1(y∗t ) for t = 2, . . . , T + 1.

For t = 1, since y1 = argminy∈K ‖y − y1‖22, we have

h1 = F0(y1)− F0(y∗1) = 0 ≤ 8D2

√
3

=
8D2

√
t+ 2

. (36)

Then, for any T + 1 ≥ t ≥ 2, we have

ht(yt−1) =Ft−1(yt−1)− Ft−1(y∗t )

=Ft−2(yt−1)− Ft−2(y∗t ) + 〈ηgct−1
,yt−1 − y∗t 〉

≤Ft−2(yt−1)− Ft−2(y∗t−1) + 〈ηgct−1
,yt−1 − y∗t 〉

≤ht−1 + η‖gct−1‖2‖yt−1 − y∗t ‖2
≤ht−1 + η‖gct−1

‖2‖yt−1 − y∗t−1‖2 + η‖gct−1
‖2‖y∗t−1 − y∗t ‖2

≤ht−1 + ηG‖yt−1 − y∗t−1‖2 + ηG‖y∗t−1 − y∗t ‖2

(37)

where the first inequality is due to y∗t−1 = argminy∈K Ft−2(y) and the last inequality is due to
Assumption 1.

Moreover, for any T + 1 ≥ t ≥ 2, we note that Ft−2(x) is also 2-strongly convex, which implies
that

‖yt−1 − y∗t−1‖2 ≤
√
Ft−2(yt−1)− Ft−2(y∗t−1) ≤

√
ht−1 (38)

where the first inequality is due to (21).

Similarly, for any T + 1 ≥ t ≥ 2

‖y∗t−1 − y∗t ‖22 ≤Ft−1(y∗t−1)− Ft−1(y∗t )

=Ft−2(y∗t−1)− Ft−2(y∗t ) + 〈ηgct−1
,y∗t−1 − y∗t 〉

≤η‖gct−1
‖2‖y∗t−1 − y∗t ‖2

which implies that
‖y∗t−1 − y∗t ‖2 ≤ η‖gct−1‖2 ≤ ηG. (39)

By combining (37), (38), and (39), for any T + 1 ≥ t ≥ 2, we have

ht(yt−1) ≤ ht−1 + ηG
√
ht−1 + η2G2. (40)
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Then, for any T + 1 ≥ t ≥ 2, since Ft−1(y) is 2-smooth, we have

ht =Ft−1(yt)− Ft−1(y∗t )

=Ft−1(yt−1 + σt−1(vt−1 − yt−1))− Ft−1(y∗t )

≤ht(yt−1) + 〈∇Ft−1(yt−1), σt−1(vt−1 − yt−1)〉+ σ2
t−1‖vt−1 − yt−1‖22.

(41)

Moreover, for any t ∈ [T ], according to Algorithm 1, we have

σt = argmin
σ∈[0,1]

〈σ(vt − yt),∇Ft(yt)〉+ σ2‖vt − yt‖22. (42)

Therefore, for t = 2, by combining (40) and (41), we have

h2 ≤h1 + ηG
√
h1 + η2G2 + 〈∇F1(y1), σ1(v1 − y1)〉+ σ2

1‖v1 − y1‖22

≤h1 + ηG
√
h1 + η2G2 =

D2

2(T + 2)3/2
≤ 4D2 =

8D2

√
t+ 2

(43)

where the second inequality is due to (42), and the first equality is due to (36) and η = D√
2G(T+2)3/4

.

Then, for any t = 3, . . . , T + 1, by defining σ′t−1 = 2/
√
t+ 1 and assuming ht−1 ≤ 8D2

√
t+1

, we have

ht ≤ht(yt−1) + 〈∇Ft−1(yt−1), σ′t−1(vt−1 − yt−1)〉+ (σ′t−1)2‖vt−1 − yt−1‖22
≤ht(yt−1) + 〈∇Ft−1(yt−1), σ′t−1(y∗t − yt−1)〉+ (σ′t−1)2‖vt−1 − yt−1‖22
≤(1− σ′t−1)ht(yt−1) + (σ′t−1)2‖vt−1 − yt−1‖22
≤(1− σ′t−1)(ht−1 + ηG

√
ht−1 + η2G2) + (σ′t−1)2D2

≤(1− σ′t−1)ht−1 + ηG
√
ht−1 + η2G2 + (σ′t−1)2D2

≤
(

1− 2√
t+ 1

)
8D2

√
t+ 1

+
2D2

(T + 2)3/4(t+ 1)1/4
+

D2

2(T + 2)3/2
+

4D2

t+ 1

≤
(

1− 2√
t+ 1

)
8D2

√
t+ 1

+
2D2

t+ 1
+

D2

2(t+ 1)
+

4D2

t+ 1

≤
(

1− 2√
t+ 1

)
8D2

√
t+ 1

+
8D2

t+ 1

=

(
1− 1√

t+ 1

)
8D2

√
t+ 1

≤ 8D2

√
t+ 2

(44)

where the first inequality is due to (41) and (42), the second inequality is due to vt−1 ∈
argminy∈K〈∇Ft−1(yt−1),y〉, the third inequality is due to the convexity of Ft−1(y), the fourth
inequality is due to (40), and the last inequality is due to(

1− 1√
t+ 1

)
1√
t+ 1

≤ 1√
t+ 2

(45)

for any t ≥ 0.

Note that (45) can be derived by dividing (t+ 1)
√
t+ 2 into both sides of the following inequality

√
t+ 2

√
t+ 1−

√
t+ 2 ≤ (

√
t+ 1 + 1)

√
t+ 1−

√
t+ 2 ≤ t+ 1 +

√
t+ 1−

√
t+ 2 ≤ t+ 1.

By combining (36), (43), and (44), we complete this proof.

C Proof of Lemma 3

In the beginning, we define y∗t = argminy∈K Ft−1(y) for any t ∈ [T + 1], where Ft(y) =

η
∑t
i=1〈gci ,y〉+ ‖y − y1‖22.

Then, it is easy to verify that
T∑
t=1

〈gct ,yt − x∗〉 =

T∑
t=1

〈gct ,yt − y∗t 〉+

T∑
t=1

〈gct ,y∗t − x∗〉. (46)
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Therefore, we will continue to upper bound the right side of (46). By applying Lemma 2, we have
T∑
t=1

〈gct ,yt − y∗t 〉 ≤
T∑
t=1

‖gct‖2‖yt − y∗t ‖2 ≤
T∑
t=1

G
√
Ft−1(yt)− Ft−1(y∗t )

≤
T∑
t=1

2
√

2GD

(t+ 2)1/4
≤ 8
√

2GD(T + 2)3/4

3

(47)

where the second inequality is due to (21) and Assumption 1, and the last inequality is due to∑T
t=1 (t+ 2)−1/4 ≤ 4(T + 2)3/4/3.

Then, to bound
∑T
t=1〈gct ,y∗t − x∗〉, we introduce the following lemma.

Lemma 9 (Lemma 6.6 of Garber and Hazan [2016]) Let {ft(y)}Tt=1 be a sequence of loss functions
and let y∗t ∈ argminy∈K

∑t
i=1 fi(y) for any t ∈ [T ]. Then, it holds that

T∑
t=1

ft(y
∗
t )−min

y∈K

T∑
t=1

ft(y) ≤ 0.

To apply Lemma 9, we define f̃1(y) = η〈gc1 ,y〉+ ‖y − y1‖22 and f̃t(y) = η〈gct ,y〉 for any t ≥ 2.
Note that Ft(y) =

∑t
i=1 f̃i(y) and y∗t+1 = argminy∈K Ft(y) for any t = 1, . . . , T . Then, by

applying Lemma 9 to {f̃t(y)}Tt=1, we have
T∑
t=1

f̃t(y
∗
t+1)−

T∑
t=1

f̃t(x
∗) ≤ 0

which implies that

η

T∑
t=1

〈gct ,y∗t+1 − x∗〉 ≤ ‖x∗ − y1‖22 − ‖y∗2 − y1‖22.

According to Assumption 2, we have
T∑
t=1

〈gct ,y∗t+1 − x∗〉 ≤ 1

η
‖x∗ − y1‖22 ≤

D2

η
.

Then, we have
T∑
t=1

〈gct ,y∗t − x∗〉 =

T∑
t=1

〈gct ,y∗t+1 − x∗〉+

T∑
t=1

〈gct ,y∗t − y∗t+1〉

≤D
2

η
+

T∑
t=1

‖gct‖2‖y∗t − y∗t+1‖2

≤D
2

η
+ ηTG2

≤
√

2GD(T + 2)3/4 +
GDT 1/4

√
2

(48)

where the second inequality is due to (39) and Assumption 1, and the last inequality is due to
η = D√

2G(T+2)3/4
.

By substituting (47) and (48) into (46), we complete the proof.

D Proof of Lemma 4

We first consider the term E =
∑T
t=1

3βD
2 ‖yt − yτt‖2. If T ≤ 2d, it is easy to verify that

E =

T∑
t=1

3βD

2
‖yt − yτt‖2 ≤

3βTD2

2
≤ 3βdD2 (49)
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where the first inequality is due to Assumption 2.

Then, if T > 2d, we have

E =
3βD

2

2d∑
t=1

‖yt − yτt‖2 +
3βD

2

T∑
t=2d+1

‖yt − yτt‖2

≤3βdD2 +
3βD

2

T∑
t=2d+1

(
‖yt − y∗t ‖2 + ‖y∗t − y∗τt‖2 + ‖y∗τt − yτt‖2

)
.

(50)

Because Ft−1(y) is (t− 1)β-strongly convex for any t = 2, . . . , T + 1, we have

‖yt − y∗t ‖2 ≤

√
2(Ft−1(yt)− Ft−1(y∗t ))

(t− 1)β
≤

√
2γ

(t− 1)1−αβ
(51)

where the first inequality is due to (21) and the second inequality is due to Ft−1(yt)− Ft−1(y∗t ) ≤
γ(t− 1)α.

Before considering ‖y∗t − y∗τt‖2, we define f̃t(y) = 〈gct ,y〉 + β
2 ‖y − yt‖22 for any t = 1, . . . , T .

Note that Ft(y) =
∑t
i=1 f̃i(y). Moreover, for any x,y ∈ K and t = 1, . . . , T , we have

|f̃t(x)− f̃t(y)| =
∣∣∣∣〈gct ,x− y〉+

β

2
‖x− yt‖22 −

β

2
‖y − yt‖22

∣∣∣∣
=

∣∣∣∣〈gct ,x− y〉+
β

2
〈x− yt + y − yt,x− y〉

∣∣∣∣
≤‖gct‖2‖x− y‖2 +

β

2
(‖x− yt‖2 + ‖y − yt‖2)‖x− y‖2

≤(G+ βD)‖x− y‖2

(52)

where the last inequality is due to Assumptions 1 and 2.

Because of (21), for any i ≥ j > 1, we have

‖y∗j − y∗i ‖22 ≤
2(Fi−1(y∗j )− Fi−1(y∗i ))

(i− 1)β

=
2(Fj−1(y∗j )− Fj−1(y∗i )) + 2

∑i−1
k=j

(
f̃k(y∗j )− f̃k(y∗i )

)
(i− 1)β

≤
2(i− j)(G+ βD)‖y∗j − y∗i ‖2

(i− 1)β

(53)

where the last inequality is due to y∗j = argminy∈K Fj−1(y) and (52).

Note that all gradients queried at rounds 1, . . . , t− d must arrive before round t. Therefore, for any
t ≥ 2d+ 1, we have τt = 1 +

∑t−1
k=1 |Fk| ≥ t− d+ 1 > t− d and

‖y∗t − y∗τt‖2 ≤
2(t− τt)(G+ βD)

(t− 1)β
≤ 2d(G+ βD)

(t− 1)β
(54)

where the first inequality is due to t ≥ τt > 1 and (53).

By combining (50) with (51) and (54), if T > 2d, we have

E ≤3βdD2 +
3βD

2

T∑
t=2d+1

(√
2γ

(t− 1)1−αβ
+

2d(G+ βD)

(t− 1)β
+

√
2γ

(τt − 1)1−αβ

)

≤3βdD2 + 3βD

T∑
t=2d+1

√
2γ

(τt − 1)1−αβ
+ 3D(G+ βD)d

T∑
t=2

1

t

≤3βdD2 + 3βD

T∑
t=2d+1

√
2γ

(τt − 1)1−αβ
+ 3D(G+ βD)d lnT

≤3βdD2 + 3dD
√

2βγ +
6D
√

2βγ

1 + α
T (1+α)/2 + 3D(G+ βD)d lnT
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where the second inequality is due to (τt − 1)1−α ≤ (t− 1)1−α for t ≥ τt > 1 and α < 1, and the
last inequality is due to Lemma 7 and 0 < 1− α ≤ 1.

By combining (49) with the above inequality, we have

E ≤3βdD2 + 3dD
√

2βγ +
6D
√

2βγ

1 + α
T (1+α)/2 + 3D(G+ βD)d lnT.

Then, we proceed to bound the term C =
∑T+d−1
t=s

∑τt+1−1
i=τt

G‖yτt − yi‖2. Similar to (31), we first
have

C ≤ |Fs|GD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

G(‖yτt − y∗τt‖2 + ‖y∗τt − y∗i ‖2 + ‖y∗i − yi‖2). (55)

By combining (55) with |Fs| ≤ d, (51), and (53), we have

C ≤dGD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

G

(√
2γ

(τt − 1)1−αβ
+

2(i− τt)(G+ βD)

(i− 1)β
+

√
2γ

(i− 1)1−αβ

)

≤dGD +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

G

(
2

√
2γ

(τt − 1)1−αβ
+

2(i− τt)(G+ βD)

(i− 1)β

)

≤dGD + 2dG

√
2γ

β
+

√
2γ

β

4G

1 + α
T (1+α)/2 +

T+d−1∑
t=s+1

τt+1−1∑
i=τt

2dG(G+ βD)

(i− 1)β

(56)

where the first inequality is due to (τt − 1)1−α ≤ (i− 1)1−α for 0 < τt − 1 ≤ i− 1 and α < 1, and
the last inequality is due to Lemma 8, 0 < 1− α ≤ 1, and i− τt ≤ τt+1 − 1− τt ≤ |Ft| ≤ d.

Recall that we have defined

It =

{ ∅, if |Ft| = 0,

{τt, τt + 1, . . . , τt+1 − 1}, otherwise.
It is not hard to verify that

∪T+d−1
t=s+1 It = {|Fs|+ 1, . . . , T}, Ii ∩ Ij = ∅,∀i 6= j. (57)

By combining (57) with (56), we have

C ≤dGD + 2dG

√
2γ

β
+

√
2γ

β

4G

1 + α
T (1+α)/2 +

T∑
t=|Fs|+1

2dG(G+ βD)

(t− 1)β

≤dGD + 2dG

√
2γ

β
+

√
2γ

β

4G

1 + α
T (1+α)/2 +

T∑
t=2

2dG(G+ βD)

(t− 1)β

≤dGD + 2dG

√
2γ

β
+

√
2γ

β

4G

1 + α
T (1+α)/2 +

2dG(G+ βD)(1 + lnT )

β
.

(58)

Next, we proceed to bound the term A =
∑T
t=1G‖yτt −yτt′‖2. Similar to (23), if T > 2d, we have

A ≤2dGD +

T∑
t=2d+1

G(‖yτt − y∗τt‖2 + ‖y∗τt − y∗τt′‖2 + ‖y∗τt′ − yτt′‖2)

≤2dGD +

T∑
t=2d+1

G

(√
2γ

(τt − 1)1−αβ
+

2(τt′ − τt)(G+ βD)

(τt′ − 1)β
+

√
2γ

(τt′ − 1)1−αβ

)

≤2dGD +

T∑
t=2d+1

2G

√
2γ

(τt − 1)1−αβ
+

T∑
t=2d+1

2G(G+ βD)

β

t′−1∑
k=t

|Fk|∑k
i=1 |Fi|

(59)

where the second inequality is due to (51) and (53), and the last inequality is due to τt′ ≥ τt > 1 and

(τt′ − τt)
(τt′ − 1)

=

∑t′−1
k=t |Fk|∑t′−1
k=1 |Fk|

≤
t′−1∑
k=t

|Fk|∑k
i=1 |Fi|

.

Then, we introduce the following lemma.
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Lemma 10 Let hk =
∑k
i=1 |Fi|. If T > 2d, we have

T∑
t=2d+1

t′−1∑
k=t

|Fk|
hk
≤ d+ d lnT.

By applying Lemmas 7 and 10 to (59) and combining with (22), we have

A ≤2dGD + 2dG

√
2γ

β
+

√
2γ

β

4G

1 + α
T (1+α)/2 +

2G(G+ βD)d(1 + lnT )

β
. (60)

Finally, by combining (58) and (60), we complete this proof.

E Proof of Lemmas 5 and 6

Recall that Fτ (y) defined in Algorithm 2 is equivalent to that defined in (12). Let f̃t(y) = 〈gct ,y〉+
β
2 ‖y−yt‖22 for any t = 1, . . . , T , which is β-strongly convex. Moreover, as proved in (52), functions
f̃1(y), . . . , f̃T (y) are (G+ βD)-Lipschitz over K (see the definition of Lipschitz functions in Hazan
[2016]). Then, because of ∇f̃t(yt) = gct , it is not hard to verify that decisions y1, . . . ,yT+1 in our
Algorithm 2 are actually generated by performing OFW for strongly convex losses (see Algorithm 2
in Wan and Zhang [2021] for details) on functions f̃1(y), . . . , f̃T (y). Note that when Assumption 2
holds, and functions f̃1(y), . . . , f̃T (y) are β-strongly convex and G′-Lipschitz, Lemma 6 of Wan
and Zhang [2021] has already shown that

Ft−1(yt)− Ft−1(y∗t ) ≤
16(G′ + βD)2(t− 1)1/3

β

for any t = 2, . . . , T+1. Therefore, our Lemma 5 can be derived by simply substitutingG′ = G+βD
into the above inequality.

Moreover, when Assumption 2 holds, and functions f̃1(y), . . . , f̃T (y) are β-strongly convex and
G′-Lipschitz, Theorem 3 of Wan and Zhang [2021] has already shown that

T∑
t=1

f̃t(yt)−
T∑
t=1

f̃t(x
∗) ≤6

√
2(G′ + βD)2T 2/3

β
+

2(G′ + βD)2 lnT

β
+G′D.

We notice that
∑T
t=1

(
〈gct ,yt − x∗〉 − β

2 ‖yt − x∗‖22
)

=
∑T
t=1 f̃t(yt)−

∑T
t=1 f̃t(x

∗). Therefore,
our Lemma 6 can be derived by simply substituting G′ = G+ βD into the above inequality.

F Proof of Lemma 7

Since the gradient g1 must arrive before round d + 1, for any T ≥ t ≥ 2d + 1, it is easy to verify
that τt = 1 +

∑t−1
i=1 |Fi| ≥ 1 +

∑d+1
i=1 |Fi| ≥ 2. Moreover, for any i ≥ 2 and (i+ 1)d ≥ t ≥ id+ 1,

since all gradients queried at rounds 1, . . . , (i− 1)d+ 1 must arrive before round id+ 1, we have

τt = 1 +

t−1∑
i=1

|Fi| ≥ (i− 1)d+ 2. (61)

Then, we have
T∑

t=2d+1

(τt − 1)−α/2 =

bT/dcd∑
t=2d+1

(τt − 1)−α/2 +

T∑
t=bT/dcd+1

(τt − 1)−α/2

≤
bT/dc−1∑
i=2

(i+1)d∑
t=id+1

(τt − 1)−α/2 + d ≤ d+

bT/dc−1∑
i=2

d((i− 1)d+ 1)−α/2

≤d+

bT/dc−1∑
i=2

d1−α/2(i− 1)−α/2 ≤ d+

bT/dc∑
i=1

d1−α/2i−α/2

≤d+
2

2− α
d1−α/2 (bT/dc)1−α/2 ≤ d+

2

2− α
T 1−α/2
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where the first inequality is due to (τt − 1)−α/2 ≤ 1 for α > 0 and τt ≥ 2, and the second inequality
is due to (61) and α > 0.

G Proof of Lemma 8

Because of τt = 1 +
∑t−1
i=1 |Fi|, we have

T+d−1∑
t=s+1

τt+1−1∑
i=τt

(τt − 1)−α/2

=

T+d−1∑
t=s+1

|Ft|
(
∑t−1
i=s |Fi|)α/2

=

T+d−1∑
t=s+1

|Ft|
(
∑t
i=s |Fi|)α/2

+

T+d−1∑
t=s+1

|Ft|

(
1

(
∑t−1
i=s |Fi|)α/2

− 1

(
∑t
i=s |Fi|)α/2

)

≤
T+d−1∑
t=s+1

|Ft|
(
∑t
i=s |Fi|)α/2

+

T+d−1∑
t=s+1

d

(
1

(
∑t−1
i=s |Fi|)α/2

− 1

(
∑t
i=s |Fi|)α/2

)

≤
T+d−1∑
t=s+1

|Ft|
(
∑t
i=s |Fi|)α/2

+
d

|Fs|α/2
≤
T+d−1∑
t=s+1

|Ft|
(
∑t
i=s |Fi|)α/2

+ d

(62)

where the first inequality is due to (32) and (
∑t−1
i=s |Fi|)α/2 ≤ (

∑t
i=s |Fi|)α/2.

Let ht =
∑t
i=s |Fi| for any t = s, . . . , T + d− 1. Since 0 < α ≤ 1, it is not hard to verify that

T+d−1∑
t=s+1

|Ft|
(
∑t
i=s |Fi|)α/2

=

T+d−1∑
t=s+1

|Ft|
(ht)α/2

=

T+d−1∑
t=s+1

∫ ht

ht−1

1

(ht)α/2
dx

≤
T+d−1∑
t=s+1

∫ ht

ht−1

1

xα/2
dx =

∫ hT+d−1

hs

1

xα/2
dx =

∫ T

|Fs|

1

xα/2
dx

≤ 2

2− α
T 1−α/2.

(63)

Finally, we complete this proof by combining (62) with (63).

H Proof of Lemma 10

It is not hard to verify that
T∑

t=2d+1

t′−1∑
k=t

|Fk|
hk
≤

T∑
t=s

t′−1∑
k=t

|Fk|
hk
≤

T∑
t=s

t+d−1∑
k=t

|Fk|
hk

=

d−1∑
k=0

T+k∑
t=s+k

|Ft|
ht

≤
d−1∑
k=0

T+d−1∑
t=s

|Ft|
ht

= d

T+d−1∑
t=s

|Ft|
ht

where the first inequality is due to s ≤ d < 2d + 1, and the second inequality is due to t′ − 1 =
t+ dt − 2 < t+ d− 1.

Moreover, we have
T+d−1∑
t=s

|Ft|
ht

=
|Fs|
hs

+

T+d−1∑
t=s+1

∫ ht

ht−1

1

ht
dx ≤ |Fs|

hs
+

T+d−1∑
t=s+1

∫ ht

ht−1

1

x
dx

=
|Fs|
hs

+

∫ hT+d−1

hs

1

x
dx = 1 + ln

T

|Fs|
≤ 1 + lnT

where the last equality is due to hs = |Fs| and hT+d−1 = T .

Finally, we complete this proof by combining the above two inequalities.
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