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ABSTRACT

Synthesizing high-quality tabular data is an important topic in many data science
tasks, ranging from dataset augmentation to privacy protection. However, develop-
ing expressive generative models for tabular data is challenging due to its inherent
heterogeneous data types, complex inter-correlations, and intricate column-wise
distributions. In this paper, we introduce TABDIFF, a joint diffusion framework
that models all multi-modal distributions of tabular data in one model. Our key
innovation is the development of a joint continuous-time diffusion process for
numerical and categorical data, where we propose feature-wise learnable diffusion
processes to counter the high disparity of different feature distributions. TABDIFF
is parameterized by a transformer handling different input types, and the entire
framework can be efficiently optimized in an end-to-end fashion. We further intro-
duce a multi-modal stochastic sampler to automatically correct the accumulated
decoding error during sampling, and propose classifier-free guidance for condi-
tional missing column value imputation. Comprehensive experiments on seven
datasets demonstrate that TABDIFF achieves superior average performance over ex-
isting competitive baselines across all eight metrics, with up to 22.5% improvement
over the state-of-the-art model on pair-wise column correlation estimations.

1 INTRODUCTION

Tabular data is ubiquitous in various databases, and developing effective generative models for it
is a fundamental problem in many data processing and analysis tasks, ranging from training data
augmentation (Fonseca & Bacao, 2023), data privacy protection (Assefa et al., 2021; Hernandez et al.,
2022), to missing value imputation (You et al., 2020; Zheng & Charoenphakdee, 2022). With versatile
synthetic tabular data that share the same format and statistical properties as the existing dataset, we
are able to completely replace real data in a workflow or supplement the data to enhance its utility,
which makes it easier to share and use. The capability of anonymizing data and enlarging sample size
without compromising the overall data quality enables it to revolutionize the field of data science.
Unlike image data, which comprises pure continuous pixel values with local spatial correlations,
or text data, which comprises tokens that share the same dictionary space, tabular data features
have much more complex and varied distributions (Xu et al., 2019; Borisov et al., 2023), making
it challenging to learn joint probabilities across multiple columns. More specifically, such inherent
heterogeneity leads to obstacles from two aspects: 1) typical tabular data often contains multi-modal
data types, i.e., continuous (e.g., numerical features) and discrete (e.g., categorical features) variables;
2) within the same feature type, features do not share the exact same data property because of the
different meaning they represent, resulting in different column-wise marginal distributions (even after
normalizing them into same value ranges).

In recent years, numerous deep generative models have been proposed for tabular data generation
with autoregressive models (Borisov et al., 2023), VAEs (Liu et al., 2023), and GANs (Xu et al.,
2019) in the past few years. Though they have notably improved the generation quality compared
to traditional machine learning generation techniques such as resampling (Chawla et al., 2002), the
generated data quality is still far from satisfactory due to limited model capacity. Recently, with the
rapid progress in diffusion models (Song & Ermon, 2019; Ho et al., 2020; Rombach et al., 2022),
researchers have been actively exploring extending this powerful framework to tabular data (Kim
et al., 2022; Kotelnikov et al., 2023; Zhang et al., 2024). For example, Zheng & Charoenphakdee
(2022); Zhang et al. (2024) transform all features into a latent continuous space via various encoding

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

...

m

Normalize

One-hot
+Append Mask

m
m

m

m
m

...
m

m
m

m

...

m
m

Inverse
Transform

(less noisy) (more noisy)

Reverse Diff

Forward Diff

Age Capital Gain

56 0.0
25 7688.0

Income Gender

<= 50k Male
> 50k Other

Age Capital Gain

56 0.0
25 7688.0

Income Gender

<= 50k Male
> 50k Other

Transform
ers

Transform
ers

M
LP

Denoising Network

Figure 1: A high-level overview of TABDIFF. TABDIFF operates by normalizing numerical columns
and converting categorical columns into one-hot vectors with an extra [MASK] class. Joint forward
diffusion processes are applied to all modalities with each column’s noise rate controlled by learnable
schedules. New samples are generated via reverse process, with the denoising network gradually
denoising x1 into x0 and then applying the inverse transform to recover the original format.

techniques and apply Gaussian diffusion there, while Kotelnikov et al. (2023); Lee et al. (2023)
combine discrete-time continuous and discrete diffusion processes (Austin et al., 2021) to deal with
numerical and categorical features separately. However, prior methods are trapped in sub-optimal
performance due to additional encoding overhead or imperfect discrete-time diffusion modeling, and
none of them consider the feature-wise distribution heterogeneity issue in a multi-modal framework.

In this paper, we present TABDIFF, a novel and principled multi-modal diffusion framework for
tabular data generation. TABDIFF perturbs numerical and categorical features with a joint diffusion
process, and learns a single model to simultaneously denoising all modalities. Our key innovation is
the development of multi-modal feature-wise learnable diffusion processes to counteract the high
heterogeneity across different feature distributions. Such feature-specific learnable noise schedules
enable the model to optimally allocate the model capacity to different features in the training phase.
Besides, it encourages the model to capture the inherent correlations during sampling since the model
can denoise different features in a flexible order based on the learned schedule. We parameterize
TABDIFF with a transformer operating on different input types and optimize the entire framework
efficiently in an end-to-end fashion. The framework is trained with a continuous-time limit of evidence
lower bound. To reduce the decoding error during denoising sampling, we design a multi-modal
stochastic sampler that automatically corrects the accumulated decoding error during sampling. In
addition, we highlight that TABDIFF can also be applied to conditional generation tasks such as
missing column imputation, and we further introduce classifier-free guidance technique to improve
the conditional generation quality.

TABDIFF enjoys several notable advantages: 1) our model learns the joint distribution in the original
data space with an expressive continuous-time diffusion framework; 2) the framework is sensitive to
varying feature marginal distribution and can adaptively reason about feature-specific information
and pair-wise correlations. We conduct comprehensive experiments to evaluate TABDIFF against
state-of-the-art methods across seven widely adopted tabular synthesis benchmarks. Results show that
TABDIFF consistently outperforms previous methods over eight distinct evaluation metrics, with up
to 22.5% improvement over the state-of-the-art model on pair-wise column correlation estimations,
suggesting our superior generative capacity on mixed-type tabular data.

2 METHOD

2.1 OVERVIEW

Notation. For a given mixed-type tabular dataset T , we denote the number of numerical features and
categorical features as Mnum and Mcat, respectively. The dataset is represented as a collection of
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data entries T = {x} = {[xnum,xcat]}, where each entry x is a concatenated vector consisting of
its numerical features xnum and categorical features xcat. We represent the numerical features as a
Mnum dimensional vector xnum ∈ RMnum and denote the i-th feature as (xnum)i ∈ R. We represent
each categorical column with Cj finite categories as a one-hot column vector (xcat)j ∈ {0, 1}(Cj+1),
with an extra dimension dedicated to the [MASK] state. The (Cj + 1)-th category corresponds to the
special [MASK] state and we use m ∈ {0, 1}K as the one-hot vector for it. In addition, we define
cat(·;π) as the categorical distribution over K classes with probabilities given by π ∈ ∆K , where
∆K is the K-simplex.

Different from common data types such as images and text, developing generative models for tabular
data is challenging as the distribution is determined by multi-modal data. We therefore propose
TABDIFF, a unified generative model for modeling the joint distribution p(x) using a continuous-time
diffusion framework. TABDIFF can learn the distribution from finite samples and generate faithful,
diverse, and novel samples unconditionally. We provide a high-level overview in Figure 1, which
includes a forward diffusion process and a reverse generative process, both defined in continuous time.
The diffusion process gradually adds noise to data, and the generative process learns to recover the
data from prior noise distribution with neural networks parameterized by θ. In the following sections,
we elaborate on how we develop the unified diffusion framework with learnable noise schedules and
perform training and sampling in practice.

2.2 MULTI-MODAL DIFFUSION FRAMEWORK

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are likelihood-
based generative models that learn the data distribution via forward and reverse Markov processes.
Our goal is to develop a principled diffusion model for generating mixed-type tabular data that
faithfully mimics the statistical distribution of the real dataset. Our framework TABDIFF is designed
to directly operate on the data space and naturally handle each tabular column in its built-in datatype.
TABDIFF is built on a hybrid forward process that gradually injects noise to numerical and categorical
data types separately with different diffusion schedules σnum and σcat. Let {xt : t ∼ [0, 1]} denote
a sequence of data in the diffusion process indexed by a continuous time variable t ∈ [0, 1], where
x0 ∼ p0 are i.i.d. samples from real data distribution and x1 ∼ p1 are pure noise from prior
distribution. The hybrid forward diffusion process can be then represented as:

q(xt | x0) = q (xnum
t | xnum

0 ,σnum(t)) · q
(
xcat
t | xcat

0 ,σcat(t)
)
. (1)

Then the true reverse process can be represented as the joint posterior:
q(xs | xt,x0) = q(xnum

s | xt,x0) · q(xcat
s | xt,x0), (2)

where s and t are two arbitrary timesteps that 0 < s < t < 1. We aim to learn a denoising model
pθ(xs|xt) to match the true posterior. In the following, we discuss the detailed formulations of
diffusion processes for continuous and categorical features in separate manners. To enhance clarity,
we omit the superscripts on xnum and xcat when the inclusion is unnecessary for understanding.

Gaussian Diffusion for Numerical Features. In this paper, we model the forward diffusion for
continuous features xnum as a stochastic differential equation (SDE) dx = f(x, t)dt + g(t)dw,
with f(·, t) : RMnum → RMnum being the drift coefficient, g(·) : R → R being the diffusion
coefficient, and w being the standard Wiener process (Song et al., 2021; Karras et al., 2022). The
revere generation process solves the probability flow ordinary differential equation (ODE) dx =[
f(x, t)− 1

2g(t)
2∇x log pt(x)

]
dt, where ∇x log pt(x) is the score function of pt(x). In this paper,

we use the Variance Exploding formulation with f(·, t) = 0 and g(t) =
√

2[ ddtσ
num(t)]σnum(t),

which yields the forward process :
xnum
t = xnum

0 + σnum(t)ϵ, ϵ ∼ N (0, IMnum). (3)
And the reversal can then be formulated accordingly as:

dxnum = −[ d
dt

σnum(t)]σnum(t)∇x log pt(x
num)dt. (4)

In TABDIFF, we train the diffusion model µθ to jointly denoise the numerical and categorical
features. We use µnum

θ to denote numerical part of the denoising model output, and train the model
via optimizing the denoising loss:

Lnum(θ, ρ) = Ex0∼p(x0)Et∼U [0,1]Eϵ∼N (0,I) ∥µnum
θ (xt, t)− ϵ∥22 . (5)
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Masked Diffusion for Categorical Features, For categorical features, we take inspiration from the
recent progress on discrete state-space diffusion for language modeling (Austin et al., 2021; Shi et al.,
2024; Sahoo et al., 2024). The forward diffusion process is defined as a masking (absorbing) process
that smoothly interpolates between the data distribution cat(·;x) and the target distribution cat(·;m),
where all probability mass are assigned on the [MASK] state:

q(xt|x0) = cat(xt;αtx0 + (1− αt)m). (6)

αt ∈ [0, 1] is a strictly decreasing function of t, with α0 ≈ 1 and α1 ≈ 0. It represents the
probability for the real data x0 to be masked at time step t. By the time t = 1, all inputs are
masked with probability 1. In practice this schedule is parameterized by αt = exp(−σcat(t)), where
σcat(t) : [0, 1]→ R+ is a strictly increasing function. Such forward process entails the step transition
probabilities q(xt|xs) = cat(xt;αt|sxs + (1− αt|s)m), where αt|s = αt/αs. Under the hood, this
transition means that at each diffusion step, the data will be perturbed to the [MASK] state with a
probability of (1− αt|s), and remains there until t = 1 if perturbed.

Similar to numerical features, in the reverse denoising process for categorical ones, the diffusion
model µθ aims to progressively unmask each column from the ‘masked’ state. The true posterior
distribution conditioned on x0 has the close form of:

q(xs|xt,x0) =

{
cat(xs;xt) xt ̸= m,

cat
(
xs;

(1−αs)m+(αs−αt)x0

1−αt

)
xt = m.

(7)

We introduce the denoising network µcat
θ (xt, t) : C × [0, 1]→ ∆C to estimate x0, through which

we can approximate the unknown true posterior as:

pθ(x
cat
s |xcat

t ) =

{
cat(xcat

s ;xcat
t ) xcat

t ̸= m,

cat
(
xcat
s ;

(1−αs)m+(αs−αt)µ
cat
θ (xt,t)

1−αt

)
xt = m,

(8)

which implied that at each reverse step, we have a probability of (αs−αt)/(1−αt) to recover x0, and
once being recovered, xt stays fixed for the remainder of the process. Extensive works (Kingma et al.,
2021; Shi et al., 2024) have shown that increasing discretization resolution can help approximate
tighter evidence lower bound (ELBO). Therefore, we resort to optimizing the likelihood bound Lcat

under continuous time limit:

Lcat(θ, k) = Eq

∫ t=1

t=0

α′
t

1− αt
1{xt=m} log⟨µcat

θ (xt, t),x
cat
0 ⟩dt, (9)

where α′
t is the first order derivative of αt.

2.3 TRAINING WITH ADAPTIVELY LEARNABLE NOISE SCHEDULES

Algorithm 1 Training
1: repeat
2: Sample x0 ∼ p0(x)
3: Sample t ∼ U(0, 1)
4: Sample ϵnum ∼ N (0, IM num)
5: xnum

t = xnum
0 + σnum(t)ϵnum

6: αt = exp(−σcat(t))
7: Sample xcat

t ∼ q(xt|x0,αt) Eq. (6)
8: xt = [xnum

t ,xcat
t ]

9: Take gradient descent step on∇θ,ρ,kLTABDIFF

10: until converged

Tabular data is inherently highly hetero-
geneous of mixed numerical and categor-
ical data types, and mixed feature distri-
butions within each data type. Therefore,
unlike pixels that share a similar distribu-
tion across three RGB channels and word
tokens that share the exact same vocabu-
lary space, each column (feature) of the
table has its own specific marginal distribu-
tions, which requires the model to amortize
its capacity adaptively across different fea-
tures. We propose to adaptively learn a
more fine-grained noise schedule for each
feature respectively. To balance the trade-
off between the learnable noise schedule’s flexibility and robustness, we design two function families:
the power mean numerical schedule and the log-linear categorical schedule.

Power-mean schedule for numerical features. For the numerical noise schedule σnum(t) in Eq. (3),
we define σnum(t) = [σnum

ρi
(t)], with ρi being a learnable parameter for individual numerical features.
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For ∀i ∈ {1, · · · ,Mnum}, we have σnum
ρi

(t) as:

σnum
ρi

(t) =

(
σ

1
ρi

min + t(σ
1
ρi
max − σ

1
ρi

min)

)ρi

. (10)

Log-linear schedule for categorical features. Similarly, for the categorical noise schedule σcat(t)
in Section 2.2, we define σcat(t) = [σcat

kj
(t)], with ki being a learnable parameter for individual

categorical features. For ∀j ∈ {1, · · · ,Mcat}, we have σcat
kj

(t) as:

σcat
kj

(t) = − log(1− tkj ). (11)
In practice, we fix the same initial and final noise levels across all numerical features so that
σnum
i (0) = σmin and σnum

i (1) = σmax for ∀i ∈ {1, · · · ,Mnum}. We similarly bound the initial and
final noise levels for the categorical features, as detailed in Appendix B.1. This enables us to constrain
the freedom of schedules and thus stabilize the training.

Joint objective function. We update Mnum +Mcat parameters ρ1, · · · , ρMnum and k1, · · · , kMcat
via

backpropagation without the need of modifying the loss function. Consolidating Lnum and Lcat, we
have the total loss L with two weight terms λnum and λcat as:
LTABDIFF(θ, ρ, k) = λnumLnum(θ, ρ) + λcatLcat(θ, k)

= Et∼U(0,1)E(xt,x0)∼q(xt,x0)

(
λnum ∥µnum

θ (xt, t)− ϵ∥22 +
λcat α

′
t

1− αt
1{xt=m} log⟨µcat

θ (xt, t),x
cat
0 ⟩

)
.

(12)
With the forward process defined in Eq. (3) and Eq. (6), we present the detailed training procedure in
Algorithm 1. Here, we sample a continuous time step t from a uniform distribution U(0, 1) and then
perturb numerical and categorical features with their respective noise schedules based on this same
time index. Then, we input the concatenated xnum

t and xcat
t into the model and take gradient on the

joint loss function defined in Eq. (12).

2.4 SAMPLING WITH BACKWARD STOCHASTIC SAMPLER

Algorithm 2 Sampling

1: Sample xnum
T ∼ N (0, IM num), xcat

T = m
2: for t = T to 1 do
3: t+ ← t+ γtt, γt = 1/T

▷ Numerical forward perturbation:
4: Sample ϵnum ∼ N (0, IM num)

5: xnum
t+ ← xnum

t +
√
σnum(t+)2 − σnum(t)2ϵnum

▷ Categorical forward perturbation:
6: Sample xcat

t+ ∼ q
(
xcat
t+ |x

cat
t , 1−αt+/αt

)
Eq. (6)

▷ Concatenate:
7: xt+ = [xnum

t+ ,xcat
t+ ]

▷ Numerical backward ODE:
8: dxnum = (xnum

t+ − µnum
θ (xt+ , t

+))/σnum(t+)

9: xnum
t−1 ← xnum

t+ + (σnum(t− 1)− σnum(t+))dxnum

▷ Categorical backward sampling:
10: Sample xcat

t−1 ∼ pθ(x
cat
t−1|xcat

t+ , µcat
θ (xt+ , t

+)) Eq. (8)
11: end for
12: return xnum

0 ,xcat
0

One notable property of the joint
sampling process is that the inter-
mediate decoded categorical fea-
ture will not be updated anymore
during sampling (see Eq. (8)).
However, as tabular data are highly
structured with complicated inter-
column correlations, we expect the
model to correct the error during
sampling. To this end, we intro-
duce a novel stochastic sampler
by restarting the backward process
with an additional forward process
at each denoising step. Related
work on continuous diffusions Kar-
ras et al. (2022); Xu et al. (2023)
has shown that incorporating such
stochasticity can yield better gen-
eration quality. We extend such
intuition to both numerical and cat-
egorical features in tabular genera-
tion. At each sampling step t, we
first add a small time increment to the current time step t to t+ = t+ γtt according to a factor γt,
and then perform the intermediate forward sampling between t+ and t by joint diffusion process
Equations (3) and (6). From the increased-noise sample xt+ , we solve the ODE backward for xnum

and xcat from t+ to t− 1, respectively, with a single update. This framework enables self-correction
by randomly perturbing decoded features in the forward step. We summarize the sampling framework
in Algorithm 2, and provide the ablation study for the stochastic sampler in Section 4.4. We also
provide an illustrative example of the sampling process in Appendix C.
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2.5 CLASSIFIER-FREE GUIDANCE CONDITIONAL GENERATION

TABDIFF can also be extended as a conditional generative model, which is important in many tasks
such as missing value imputation. Let y = {[ynum,ycat]} be the collection of provided properties in
tabular data, containing both categorical and numerical features, and let x denote the missing interest
features in this section. Imputation means we want to predict x = {[xnum,xcat]} conditioned on y.
TABDIFF can be freely extended to conditional generation by only conducting denoising sampling
for xt, while keeping other given features yt fixed as y.

Previous works on diffusion models (Dhariwal & Nichol, 2021) show that conditional generation
quality can be further improved with a guidance classifier/regressor p(y | x). However, training
the guidance classifier becomes challenging when x is a high-dimensional discrete object, and
existing methods typically handle this by relaxing x as continuous (Vignac et al., 2023). Inspired
by the classifier-free guidance (CFG) framework (Ho & Salimans, 2022) developed for continuous
diffusion, we propose a unified CFG framework that eliminates the need for a classifier and handles
multi-modal x and y effectively. The guided conditional sample distribution is given by p̃θ(xt|y) ∝
pθ(xt|y)pθ(y|xt)

ω , where ω > 0 controls strength of the guidance. Applying Bayes’ Rule, we get

p̃θ(xt|y) ∝ pθ(xt|y)pθ(y|xt)
ω = pθ(xt|y)

(
pθ(xt|y)p(y)

pθ(xt)

)ω

=
pθ(xt|y)ω+1

pθ(xt)ω
p(y)ω. (13)

We drop p(y) for it does no depend on θ. Taking the logarithm of the probabilities, we obtain,

log p̃θ(xt|y) = (1 + ω) log pθ(xt|y)− ω log pθ(xt), (14)

which implies the following changes in the sampling steps. For the numerical features, µnum
θ (xt, t) is

replaced by the interpolation of the conditional and unconditional estimates (Ho & Salimans, 2022):

µ̃num
θ (xt,y, t) = (1 + ω)µnum

θ (xt,y, t)− ωµnum
θ (xt, t). (15)

And for the categorical features, we instead predict x0 with p̃θ(x
cat
s |xt,y), satisfying

log p̃θ(x
cat
s |xt,y) = (1 + ω) log pθ(x

cat
s |xt,y)− ω log pθ(x

cat
s |xt). (16)

Under the missing value imputation task, our target columns is x, and the remaining columns
constitute y. Implementing CFG becomes very lightweight, as the guided probability utilizes the
original unconditional model trained over all table columns as the conditional model and requires only
an additional small model for the unconditional probabilities over the missing columns. We provide
empirical results for CFG sampling in Section 4.3 and implementation details in Appendix B.2.

3 RELATED WORK

Recent studies have developed different generative models for tabular data, including VAE-based
methods, TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023), and GAN (Generative Adversarial
Networks)-based methods, CTGAN (Xu et al., 2019) and TabelGAN (Park et al., 2018). These
methods usually lack sufficient model expressivity for complicated data distribution. Recently,
diffusion models have shown powerful generative ability for diverse data types and thus have been
adopted by many tabular generation methods. Kotelnikov et al. (2023); Lee et al. (2023) designed
separate discrete-time diffusion processes (Austin et al., 2021) for numerical and categorical features
separately. However, they built their diffusion processes on discrete time steps, which have been
proven to yield a looser ELBO estimation and thus lead to sub-optimal generation quality (Song
et al., 2021; Kingma et al., 2021). To tackle such a problem caused by limited discretization of
diffusion processes and push it to a continuous time framework, Zheng & Charoenphakdee (2022);
Zhang et al. (2024) transform features into a latent continuous space via various encoding techniques,
since advanced diffusion models are mainly designed for continuous random variables with Gaussian
perturbation and thus cannot directly handle tabular data. However, it has shown that these solutions
either are trapped with sub-optimal performance due to encoding overhead or cannot capture complex
co-occurrence patterns of different modalities because of the indirect modeling and low model
capacity. Concurrent work Mueller et al. (2024) also proposed feature-wise diffusion schedules, but
the model still relies on encoding to continuous latent space with Gaussian diffusion framework. In
summary, none of existing methods have explored the powerful multi-modal diffusion framework in
the continuous-time limit and explicitly tackle the feature-wise heterogeneity issue in the multi-modal
diffusion process.
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4 EXPERIMENTS

We evaluate TABDIFF by comparing it to various generative models across multiple datasets and
metrics, ranging from data fidelity and privacy to downstream task performance. Furthermore, we
conduct ablation studies to investigate the effectiveness of each component of TABDIFF, e.g., the
learnable noise schedules.

4.1 EXPERIMENTAL SETUPS

Datasets. We conduct experiments on seven real-world tabular datasets – Adult, Default, Shoppers,
Magic, Faults, Beijing, News, and Diabetes – each containing both numerical and categorical
attributes. In addition, each dataset has an inherent machine-learning task, either classification or
regression. Detailed profiles of the datasets are presented in Appendix A.1.

Baselines. We compare the proposed TABDIFF with eight popular synthetic tabular data generation
methods that are categorized into four groups: 1) GAN-based method: CTGAN (Xu et al., 2019); 2)
VAE-based methods: TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023); 3) Autoregressive
Language Model: GReaT (Borisov et al., 2023); 4) Diffusion-based methods: STaSy (Kim et al.,
2023), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov et al., 2023) and TabSyn (Zhang et al., 2024).

Evaluation Methods. Following the previous methods (Zhang et al., 2024), we evaluate the quality
of the synthetic data using eight distinct metrics categorized into three groups – 1) Fidelity: Shape,
Trend, α-Precision, β-Recall, and Detection assess how well the synthetic data can faithfully recover
the ground-truth data distribution; 2) Downstream tasks: Machine learning efficiency and missing
value imputation reveal the models’ potential to power downstream tasks; 3) Privacy: The Distance
to Closest Records (DCR) score evaluates the level of privacy protection by measuring how closely
the synthetic data resembles the training data. We provide a detailed introduction of all these metrics
in Appendix A.2.

Implementation Details. All reported experiment results are the average of 20 random sampled
synthetic data generated by the best-validated models. Additional implementation details, such as the
hardware/software information as well as hyperparameter settings, are in Appendix D.

4.2 DATA FIDELITY AND PRIVACY

Shape and Trend. We first evaluate the fidelity of synthetic data using the Shape and Trend metrics.
Shape measures the synthetic data’s ability to capture each single column’s marginal density, while
Trend assesses its capacity to replicate the correlation between different columns in the real data.

The detailed results for Shape and Trend metrics, measured across each dataset separately, are
presented in Tables 1 and 2, respectively. On the Shape metric, TABDIFF outperforms all baselines on
five out of seven datasets and surpasses the current state-of-the-art method TABSYN by an average of
13.3%. This demonstrates TABDIFF’s superior performance in maintaining the marginal distribution
of individual attributes across various datasets. Regarding the Trend metric, TABDIFF consistently
outperforms all baselines and surpasses TABSYN by 22.6%. This significant improvement suggests
that TABDIFF is substantially better at capturing column-column relationships than previous methods.
Notably, TABDIFF maintains strong performance in Diabetes, a larger, more categorical-heavy dataset,
surpassing the most competitive baseline by over 35% on both Shape and Trend. This exceptional
performance thus demonstrates our model’s capacity to model datasets with higher dimensionality
and discrete features.

Additional Fidelity Metrics. We further evaluate the fidelity metrics across α-precision, β-recall,
and CS2T scores. On average, TABDIFF outperforms other methods on all these three metrics. We
present the results for these three additional fidelity metrics in Appendix E.1.

Data Privacy. The ability to protect privacy is another important factor when evaluating synthetic
data since we wish the synthetic data to be uniformly sampled from the data distribution manifold
rather than being copied (or slightly modified) from each individual real data example. In this section,
we use the Distance to Closest Records (DCR) score metric (Zhang et al., 2024), which measures the
probability that a synthetic example’s nearest neighbor is from a holdout v.s. the training set.
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Table 1: Performance comparison on the error rates (%) of Shape.

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 16.84± 0.03 16.83±0.04 21.15±0.10 9.81±0.08 21.39±0.05 16.09±0.02 9.82±0.08 15.99
TVAE 14.22±0.08 10.17±0.05 24.51±0.06 8.25±0.06 19.16±0.06 16.62±0.03 18.86±0.13 15.97
GOGGLE 16.97 17.02 22.33 1.90 16.93 25.32 24.92 17.91
GReaT 12.12±0.04 19.94±0.06 14.51±0.12 16.16±0.09 8.25±0.12 OOM OOM 14.20
STaSy 11.29±0.06 5.77±0.06 9.37±0.09 6.29±0.13 6.71±0.03 6.89±0.03 OOM 7.72
CoDi 21.38±0.06 15.77± 0.07 31.84±0.05 11.56±0.26 16.94±0.02 32.27±0.04 21.13±0.25 21.55
TabDDPM 1.75±0.03 1.57± 0.08 2.72±0.13 1.01±0.09 1.30±0.03 78.75±0.01 31.44±0.05 16.93
TABSYN 1 0.81±0.05 1.01±0.08 1.44±0.07 1.03±0.14 1.26±0.05 2.06±0.04 1.85±0.02 1.35

TABDIFF 0.63±0.05 1.24±0.07 1.28±0.09 0.78±0.08 1.03±0.05 2.35±0.03 0.89±0.23 1.17
Improv. 22.2% ↓ 0.0% ↓ 11.11% ↓ 14.29% ↓ 18.25% ↓ 0% ↓ 46.39% ↓ 13.3% ↓
1 TABSYN’s performance is obtained via our reproduction. The results of other baselines except on

Diabetes, are taken from Zhang et al. (2024). The OOM entries are explained in Appendix D.

Table 2: Performance comparison on the error rates (%) of Trend.

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 20.23±1.20 26.95±0.93 13.08±0.16 7.00±0.19 22.95±0.08 5.37±0.05 18.95±0.34 16.36
TVAE 14.15±0.88 19.50±0.95 18.67±0.38 5.82±0.49 18.01±0.08 6.17±0.09 32.74±0.26 16.44
GOGGLE 45.29 21.94 23.90 9.47 45.94 23.19 27.56 28.18
GReaT 17.59±0.22 70.02±0.12 45.16±0.18 10.23±0.40 59.60±0.55 OOM OOM 44.24
STaSy 14.51±0.25 5.96±0.26 8.49±0.15 6.61±0.53 8.00±0.10 3.07±0.04 OOM 7.77
CoDi 22.49±0.08 68.41±0.05 17.78±0.11 6.53±0.25 7.07±0.15 11.10±0.01 29.21±0.12 23.21
TabDDPM 3.01±0.25 4.89±0.10 6.61±0.16 1.70±0.22 2.71±0.09 13.16±0.11 51.54±0.05 11.95
TABSYN 1.93±0.07 2.81±0.48 2.13±0.10 0.88±0.18 3.13±0.34 1.52±0.03 3.90±0.04 2.33

TABDIFF 1.49±0.16 2.55±0.75 1.74±0.08 0.76±0.12 2.59±0.15 1.28±0.04 2.20±0.16 1.80
Improve. 22.8% ↓ 9.3% ↓ 18.3% ↓ 13.6% ↓ 4.4% ↓ 15.8% ↓ 37.3% ↓ 22.6% ↓

Due to space limits, the explanations for the additional fidelity metrics and data privacy metrics, along
with the corresponding experiments, are deferred to Appendices A.2 and E.

4.3 PERFORMANCE ON DOWNSTREAM TASKS

Machine Learning Efficiency. A key advantage of high-quality synthetic data is its ability to serve
as an anonymized proxy for real datasets and power effective learning on downstream tasks such as
classification and regression. We measure the synthetic table’s capacity to support downstream task
learning via Machine Learning Efficiency (MLE). Following established protocols (Kim et al., 2023;
Lee et al., 2023; Xu et al., 2019), we first split the real dataset into training and test sets, then train the
given generative model on the real training set. Subsequently, we sample a synthetic dataset of equal
size to the real training set from the models and use it to train an XGBoost Classifier or XGBoost
Regressor (Chen & Guestrin, 2016). Finally, we evaluate these machine learning models against the
real test set to calculate the AUC score and RMSE for classification and regression tasks, respectively.

According to the MLE results presented in Table 3, TABDIFF consistently achieves the best or
second-best performance across all datasets, with the highest average performance outperforming the
most competitive baseline TABSYN by 15.0%. This demonstrates our method’s competitive capacity
to capture and replicate key features of the real data that are most relevant to learning downstream
machine learning tasks. However, while TABDIFF shows strong performance on MLE, we observe
that methods with varying performance on data fidelity metrics might have very close MLE scores.
This suggests that the MLE score evaluated under the current setting may not be a reliable indicator of
data quality. Therefore, we complement MLE with additional quality metrics in Appendix E, which
better highlights the superior performance of TABDIFF.

Missing Value Imputation. We further evaluate TABDIFF’s conditional generation capacity through
the Missing Value Imputation task. Following the approach in Zhang et al. (2024), we treat the
inherent classification/regression task of each dataset as an imputation task. Specifically, for each
table, we train generative models on the training set to generate the target column while conditioning
on the remaining columns. The imputation performance is measured by the model’s accuracy in
recovering the target column of the test set. Implementing classifier-free guidance (CFG) for this

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Evaluation of MLE (Machine Learning Efficiency): AUC and RMSE are used for classifica-
tion and regression tasks, respectively.

Methods Adult Default Shoppers Magic Beijing News1 Diabetes Average Gap

AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓ AUC ↑ %

Real .927±.000 .770±.005 .926±.001 .946±.001 .423±.003 .842±.002 .704±.002 0.0

CTGAN .886±.002 .696±.005 .875±.009 .855±.006 .902±.019 .880±.016 .569±.004 23.7
TVAE .878±.004 .724±.005 .871±.006 .887±.003 .770±.011 1.01±.016 .594±.009 20.2
GOGGLE .778±.012 .584±.005 .658±.052 .654±.024 1.09±.025 .877±.002 .475±.008 42.1
GReaT .913±.003 .755±.006 .902±.005 .888±.008 .653±.013 OOM OOM 13.3
STaSy .906±.001 .752±.006 .914±.005 .934±.003 .656±.014 .871±.002 OOM 10.9
CoDi .871±.006 .525±.006 .865±.006 .932±.003 .818±.021 1.21±.005 .505±.004 30.2
TabDDPM .907±.001 .758±.004 .918±.005 .935±.003 .592±.011 4.86±3.04 .521±.008 11.95
TABSYN .909±.001 .763±.002 .914±.004 .937±.002 .580±.009 .862±.024 .684±.002 6.78

TABDIFF .912±.002 .763±.005 .921±.004 .936±.003 .555±.013 .866±.021 .689±.016 5.76

Table 4: Performance of TABDIFF in the Missing Value Imputation task. We draw a direct comparison
to the generative approach employed by TABSYN, with the performance of XGBoost classifiers/re-
gressors included as a reference.

Methods Adult Default Shoppers Magic Beijing News Diabetes Avg. Improv.

AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓ AUC ↑ %

Predicted by XGBoost 92.7 77.0 92.6 94.6 0.423 0.842 70.4 0.0

Impute with TABSYN 93.1 86.7 96.5 91.3 0.386 0.818 66.6 4.99
Impute with TABDIFF + CFG (ω = 0.0) 92.5 91.6 95.7 92.5 0.424 0.828 66.0 3.76
Impute with TABDIFF + CFG (ω = 0.6) 93.2 91.7 96.4 93.0 0.414 0.815 66.9 5.60

task is straightforward. We approximate the conditional model using the unconditioned TABDIFF
trained on all columns from the previous unconditional generation tasks. For the unconditional model,
we train TABDIFF on the target column with a significantly smaller denoising network. Detailed
implementation is provided in Appendix D, and results are presented in Table 4.

As demonstrated, TABDIFF achieves higher imputation accuracy than TABSYN on five out of
seven datasets, with an average improvement of 5.60% over the non-generative XGBoost classifier.
This indicates TABDIFF’s superior capacity for conditional tabular data generation. Moreover, we
empirically demonstrate the efficacy of our CFG framework by showing that the model consistently
performs better with ω = 0.6 compared to ω = 0.0 (which is equivalent to TABDIFF without CFG).

4.4 ABLATION STUDIES

Stochastic Sampler. We conduct ablation studies to assess the effectiveness of the stochastic
sampler, discussed in Section 2.4. The results are presented in Table 5. We use ‘Det.’ and ‘Sto.’
as abbreviations for deterministic and stochastic samplers. The deterministic sampler refers to
the conventional diffusion backward process described in Song et al. (2021); Karras et al. (2022),
consisting of a series of deterministic ODE steps. According to Table 5, under both fixed and learnable
noise schedules, TABDIFF with the stochastic sampler consistently outperforms the deterministic
sampler on the fidelity metrics Shape and Trend, regardless of whether learnable noise schedules are
enabled. These confirm the efficacy of additional stochasticity in reducing decoding errors during
backward diffusion sampling.

Adaptively Learnable Noise Schedule. Next, we perform an ablation study to evaluate the effective-
ness of our adaptively learnable noise schedules. We compare the model with learnable schedules
against the model with non-learnable noise schedules, where the noise parameters for numerical
features are fixed to ρi ≡ 7, ∀i in Eq. (10) and, for numerical features, fixed to kj ≡ 1,∀j in Eq. (11).
We refer to these models as ‘Learn.’ and ‘Fix.’, respectively. According to the results in Table 5, the
learnable noise schedules substantially improve performance, particularly in Trend and regardless of
whether the stochastic sampler is enabled. Furthermore, we closely examine the training process of
both models on the Adult dataset by plotting their changes of training loss in Figure 2. According to
the figure, the learnable schedules (orange curves) significantly reduce both numerical and categorical
losses in Eq. (12).
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Method Shape Trend

TABSYN 1.35 2.33

TABDIFF-Fix.+Det. 1.39 2.29
TABDIFF-Fix.+Sto. 1.20 1.93
TABDIFF-Learn.+Det. 1.24 1.92
TABDIFF-Learn.+Sto. 1.17 1.80

Table 5: Ablation Studies on the stochastic
sampler and learnable noise schedules.
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Figure 2: The adaptively learnable noise schedules
reduce training loss.
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Figure 3: Visualization of the marginal densities of the generated data in comparison to the real data.
Top and Middle: individual numerical column; Bottom: individual categorical column.

4.5 VISUALIZATIONS OF SYNTHETIC DATA
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Figure 4: Pair-wise correlation heatmaps. Values
represent the error rate (the lighter, the better).

We present a comprehensive set of visualiza-
tions to compare single-column marginal dis-
tributions and pairwise correlations across four
models—CoDi, TabDDPM, TABSYN, and our
TABDIFF—and four distinct datasets: Adult,
Beijing, Magic, and Shoppers. In Figure 3, we
provide 1-dimensional kernel density estimation
(KDE) curves for a chosen numerical feature,
alongside histograms for a chosen categorical
feature. According to the figures, the density
of TABDIFF’s samples matches most closely
with that of the real data, highlighting TABD-
IFF’s ability to capture the original distribution
patterns. Furthermore, in Figure 4, we include
correlation heatmaps that show the correlation
error rate for each pair of columns. These pic-
tures consistently demonstrate that the TABDIFF
archives the closest match to real correlation
scores, highlighting its superior ability to capture the column-wise correlation of the real data.

5 CONCLUSION

In this paper, we have introduced TABDIFF, a multi-modal diffusion framework for generating
high-quality synthetic data. TABDIFF combines a hybrid diffusion process to handle numerical and
categorical features in their native formats. To address the disparate distributions of features and their
interrelationships, we further introduced several key innovations, including learnable column-wise
noise schedules and the stochastic sampler. We conducted extensive experiments using a diverse set
of datasets and metrics, comprehensively comparing TABDIFF with existing approaches. The results
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demonstrate TABDIFF’s superior capacity in learning the original data distribution and generating
faithful and diverse synthetic data to power downstream tasks.
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A DETAILED EXPERIMENT SETUPS

A.1 DATASETS

We use seven tabular datasets from UCI Machine Learning Repository1: Adult, Default, Shoppers,
Magic, Beijing, News, and Diabetes, where each tabular dataset is associated with a machine-learning
task. Classification: Adult, Default, Magic, Shoppers, and Diabetes. Regression: Beijing and News.
The statistics of the datasets are presented in Table 6.

Table 6: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat
stands for the number of categorical columns. # Max Cat stands for the number of categories of the
categorical column with the most categories.

Dataset # Rows # Num # Cat # Max Cat # Train # Validation # Test Task

Adult 48, 842 6 9 42 28, 943 3, 618 16, 281 Classification
Default 30, 000 14 11 11 24, 000 3, 000 3, 000 Classification
Shoppers 12, 330 10 8 20 9, 864 1, 233 1, 233 Classification
Magic 19, 019 10 1 2 15, 215 1, 902 1, 902 Classification
Beijing 43, 824 7 5 31 35, 058 4, 383 4, 383 Regression
News 39, 644 46 2 7 31, 714 3, 965 3, 965 Regression
Diabetes 101, 766 9 27 716 61, 059 2, 0353 20, 354 Classification

A.2 METRICS

A.2.1 SHAPE AND TREND

Shape and Trend are proposed by SDMetrics2. They are used to measure the column-wise density
estimation performance and pair-wise column correlation estimation performance, respectively. Shape
uses Kolmogorov-Sirnov Test (KST) for numerical columns and the Total Variation Distance (TVD)
for categorical columns to quantify column-wise density estimation. Trend uses Pearson correlation
for numerical columns and contingency similarity for categorical columns to quantify pair-wise
correlation.

Shape. Kolmogorov-Sirnov Test (KST): Given two (continuous) distributions pr(x) and ps(x) (r
denotes real and s denotes synthetic), KST quantifies the distance between the two distributions using
the upper bound of the discrepancy between two corresponding Cumulative Distribution Functions
(CDFs):

KST = sup
x
|Fr(x)− Fs(x)|, (17)

where Fr(x) and Fs(x) are the CDFs of pr(x) and ps(x), respectively:

F (x) =

∫ x

−∞
p(x)dx. (18)

Total Variation Distance: TVD computes the frequency of each category value and expresses it as a
probability. Then, the TVD score is the average difference between the probabilities of the categories:

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (19)

where ω describes all possible categories in a column Ω. R(·) and S(·) denotes the real and synthetic
frequencies of these categories.

Trend. Pearson Correlation Coefficient: The Pearson correlation coefficient measures whether two
continuous distributions are linearly correlated and is computed as:

ρx,y =
Cov(x, y)

σxσy
, (20)

1https://archive.ics.uci.edu/datasets
2https://docs.sdv.dev/sdmetrics
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where x and y are two continuous columns. Cov is the covariance, and σ is the standard deviation.

Then, the performance of correlation estimation is measured by the average differences between the
real data’s correlations and the synthetic data’s corrections:

Pearson Score =
1

2
Ex,y|ρR(x, y)− ρS(x, y)|, (21)

where ρR(x, y) and ρS(x, y)) denotes the Pearson correlation coefficient between column x and
column y of the real data and synthetic data, respectively. As ρ ∈ [−1, 1], the average score is divided
by 2 to ensure that it falls in the range of [0, 1], then the smaller the score, the better the estimation.

Contingency similarity: For a pair of categorical columns A and B, the contingency similarity score
computes the difference between the contingency tables using the Total Variation Distance. The
process is summarized by the formula below:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (22)

where α and β describe all the possible categories in column A and column B, respectively. Rα,β

and Sα,β are the joint frequency of α and β in the real data and synthetic data, respectively.

A.2.2 α-PRECISION AND β-RECALL

Following Liu et al. (2023) and Alaa et al. (2022), we adopt the α-Precision and β-Recall proposed
in Alaa et al. (2022), two sample-level metric quantifying how faithful the synthetic data is. In
general, α-Precision evaluates the fidelity of synthetic data – whether each synthetic example comes
from the real-data distribution, β-Recall evaluates the coverage of the synthetic data, e.g., whether
the synthetic data can cover the entire distribution of the real data (In other words, whether a real data
sample is close to the synthetic data.)

A.2.3 DETECTION

The detection measures the difficulty of detecting the synthetic data from the real data when they are
mixed. We use the classifer-two-sample-test (C2ST) implemented by SDMetrics, where a logistic
regression model plays the role of a detector.

A.2.4 MACHINE LEARNING EFFICIENCY

In MLE, each dataset is first split into the real training and testing set. The generative models are
learned on the real training set. After training, a synthetic set of equivalent size is sampled.

The performance of synthetic data on MLE tasks is evaluated based on the divergence of test scores
using the real and synthetic training data. Therefore, we first train the machine learning model on
the real training set, split into training and validation sets with a 8 : 1 ratio. The classifier/regressor
is trained on the training set, and the optimal hyperparameter setting is selected according to the
performance on the validation set. After the optimal hyperparameter setting is obtained, the corre-
sponding classifier/regressor is retrained on the training set and evaluated on the real testing set. The
performance of synthetic data is obtained in the same way.

B METHOD DETAILS

B.1 ADAPTIVELY LEARNABLE NOISE SCHEDULES

For numerical stability, we need to bound σmin and σmax within (0, 1). As shown in Eq. (10), our
formulation of the power-mean noise schedule boundaries the noise level in between σmin and σmax.
To make sure that the noise level for numerical features is also bounded, we linearly map t to the
interval [δ, 1− δ], thus recasting Eq. (11) into

σcat
kj

(t) = − log
(
1−

(
(1− δ) · tkj + δ

))
. (23)
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B.2 CLASSIFIER-FREE GUIDANCE

In this section, we elaborate on how to implement our classifier-free guided conditional generation.

Simple way to compute p̃θ(x
cat
s |xt,y). We first show that, under our simple masked diffusion

framework, the guided posterior probability for categorical columns, p̃θ(xcat
s |xt,y) can be simply

computed by directly interpolating the model’s raw estimates of x0, i.e.,µcat
θ (xt,y, t) and µcat

θ (xt, t).

If xt is already unmasked (i.e., x = m), we remain at the current state as before. Otherwise,
we compute the posterior according to Eq. (16). Note that all operations below are performed
element-wise.

log p̃θ(x
cat
s |xt,y) = (1 + ω) log pθ(x

cat
s |xt,y)− ω log pθ(x

cat
s |xt).

p̃θ(x
cat
s |xt,y) =

pθ(x
cat
s |xt,y)

ω+1

pθ(xcat
s |xt)ω

=

(
(1−αs)m+(αs−αt)µ

cat
θ (xt,y,t)

1−αt

)ω+1

(
(1−αs)m+(αs−αt)µcat

θ (xt,t)

1−αt

)ω

=
((1− αs)m+ (αs − αt)µ

cat
θ (xt,y, t))

ω+1

((1− αs)m+ (αs − αt)µcat
θ (xt, t))

ω
1

1− αt

Since µcat
θ and m must have zero probability mass in each other’s dimension that can have a positive

mass, the exponent of summations into the summation of exponents:

=
((1− αs)m)

ω+1
+ ((αs − αt)µ

cat
θ (xt,y, t))

ω+1

((1− αs)m)
ω
+ ((αs − αt)µcat

θ (xt, t))
ω

1

1− αt

By the same property, we can perform division for m and µcat
θ separately:

=

(
(1− αs)m+ (αs − αt)

µcat
θ (xt,y, t)

ω+1

µcat
θ (xt, t)ω

)
1

1− αt

=
(1− αs)m+ (αs − αt) exp

(
(1 + ω) logµcat

θ (xt,y, t)− ω logµcat
θ (xt, t)

)
1− αt

Therefore, we can formulate p̃θ(x
cat
s |xt,y) as

p̃θ(x
cat
s |xt,y) =

{
cat(xcat

s ;xcat
t ) xcat

t ̸= m,

cat
(
xcat
s ;

(1−αs)m+(αs−αt)µ̃
cat
θ (xt,t)

1−αt

)
xt = m,

where µ̃cat
θ (xt, t) can be simply computed as the interpolation of µcat

θ (xt,y, t) and µcat
θ (xt, t):

log µ̃cat
θ (xt, t) = (1 + ω) logµcat

θ (xt,y, t)− ω logµcat
θ (xt, t)

C DETAILED ILLUSTRATIONS OF TRAINING AND SAMPLING PROCESSES

Training details. Algorithm 1 outlines the training procedure for our hybrid diffusion model that
jointly processes numerical and categorical variables. At each training iteration, we begin by sampling
an initial data point x0 from the training data distribution p(x0) and a timestep t uniformly from [0, 1].
Then, we perform the forward diffusion step.Each numerical feature is perturbed with a Gaussian
noise whose intensity is determined by the σnum(t); each categorical feature flipped into the mask
token m with probability αt (i.e., eq. (6)). The noised numerical and categorical components are
concatenated together to form a noisy version xt of the table row. Lastly, we compute the training
objective LTABDIFF and perform gradient descent on the model parameters θ, ρ, and k.

Sampling details. Here, we present a vivid visual example in Figure 5 to illustrate the backward
sampling process described in Algorithm 2. Our example demonstrates generating a table with
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Figure 5: A vivid visualization of TABDIFF’s generation process.

two numerical columns (movie duration and IMDB rating) and two categorical columns (genre and
awards status). Each row represents an independent sample.

First, at t = 1.0 (the first frame), the numerical features are initialized with Gaussian noise, and all
categorical components are masked. The algorithm then iterates backward through time steps from
t = 1.0 to 0.0.

At each timestep t, we first perform the forward stochastic perturbation step (the yellow section of
Algorithm 2), the core of our stochastic sampler. All features are first perturbed forward to t+, a
slightly noisier state, following the same process as the forward step during training. While this
step is not explicitly depicted in our visualization in Figure 5, it implies that, for instance, during
the transition at the third frame, the unmasked “None” entry could be stochastically flipped back to
the [MASK] state. This would then allow the model to re-predict the value, potentially yielding a
different result (e.g “Won”) than “None” in the subsequent frame.

After the stochastic perturbation, we perform the denoising/unmasking step (the blue section of
Algorithm 2). For numerical features, we denoise to xnum

t−1 by solving an ODE The update delta is
determined by the normalized difference, dxnum, between the current state and the model’s prediction,
scaled by the decrease in noise levels. For categorical variables, we perform the unmasking step.
Intuitively, if the column is already unmasked, we stay in the current state. This is demonstrated in
Figure 5, where the “None” entry persists once it has been flipped. If it is still masked, we flip the
mask token to some valid value of that column with a certain probability (αt−1−αt

1−αt
) that increases as

sampling proceeds. We choose which unmasked token to move to based on the model’s predicted
probability µcat

θ (xt, t) over all possible categories of the column.

D IMPLEMENTATION DETAILS

We perform our experiment on an Nvidia RTX A4000 GPU with 16G memory and implement
TABDIFF with PyTorch.
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Data preprocessing. The raw tabular datasets usually contain missing entries. Thus in the first phase
of preprocessing, we make up these missing values in the same way as existing works (Kotelnikov
et al., 2023; Zhang et al., 2024), with numerical missing values being replaced by the column average
and categorical missing values being treated as a new category. Moreover, the diverse range of
numerical features typically leads to more difficult and unstable training. To counter this, we then
transform the numerical values with the QuantileTransformer3, and recover the original values using
its inverse during sampling.

Data splits. For datasets other than Diabetes, we follow the exact same split as Zhang et al. (2024).
Each dataset is split into the “real” and “test” sets. For the unconditional generation task on which
data fidelity and the imputation task, the models are trained on the “real” set and evaluated on the
“real” set. For the MLE task, the “real” set is further split into a training and validation set, and the
“test” set is used for testing. Finally, for the data privacy measure DCR, the original dataset is equally
split into two halves, with one being treated as the training set and the other as the holdout set.

For Diabetes, we split it into train, validation, and test sets with a ratio of 0.6/0.2/0.2. For the
MLE task. The training and test sets are regarded as the “real” and “test” sets for the unconditional
generation and imputation tasks. For DCR, we apply an equal split.

Architecture of the denoising network. In our implementation, we project each column individually
to a d dimensional vector using a linear layer, ensuring that all columns are treated with the same
importance. We set the embedding size d as 4, matching the size used in Zhang et al. (2024). We then
process these projected vectors with a two-layer transformer, appending positional encodings at the
end. The transformed vectors are then concatenated and passed through a five-layer MLP conditioned
on the time embedding. Finally, the output is obtained by sequentially applying another transformer
followed by a projection layer that recovers the original dimensions. Our denoising network has a
comparable number of parameters as those experimented in TabDDPM (Kotelnikov et al., 2023) and
TABSYN (Zhang et al., 2024), as our shared MLP model accounts for most of the parameters.

Hyperparameters Setting. TABDIFF employs the same hyperparameter setting for all datasets. We
train our models for 8000 epochs with the Adam optimizer. The training and sampling batch sizes
are set to 4,096 and 10,000, respectively. Regarding the hyperparameters in TABDIFF, the values
σmin and σmax are set to 0.002 and 80.0, referencing the optimal setting in Karras et al. (2022), and δ
are set to 1e−3. For the loss weightings, we fix λcat to 1.0 and linear decay λnum from 1.0 to 0.0 as
training proceeds.

During inference, we select the checkpoint with the lowest training loss. We observe that our model
achieves the superior performance reported paper with as few as 50 discretization steps (T = 50).

Details on OOMs in experiment result tables:

1. GOOGLE set fixed random seed during sampling in the official codes, and we follow it for
consistency.

2. GReaT cannot be applied on News for maximum length limit.

3. STaSy runs out of memory on Diabetes that has hight cardinality categorical columns

4. TabDDPM cannot produce meaningful content on the News and Diabetes datasets.

Imputation. As mentioned in Section 4.3, we obtain the unconditional model of the target column
by training TABDIFF on it with a smaller denoising network. For this network, we keep the same
architecture but reduce the number of MLP layers to one.

E DETAILED EXPERIMENTS RESULTS

In the following sections, we discuss the result on α-precision, β-recall, detection score (C2ST), and
DCR in detail.

3https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.QuantileTransformer.html
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E.1 ADDITIONAL FIDELITY METRICS

α-precision. We first evaluate TABDIFF on α-Precision score, a metric that measures the quality of
synthetic data. Higher scores indicate the synthetic data is more faithful to the real. We present the
results across all seven datasets in Table 7. TABDIFF achieves the best or second-best performance on
all datasets. Specifically, TABDIFF ranks first with an average α-Precision score of 98.22, surpassing
all other baseline methods.

β-recall. Next, we compare TABDIFF to the baselines on the β-Recall scores, which evaluates
the extent to which synthetic data covers the real data distribution. The results are presented in
Table 8, with a higher score reflecting a more comprehensive coverage of the real data’s feature space.
TABDIFF consistently outperforms or matches the top-performing baselines, achieving the highest
average β-Recall score of 49.40. This indicates that the generated data spans a broad range of the real
distribution. Though some baseline methods attained higher scores on specific datasets, they fail to
demonstrate competitive performance on α-Precision, as models have to trade off fine-grained details
in order to capture a broader range of features.

Overall, TABDIFF maintains a balance between broad data coverage and preserving fine-grained
details. This balance highlights TABDIFF ’s capability in generating synthetic data that faithfully
captures both the breadth and depth of the original data distribution.

Detection Score (C2ST). Lastly, we assess the fidelity of synthetic data by using the C2ST test, which
evaluates how difficult it is to distinguish the synthetic data from the real data. The results are shown
in Table 9, where a higher score indicates better fidelity. TABDIFF achieves the best performance
on five of seven datasets, outperforming the most competitive baseline model by 6.89% on average.
Notably, TABDIFF excels on Diabetes, which contains many numerous high-cardinality categorical
features (as indicated by # Max Cat in Table 6), showcasing its ability to generate high-quality
categorical data. These results, therefore, demonstrate TABDIFF’s capacity to generate synthetic data
that closely resembles the real data.

Table 7: Comparison of α-Precision scores. Bold Face highlights the best score for each dataset.
Higher scores reflect better performance.

Methods Adult Default Shoppers Magic Beijing News Diabetes Average Ranking

CTGAN 77.74±0.15 62.08±0.08 76.97±0.39 86.90±0.22 96.27±0.14 96.96±0.17 79.89±0.10 82.40 5
TVAE 98.17±0.17 85.57±0.34 58.19±0.26 86.19±0.48 97.20±0.10 86.41±0.17 19.24±0.15 75.85 7
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 23.09 70.81 9
GReaT 55.79±0.03 85.90±0.17 78.88±0.13 85.46±0.54 98.32±0.22 OOM OOM 80.87 6
STaSy 82.87±0.26 90.48±0.11 89.65±0.25 86.56±0.19 89.16±0.12 94.76±0.33 OOM 88.91 3
CoDi 77.58±0.45 82.38±0.15 94.95±0.35 85.01±0.36 98.13±0.38 87.15±0.12 64.80±0.53 84.29 4
TabDDPM 96.36±0.20 97.59±0.36 88.55±0.68 98.59±0.17 97.93±0.30 0.00±0.00 28.35±0.11 72.48 8
TABSYN 99.39±0.18 98.65±0.23 98.36±0.52 99.42±0.28 97.51±0.24 95.05±0.30 96.61±0.24 97.86 2

TABDIFF 99.02±0.20 98.49±0.28 99.11±0.34 99.47±0.21 98.06±0.24 97.36±0.17 95.69±0.19 98.22 1

Table 8: Comparison of β-Recall scores. Bold Face highlights the best score for each dataset. Higher
scores reflects better results.

Methods Adult Default Shoppers Magic Beijing News Diabetes Average Ranking

CTGAN 30.80±0.20 18.22±0.17 31.80±0.350 11.75±0.20 34.80±0.10 24.97±0.29 9.42±0.26 23.11 8
TVAE 38.87±0.31 23.13±0.11 19.78±0.10 32.44±0.35 28.45±0.08 29.66±0.21 4.92±0.13 25.32 7
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 3.74 9.78 9
GReaT 49.12±0.18 42.04±0.19 44.90±0.17 34.91±0.28 43.34±0.31 OOM OOM 43.34 3
STaSy 29.21±0.34 39.31±0.39 37.24±0.45 53.97±0.57 54.79±0.18 39.42±0.32 OOM 42.32 4
CoDi 9.20±0.15 19.94±0.22 20.82±0.23 50.56±0.31 52.19±0.12 34.40±0.31 2.70±0.06 27.12 6
TabDDPM 47.05±0.25 47.83±0.35 47.79±0.25 48.46±0.42 56.92±0.13 0.00±0.00 0.03±0.01 35.44 5
TABSYN 47.92±0.23 46.45±0.35 49.10±0.60 48.03±0.50 59.15±0.22 43.01±0.28 33.72±0.16 46.77 2

TABDIFF 51.64±0.20 51.09±0.25 49.75±0.64 48.01±0.31 59.63±0.23 42.10±0.32 41.74±0.17 49.40 1

E.2 DATA PRIVACY.

Table 10 shows the DCR scores across all datasets. The DCR score represents the probability that a
generated data sample is more similar to the training set than to the test set, with a score closer to
50% being ideal, as it indicates a balance between the similarity to training and test distributions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Detection score (C2ST) using logistic regression classifier. Higher scores reflect superior
performance.

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947 0.5593 0.6444
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076 0.0487 0.5250
GOGGLE 0.1114 0.5163 0.1418 0.9526 0.4779 0.0745 0.0912 0.3380
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 OOM OOM 0.5118
STaSy 0.4054 0.6814 0.5482 0.6939 0.7922 0.5287 OOM 0.6083
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.0008 0.3435
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.1980 0.7044
TABSYN 0.9910 0.9826 0.9662 0.9960 0.9528 0.9255 0.5953 0.9156

TABDIFF 0.9950 0.9774 0.9843 0.9989 0.9781 0.9308 0.9865 0.9787
Improv. 0.40% ↓ 0.0% ↓ 1.87% ↓ 0.0% ↓ 2.66% ↓ 0.57% ↓ 65.71% ↓ 6.89% ↓

Table 10: DCR score, which represents the probability that a generated data sample is more similar to
the training set than to the test set. A score closer to 50% is more preferable. Bold Face highlights
the best score for each dataset.

Method Adult Default Shoppers Beijing News Diabetes

STaSy 50.33%±0.19 50.23%±0.09 51.53%±0.16 50.59%±0.29 50.59%±0.14 OOM
CoDi 49.92%±0.18 51.82%±0.26 51.06%±0.18 50.87%±0.11 50.79%±0.23 51.12%±0.19

TabDDPM 51.14%±0.18 52.15%±0.20 63.23%±0.25 80.11%±2.68 79.31% ±0.29 37.76% ±0.23

TABSYN 50.94%±0.17 51.20%±0.18 52.90% ±0.22 50.37%±0.13 50.85% ±0.33 50.62% ±0.28

TABDIFF 50.10%±0.32 51.11%±0.36 50.24% ±0.62 50.50% ±0.36 51.04% ±.32 50.43% ±0.18

Across the datasets, TABDIFF consistently achieves DCR scores near 50%, highlighting its ability to
generalize well while maintaining fidelity to the original data distribution.

F STUDY OF MODEL EFFICIENCY AND ROBUSTNESS

In this section, we present a thorough analysis of TabDDPM’s efficiency and robustness. For efficiency,
we compare the training and sampling speed of TABDIFF against other competitive baseline methods
(TabDDPM, TABSYN) using four different metrics. For robustness, we first explore the tradeoff
between discretization steps (i.e., efficiency) and sample quality in diffusion-based models. We then
dig into detailed error rates Shape and Trend to see whether models are biased towards learning
some particular columns of datasets. Lastly, we discussed the robustness issues we found with the
competitive baseline. We use the representative Adult dataset, which contains a balanced number of
numerical and categorical columns, throughout the experiment. Our results show that, among the
competitive methods, TABDIFF is not only the most effective but also the most robust and highly
efficient. Below, we present a detailed analysis.

F.1 EFFICIENCY

Training Time. We first measure the training time of each method. The epoch lengths are set to the
default configuration of each method, and the validation frequencies are set to the same value of once
every 200 epochs. Our measurements are presented in the first column of the Table 11, with the entry
of TABSYN being split into – VAE training time + Diffusion training time.

We see that all three methods take a comparable time to complete one training run, with TABSYN
being 10% faster than TABDIFF and TABDIFF being 20% faster than TabDDPM. The current gap
between TABDIFF and TABSYN is likely due to TABDIFF ’s slightly deeper network architecture
compared to TABSYN. We believe that the architecture of TABDIFF can be further optimized to
improve efficiency, and we leave this as future work.

Nevertheless, it is also important to consider model robustness when assessing efficiency. As
highlighted in Appendix F.2, the training process for TABSYN is notably unstable due to the difficulty
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Method Train.T (min) Sample.T (sec) NFE

TabDDPM 112 125.1±0.01 1
TABSYN 45 + 40 = 85 8.8±0.005 2

TABDIFF 94 15.2±0.007 2

Table 11: Model Efficiency.

Figure 6: Model Convergence speed.

in training VAEs, often requiring you to retrain many times in order to produce a model capable of
generating samples comparable in quality to TABDIFF. On the other hand, TabDDPM fails to scale
to more complicated datasets as shown by its poor performance on News and Diabetes. Thus, when
taking into account training robustness, TABDIFF is the most robust and efficient model among all
competitive methods.

Training Convergence. Next, we assess training convergence by evaluating the quality of samples
generated from intermediate checkpoints during the training process. Figure 6 plots our result. The
curves show that TABDIFF converges faster than the other methods, as TABDIFF produces more
high-quality samples when shown to the datasets for the same number of times (i.e., at a same epoch).

Number of Function Evaluation (NFE). For sampling, we first theoretically analyze the number of
network calls involved in a single diffusion step (i.e. the denoising step from xt to xt−1)) for each
method. The numbers are shown in the third column of Table 11. TABDIFF and TABSYN involve an
extra network call because TABDIFF employs the second-order correction trick introduced in Karras
et al. (2022).

Sampling Time. We empirically measure the time to generate the same number of samples as the
test set (32561 samples for Adult). The numbers are presented in the second column of Table 11.
According to them, TABDIFF and TABSYN samples ∼ 10× faster than TabDDPM. This result
is expected, as both TABDIFF and TABSYN, by default, use 20 times fewer sampling steps than
TabDDPM, while making twice as many network calls per step compared to TabDDPM. TABDIFF ’s
slightly longer sampling time is also attributed to the evaluation of its deeper network. We believe
this can be optimized in future work.

F.2 ROBUSTNESS

Controling quality-efficiency tradeoff through discretization steps. One advantage of continuous-
time diffusion models (which currently include TABDIFF and TABSYN) is the ability to sample with
arbitrary discretization steps, allowing them to flexibly tradeoff sample quality with sample efficiency.
We conduct an experiment that compares how TABDIFF and TABSYN perform when sampled with
different discretization steps. The results and their visualizations are presented in Table 12 and
Figure 7.

Our results show that TABDIFF consistently achieves higher sample quality across all levels of
discretization steps. Notably, when the number of steps is reduced to just 5 (requiring only one
second for sampling), TABSYN fails to generate meaningful content, as indicated by an error rate
approaching 50%. In contrast, TABDIFF continues to produce valid and coherent content even under
these highly constrained conditions.

Evaluting column-wise learning bias To address what it means by “optimal allocation of model
capacity across heterogeneous features,” we analyze how generation quality varies between different
features. The Shape and Trend errors presented in Table 5 are averaged over all columns and columns
pars. Now, using the representative Adult dataset, we visualize the errors at each column and column
pair in Figures 8 and 9, along with the normalized standard deviations in Table 13 to quantitatively
measure the variations of errors. All results show that TABDIFF with learnable schedules not only
achieves lower average error but also exhibits more consistent errors across columns. This balance
indicates that learnable schedules help the model balance its capacity on different dimensions of the
data, improving the model’s ability to handle heterogeneous distributions.
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TABSYN TABDIFF

Steps Shape Trend Shape Trend

5 34.09 49.30 12.51 22.15
10 1.99 3.92 1.55 3.36
25 0.84 1.96 0.62 1.50
50 0.81 1.95 0.63 1.49
100 0.82 1.94 0.64 1.53

Table 12: Ablate sample steps. Figure 7: Visualize the sample step ablation

Method Shape Trend Shape Std. Trend Std.

TABSYN 0.81 1.93 1.01 0.88

TABDIFF-Fixed 0.74 1.73 0.42 0.75
TABDIFF-Learn. 0.63 1.49 0.29 0.64

Table 13: Evaluating column-wise learning bias.

0 2 4 6 8 10 12 14
Column ID

0.0

0.5

1.0

1.4

Sh
ap

e

Shape Error Distribution
Models

Fixed
Learnable

Figure 8: TABDIFF with learnable
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Figure 9: TABDIFF with learnable schedules has a more balanced Trend performance

Robustness issues of baselines. We identify several robustness issues with the competitive baseline
methods. Specifically, TabDDPM struggles to scale to larger datasets, and TABSYN ’s performance is
highly dependent on the training quality of VAEs, which can vary significantly across different runs.

TabDDPM: As shown by the results in Tables 1 and 2, TabDDPM achieves poor performance on
larger datasets like News and Diabetes. This is because it failed to generate meaningful samples, as
we can see in Figure 11 that the numerical columns of TabDDPM’s Diabetes samples all collapsed to
the minimal and maximal values of the domains. After examining the training logs, we discovered
that this poor generation performance might be due to the explosion of training loss, as shown in
Figure 10.

TABSYN: TABSYN is another competitive tabular generation model whose performance, to our best
knowledge, is closest to TABDIFF. However, this method has a limitation: as mentioned in Zhang
et al. (2024), the quality of the VAE has a significant impact on TabSyn’s performance, as it’s the only
component that recovers the original data shape. When reproducing TABSYN’s result, we observed
that across different training runs, the sample quality varies significantly. For poorly performing runs,
we attempted to retrain the diffusion model and even increased the number of training epochs, but
these efforts did not improve the results. This confirms that the issue lies with the VAE.

To further illustrate this, we present the results of Shape and Trend that are averaged across 10
random training runs in Table 14 (Note: in the paper, we follow the convention of previous works
and reported results based on 20 different runs of the same checkpoint, and we put the result of
the best reproduction run for TabSyn). These additional results demonstrate that TabDiff achieves
significantly more consistent performance across different training runs, as shown by the smaller
average and standard deviation.
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Method Adult Default Beijing

TABSYN (Shape) 1.31±0.64 1.17±0.21 2.69±1.44

TABSYN (Trend) 2.73±0.98 5.05±2.22 5.05±1.88

TABDIFF (Shape) 0.65±0.08 1.19±0.12 1.07±0.6

TABDIFF (Trend) 1.47±0.18 2.46±0.62 2.61.±0.20

Table 14: Models’ consistency across different training runs.
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Figure 11: TabDDPM failed to produce meaningful samples on Diabetes
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