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1 Summary of Supplementary Material

In this supplementary material, we first provide more details regarding the experiments conducted
in the main paper, after which we report some additional results on MNIST and CIFAR-10 in the
asymmetric label noise setting. Finally, we provide the proofs of all theoretical results.

2 Experimental Details

2.1 Regularization Parameters

Tables 1 and 2 provide the details of the regularization parameters λ0, λ1 used in the proposed N2N
algorithm, for the main experiment (Section 6.1) and the label-noise experiment (Section 6.2) of the
main paper. We usually see that increasing λ0 in steps to its final value yields better convergence.

Training Data Size MNIST CIFAR-10 CIFAR-100
λ0 λ1 λ0 λ1 λ0 λ1

1000 0.5 0.5 0.1 0.5 0.1 0.5
2000 0.25 0.25 0.1 0.1 0.1 0.1
10000 0.25 0.1 0.05 0.1 0.02 0.1
Complete Dataset 0.2 0.1 0.01 0.1 0.01 0.1

Table 1: Values assigned to the regularization parameters λ0 and λ1 for the results shown in Table 1
of the main paper. For the single-level N2N, we simply set λ1 = 0.

Label Noise Probability MNIST CIFAR-10 CIFAR-100
λ0 λ1 λ0 λ1 λ0 λ1

p=0.2 4.0 0.1 0.6 0.5 0.3 0.1
p=0.5 10 0.1 0.6 0.5 0.5 0.1

Table 2: Values assigned to the regularization parameters λ0 and λ1 for the results shown in Table 2
of the main paper (MNIST and CIFAR-10) and Table 1 of this supplementary material (CIFAR-100).
p represents the symmetric noise probability used for generating the corrupted labels.

2.2 Network Architecture Details

We report the network architecture details and their parameter counts for the networks used in the
proposed N2N regularization approach across the MNIST, CIFAR-10 and CIFAR-100 datasets. We
note that for 2-Level N2N regularization, we would have a total of three networks in decreasing order
of complexity; the base network N base, the level-1 network n1

small, and the level-2 network n2
small.
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Network MNIST CIFAR-10 CIFAR-100

N base 3 Conv + 2 FC (577K) ResNet-44 (658K) ResNet-50 (23M)
n1
small 2 Conv + 2 FC(25K) 2 Conv + 3 FC (28K) 2 Conv + 3 FC (34K)
n2
small 1 Conv + 2 FC (5K) 1 Conv + 3 FC (11K) 1 Conv + 3 FC (16K)

Table 3: Network architectures and parameter counts for networks used in MNIST, CIFAR-10 and
CIFAR-100 datasets, for each level of the N2N regularization algorithm. Note that Conv denotes
convolutional layers and FC denotes fully connected layers.

Noise level F-Correction [1] Decoupling [2] MentorNet [3] Co-Teaching [4] SCE [5] N2N (2-Levels)
MNIST, Asymmetric Pairwise Noise

p = 0.45 0.24 ±0.03 (56.52) 58.03 ±0.07 (56.52) 80.88±4.45 (56.52) 87.63±0.21 (56.52) 90.785±0.51 (55.58) 91.08±0.83 (55.58)
CIFAR-10, Asymmetric Pairwise Noise

p = 0.45 6.61 ±0.03 (49.5) 48.80 ±0.04 (49.5) 58.14±0.38 (49.5) 72.62±0.15 (49.5) 78.71±0.08 (74.17) 81.38±0.19 (74.17)

Table 4: Test accuracies on MNIST and CIFAR-10 when pairflip label noise of probability p = 0.45
was applied on the training data labels. Average accuracies over last ten epochs and standard cross-
entropy accuracies with the corresponding network configurations (in brackets) are shown here for
various benchmark approaches as observed in [4], and the SCE results here are computed with our
network and training configurations.

Please refer to Algorithm 1 of the main paper for more details. The network architectures for all
levels and their parameter counts are provided in Table 3.

2.3 Computing Kolmogorov Growth on MNIST

For estimating K̂GS(f) (where S has m datapoints) we use n2
small to bound the empirical KG of

N base, by finding the configuration of n2
small which minimizes the mean-squared error between

n2
small and N base on data separate from S but also generated by P . And then we compute empirical

KG based on the average label disagreement (δ) between the resulting n2
small and N base on S.

3 Additional Experiments: Asymmetric Label Noise

We report the results of applying the proposed N2N regularization approach in the case of MNIST
and CIFAR-10 with asymmetric pairwise label noise of probability 0.45 (same as in [4]). Results are
shown in Table 4. We trained the N2N and SCE networks for 100 iterations with the same training
configuration, and report the average accuracy over the last 10 iterations. Also, in Figure 1, we

Figure 1: Average test accuracy over the last ten iterations of training with 2-level N2N, as a function
of the regularization parameter λ0, in the case of MNIST, with pairwise label noise of 45%.
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demonstrate the impact of the regularization parameter λ0 in the case of MNIST with asymmetric
noise of p = 0.45. We see that similar to the case of symmetric noise, increasing λ0 helps in
significantly improving the network’s ability to generalize.

4 Proofs of Theoretical Results

For all results that follow, we consider the case of binary classification. Also, please refer to Section
3 of the main paper for all definitions. In addition to the theoretical results mentioned in the main
paper, as referenced in Section 4 of the main paper, we provide an additional result for recursive
teacher-student approximation in Corollary 2.1.

4.1 Proof of Theorem 1 and Corollary 1.1

Theorem 1. For 0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have,

errP (f) ≤êrrS(f) +
√

2KGm(f) +

√
log (1/δ)

2m
. (1)

Proof. First, we re-iterate the well known result [6] that bounds generalization error based on the
Rademacher complexity for a function space F , denoted as Rm(F). It states that for 0 < δ < 1,
with probability p ≥ 1− δ over the draw of S, we have for any function f ′ ∈ F ,

errP (f ′) ≤ êrrS(f ′) +Rm(F) +

√
log (1/δ)

2m
. (2)

Next, it is well known that the application of Massart’s finite class lemma allows us to bound the

Rademacher complexity in terms of the growth function asRm(F) ≤
√

2 log Πm(F)
m .

Thus we can re-iterate the result in (2) as follows.

For 0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have for any function f ′ ∈ F ,

errP (f ′) ≤ êrrS(f ′) +

√
2 log Πm(F)

m
+

√
log (1/δ)

2m
. (3)

Next, in the context of the computation of the Kolmogorov Growth KGm(f) of a function, we define
the minimal function space Mf corresponding to a function f , as the function space resulting from
the description Djf , where Djf is chosen such that,

j = argmin
i

log Πm

(
F(Di

f )
)

m
. (4)

Given the above formulation, we have that Mf = F(Djf ). With this, we note that the error bound
based on the growth function should apply to any function space, including Mf , as follows. For
0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have for any function g ∈Mf ,

errP (g) ≤ êrrS(g) +

√
2 log Πm(Mf )

m
+

√
log (1/δ)

2m
. (5)

Thus, we note that for a random draw of S, according to its i.i.d probability P (S), the above holds.
Now, we make use of the fact that Mf can fit any set of m sampled points from P (S) (due to the
constraints described in Section 3 of the main paper). This indicates that if Mf can be triggered from
any set of m sampled points, i.e., knowledge of Mf does not give any additional information about
the set of m sampled points in the training dataset S. This then indicates that P (S|Mf ) = P (S), and
the result in (5) holds for the scenario where g = f , leading to the following.

For 0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have for any function f ,

errP (f) ≤ êrrS(f) +

√
2 log Πm(Mf )

m
+

√
log (1/δ)

2m
. (6)
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The main result then follows by simply noting that by its definition, KGm(f) =
log Πm(Mf )

m .

Corollary 1.1. For 0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have

errP (f) ≤êrrS(f) +

√
2K̂GS(f) + 4

√
2 log (4/δ)

m
. (7)

Proof. To prove the above, we first note the error bounds based on empirical Rademacher complexity,
as proposed in [6] as follows. It states that for 0 < δ < 1, with probability p ≥ 1− δ over the draw
of S, we have for any function f ′ ∈ F ,

errP (f ′) ≤ êrrS(f ′) + R̂S(F) + 4

√
2 log (4/δ)

m
. (8)

Next, we use the result from Massart’s finite class lemma, which bounds the empirical Rademacher
complexity in terms of the empirical growth function Π̂S(F) to change the statement in (8) as follows.
For 0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have for any function f ′ ∈ F ,

errP (f ′) ≤ êrrS(f ′) +

√
2 log Π̂S(F)

m
+ 4

√
2 log (4/δ)

m
. (9)

Next, in the context of the computation of empirical Kolmogorov Growth K̂GS(f) of the given
function f , we define the empirical minimal function space M̂S(f) corresponding to a function f and
an instance of the training data in S, as the function space resulting from the description Djf , where
Djf is chosen such that,

j = argmin
i

log Π̂S

(
F(Di

f )
)

m
. (10)

Given the above formulation, we have that M̂S(f) = F(Djf ). Using this, one could construct the

error bounds in the following manner, by constraining f to belong to the function space M̂S(f). For
0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have for any function g ∈ M̂S(f),

errP (g) ≤ êrrS(g) +

√
2 log Π̂S(M̂S(f))

m
+ 4

√
2 log (4/δ)

m
. (11)

Unlike in the proof of Theorem 1, here the empirical minimal function space M̂S(f) is a function of
S as well. However, given the fact that M̂S(f) also depends on the function f , indicates that M̂S(f)
can still be triggered from any choice of S, subject to the choice of the classifying function in f .
Furthermore, as M̂S(f) can fit any set of m sampled points from P (S) (constraint in Section 3 of
the main paper), even if f were to be chosen such that it has zero error on the training data samples,
it would not change the expected generalization gap for M̂S(f). This shows that (11) would hold for
g = f , leading to the following result.

For 0 < δ < 1, with probability p ≥ 1− δ over the draw of S, we have for any function f ,

errP (f) ≤ êrrS(f) +

√
2 log Π̂S(M̂S(f))

m
+ 4

√
2 log (4/δ)

m
. (12)

The main result now follows as K̂GS(f) = log Π̂S(M̂S(f))
m .
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4.2 Proof of Theorem 2 and Corollary 2.1

First, we provide some results that will help in proving Theorem 2.

Lemma 1. Let a, b, a′, b′ ∈ R s.t. a > b. Then a′ < b′ ⇒ (a′ − a)2 + (b′ − b)2 > (a−b)2
2 .

Proof. Let a′ = a+ α and b′ = b+ β, where α, β ∈ R Then a′ < b′ ⇒ β − α > a− b. We have
(a′ − a)2 + (b′ − b)2 = α2 + β2 = (β−α)2+(α+β)2

2 > (β−α)2

2 > (a−b)2
2 .

We use this result to prove the following Proposition, which is then used in the proof of Theorem 2.

Proposition 1. f and g are two binary classifiers. Let εmax satisfy the following: ε2max

2 =

maxX∈Rd{(g0(X) − f0(X))2 + (g1(X) − f1(X))2}. Then: |f0(X) − f1(X)| > εmax ⇒
argmaxk∈{0,1}{fk(X)} = argmaxk∈{0,1}{gk(X)}. In other words, the winner class of f and g
on X are the same.

Proof. Let a = f0(X), b = f1(X), a′ = g0(X), b′ = g1(X). Suppose, without loss of generality,
that f0(X) > f1(X). We are also given that |f0(X) − f1(X)| > εmax. Then if g0(X) < g1(X),
Lemma 1 then yields : D(X) = (g0(X)−f0(X))2 +(g1(X)−f1(X))2 > (f0(X)−f1(X))2

2 >
ε2max

2 .
From the definition of εmax, we have D(X) > maxX∈Rd{D(X)}, which is a contradiction. Thus
g0(X) ≥ g1(X). In other words, the winner class of f and g on X is the same.

Theorem 2. Given the function f ∈ F : Rd −→ R2 which outputs class logits for binary classification.
We construct a function space F1

small such that Πm(F1
small) < Πm(F) and ∀g ∈ F1

small, there
exists a description Dg such that Π̂S (F(Dg)) ≤ Π̂S(F1

small). We approximate f via another
function f1

small ∈ F
1
small : Rd −→ R2 and let εmax be such that

ε2max/2 = max
X∈Rd

‖f1
small(X)− f(X)‖2. (13)

Denote the output probabilities generated from the corresponding logit outputs of f(X) using the
softmax operator (temperature T = 1), as P0(f(X)) (label 1 output) and P1(f(X)) (label 2 output).
Let 0 ≤ δ ≤ 1 be such that

Pr

(∣∣∣∣log(P0(f(X))

P1(f(X)

)∣∣∣∣ ≤ εmax) ≤ δ, (14)

when X is drawn from S. Then we have,

K̂GS(f) ≤ δ log 2 +
log Π̂S

(
F1
small

)
m

, (15)

where m is the number of samples in S.

Proof. First, we note that the result in Proposition 1 implies that Pr
(∣∣∣log (P0(f(X))

P1(f(X)

)∣∣∣ ≤ εmax)
actually represents the probability that the output category of the function f and the function f1

small

can possibly be different. That is, if
∣∣∣log (P0(f(X))

P1(f(X)

)∣∣∣ ≤ εmax, only then the functions f and f1
small

can actually have different labels on X . Given this, it follows that if the number of datapoints in S
where f and f1

small can differ is less than mδ, then one could jointly describe the function f via the
function f1

small and the label variables for all the points in Rd where the labels can differ, out of
which at most mδ points are in S. Note that in order to define K̂GS(f), this joint description should
fit any m points sampled from Pm. This leads to an upper bound for the empirical Kolmogorov
growth, given that the number of datapoints in S where f and f1

small can differ is less than mδ, as
follows.

K̂GS(f) = min
i

log Π̂S

(
F(Di

f )
)

m
(16)

≤ log Π̂S(F1
small)2

mδ

m
(17)

= δ log 2 +
log Π̂S

(
F1
small

)
m

. (18)
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The above holds, only when the number of datapoints in S where f and f1
small can differ is less than

mδ, which is the case here, as the expression Pr
(∣∣∣log (P0(f(X))

P1(f(X)

)∣∣∣ ≤ εmax) ≤ δ holds true for X
drawn from S.

Corollary 2.1. We are given the function f : Rd −→ R2 which outputs class logits for the binary clas-
sification problem. We construct a set of K function spaces F1

small,F
2
small,F

3
small, ...,F

K
small

using classifiers of decreasing complexity. Thus, we have Πm(F1
small) > Πm(F2

small) >

· · · > Πm(FKsmall). We also have that ∀g ∈ F jsmall, there exists a description Dg such that
Π̂S (F(Dg)) ≤ Π̂S(F jsmall), for j = 1, 2, ..,K. To estimate K̂GS(f) using these function spaces,
first f is approximated using a function f1

small : Rd −→ R2, fromF1
small (i.e., f1

small ∈ F
1
small). Then,

we continue in a recursive manner, by approximating f1
small using another function f2

small ∈ F
2
small,

and so on. Given this, let
ε1max = max

X∈Rd
‖f(X)− f1

small(X)‖2 (19)

ε2max = max
X∈Rd

‖f1
small(X)− f2

small(X)‖2 (20)

· · ·
εKmax = max

X∈Rd
‖fK−1
small(X)− fKsmall(X)‖2. (21)

Denote the output probabilities generated from the corresponding logit outputs of f(X) using the
softmax operator (temperature T = 1), as P0(f(X)) (label 1 output) and P1(f(X)) (label 2 output).
Now, let real constants 0 ≤ δ1, δ2, ..., δK ≤ 1 be such that

Pr

(∣∣∣∣log(P0(f(X))

P1(f(X)

)∣∣∣∣ ≤ εmax) ≤ δ1, (22)

Pr

(∣∣∣∣log(P0(f1
small(X))

P1(f1
small(X)

)∣∣∣∣ ≤ ε2max) ≤ δ2, (23)

· · ·

Pr

(∣∣∣∣∣log
(
P0(fK−1

small(X))

P1(fK−1
small(X)

)∣∣∣∣∣ ≤ εKmax
)
≤ δK , (24)

given that X is drawn from S. Then we have,

K̂GS(f) ≤
K∑
i=1

δi log 2 +
log Π̂S

(
FKsmall

)
m

, (25)

where m is the number of samples in S.

Proof. First, proceeding similarly to the proof of Theorem 2, we note that a tighter bound on K̂GS(f)
can be achieved by realizing that f1

small doesn’t have to belong to F1
small, but can belong to its

empirical minimal function space M̂S(f1
small) itself, which leads to

K̂GS(f) = min
i

log Π̂S

(
F(Di

f )
)

m
(26)

≤
log Π̂S

(
M̂S(f1

small)
)

2mδ

m
(27)

= δ1 log 2 +
log Π̂S

(
M̂S(f1

small)
)

m
(28)

= δ1 log 2 + K̂GS(f1
small) (29)
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The proof of this corollary then trivially follows by noting that one could recursively approximate
f1
small by f2

small to yield

K̂GS(f1
small) ≤ δ2 log 2 + K̂GS(f2

small), (30)

and similarly for the rest. For the final approximation, we use the function space FKsmall to yield the
final upper bound as

K̂GS(fK−1
small) ≤ δK log 2 +

log Π̂S

(
FKsmall

)
m

. (31)

The result in the corollary then follows by combining all bounds.
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