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A.1 Expansion on learning one-dimensional functions

A.1.1 Meta-in-context learning in open-source models
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Figure 5: Meta-in-context learning on the linear function learning experiment for multiple LLMs.
A: Performance of models from the GPT-3 family with increasing model and training sizes. B:
Performance of various open-source models.

A.1.2 Meta-in-context learning with non-linear functions
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Figure 6: Meta-in-context learning on the one-dimensional regression task with quadratic functions.
A: MSE across trials. B: GPT-3’s MSE averaged over trials for each task. C: Effects of trial and task
for estimating the MSE. D: GPT-3’s prior expectations across tasks (blue) compared to the true task
distribution (orange).

5Code website: https://github.com/juliancodaforno/meta-in-context-learning
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A.2 Tasks similarity drives meta-in-context learning

We expanded our analysis by incorporating task similarity considerations, extending our approach
initially adopted for Experiment 3 (regression on real-world data) to both Experiment 1 (function
learning) and Experiment 2 (two-armed bandit). We added task similarity as a regressor on Experiment
1’s and 2’s respective MSE/regret regression bar plots (Figures 7A and 7B).

For Experiment 1, we quantified task similarity using the average negative L2 norm of the underlying
parameters (slope & intercept) with previous tasks. For Experiment 2, we quantified task similarity
using the average difference of mean rewards with previous tasks. Our analysis shows a strong effect
of task similarity for each Experiment. Interestingly, for the function learning experiment, it seems
like all of the task effect gets cancelled when adding a task similarity regressor. This suggests that in
this experiment, only similar tasks reduce the MSE.

A B

Trial Task Task
similarity

−20

−10

0

R
eg
re
ss
io
n

co
effi

ci
en
ts

Trial Task Task
similarity

−0.2

−0.1

0.0

R
eg
re
ss
io
n

co
effi

ci
en
ts

Figure 7: : Effects of trial, task, and task similarity for estimating the MSE or regret. A: Function
learning experiment. B: Two-armed bandit experiment.
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A.3 Details on probit regression analysis for the two-armed bandit experiment

We assume that the agent’s beliefs over expected rewards at trial t and action a are captured by the
normal distribution p(ra,t) = N (µa,t,σa,t)

6. We have relied on the following probit regression
analysis proposed by Gershman [26] to investigate which exploration strategies GPT-3 applies when
interacting with two-armed bandit problems. This analysis assumes that the agent makes decisions
based on three features: value difference Vt, relative uncertainty RUt, and value difference divided
by total uncertainty Vt/TUt. Formally, these quantities are defined as follows:

Vt = µ0,t − µ1,t

RUt = σ0,t − σ1,t

TUt =
q
σ2
0,t + σ2

1,t

where µa,t and σa,t represent the agent’s beliefs about the mean reward and its corresponding
uncertainty estimate for a given arm a at trial t. We compute these values using a sequential
application of Bayesian inference, assuming normally-distributed priors and likelihoods (updates are
only performed for the selected arm):

µa,t+1 = µa,t + αt (rt − µa,t)

σ2
a,t+1 = σ2

a,t − αtσ
2
a,t

αt =
σ2
a,t

σ2
a,t + τ2

where τ corresponds to the additive observation noise.

The resulting features are then entered into a probit regression model whose parameters are fit to agent
choices via a maximum likelihood estimation using the statsmodels library [32]. We additionally
include an interaction effect with task number k for each feature to investigate how exploration
behavior changes across tasks. The final model thus contains six features:

p(at = 0|w) = Φ (w1Vt +w2RUt +w3Vt/TUt +w4kVt +w5kRUt +w6kVt/TUt)

This probit model subsumes several well-known exploration strategies for specific settings of its
parameters:

1. Boltzmann-like exploration for w = [w1, 0, 0, 0, 0, 0]. Note: Boltzmann exploration would
use the logit function instead of the probit. However, the two can used to closely approximate
each other: σ(a) ≃ Φ(

p
π
8 a).

2. a noisy version of the UCB algorithm for w = [w1,w2, 0, 0, 0, 0].
3. Thompson sampling for w = [0, 0, 1, 0, 0, 0].

For an exact derivation, see Gershman [26].

6We obtained these distributions by running Kalman filtering equations on the previously observed data.
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A.4 Regression on real-world data using GPT-4

In this section we investigated the behavior of the newly released GPT-4 model for our last experiment.
We proceeded in the same way as for GPT-3.7 We observed that GPT-4 actually performs slightly
worse both before and after meta-in-context learning as shown in Figure 8A. Furthermore, we
observed a slightly higher percentage of extreme predictions, particularly for GPT-4’s first trial (see
Figure 8B). Finally, our analysis also revealed significant effects for trial (β = −0.133± 0.024, t =
−10.858, p < 0.001) and task similarity (β = −0.196± 0.024, t = −15.963, p < 0.001) as shown
in Figure 8C.
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Figure 8: Meta-in-context learning on the regression on real-world data experiment (42 · 30 simula-
tions). Errors bars represent 95% confidence intervals. A: RMSE across trials for different models.
B: Percentage of predictions outside or equal to the extremes of the squashed target range. C: Effects
of trial and task similarities for estimating the RMSE.

7It is worth noting that the API slightly changed and now provides the option to tailor the message with an
assistant and a system. We did not use them except for the first trial where GPT-4 struggled to give a numerical
output. Indeed, for some examples it instead produced messages such as “unfortunately without any information
about the relationship between the variables, the prediction is not possible.” Therefore, only for that one case,
we added the system functionality as follows: {"role": "system", "content": "If no previous examples, sample y
from your prior distribution. But do not give any non numerical answer! Even if you are unsure, try to predict y
as well as possible."}.
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A.5 MMLU

A.5.1 Example of two tasks from the STEM category of the MMLU benchmark:

1. The following are multiple choice questions (with answers) about abstract algebra.
Find all c in Z3 such that Z3[x]/(x

2 + c) is a field.

A. 0
B. 1
C. 2
D. 3

Answer: B
Statement 1 | If aH is an element of a factor group, then |aH| divides |a|.
Statement 2 | If H and K are subgroups of G then HK is a subgroup of G.

A. True, True
B. False, False
C. True, False
D. False, True

Answer: B
Statement 1 | Every element of a group generates a cyclic subgroup of the group.
Statement 2 | The symmetric group S10 has 10 elements.

A. True, True
B. False, False
C. True, False
D. False, True

Answer: C

2. The following are multiple choice questions (with answers) about anatomy.
What is the embryological origin of the hyoid bone?

A. The first pharyngeal arch
B. The first and second pharyngeal arches
C. The second pharyngeal arch
D. The second and third pharyngeal arches

Answer: D
Which of these branches of the trigeminal nerve contain somatic motor processes?

A. The supraorbital nerve
B. The infraorbital nerve
C. The mental nerve
D. None of the above

Answer: D
A lesion causing compression of the facial nerve at the stylomastoid foramen will cause
ipsilateral:

A. paralysis of the facial muscles.
B. paralysis of the facial muscles and loss of taste.
C. paralysis of the facial muscles, loss of taste and lacrimation.
D. paralysis of the facial muscles, loss of taste, lacrimation and decreased salivation.

Answer:
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A.5.2 MMLU results

We focused on the STEM supercategory of the MMLU benchmark due to limitations imposed by
context size (other supercategories contained significantly longer questions) and budget constraints
related to the text-davinci-002 engine. Figure 9.A displays the performance of both in-context learning
and meta-in-context learning as discussed in Section 7. Additionally, we introduced matched in-
context learning where in-context learning involved the same number of examples as meta-in-context
learning but all from the same context. For example, six in-context questions on abstract algebra were
used, in contrast to six questions spanning various STEM categories preceding a question on abstract
algebra. This setup acted as an upper bound for meta-in-context learning, under the extreme scenario
where preceding tasks are as similar as those within the same category. The results underscored the
effectiveness of meta-in-context learning in NLP tasks.

However, one might argue that this analysis might not allow for sufficient differentiation between
tasks. To address this concern, we expanded our evaluation to the entire MMLU benchmark. This
enabled a comparable assessment of task similarity, akin to our earlier experiments. Due to the
aforementioned constrained on text-davinci-002, we chose to use two open-source models with larger
context sizes, namely mpt-30b and Falcon-40b. Task names were assigned to the text-embedding-ada-
002, and task similarity was computed by averaging the negative L2 norm between the embedding
of the current task name and its preceding task names’ embeddings. In both cases, we observed
a significant effect (β = 0.1918 ± 0.076 and β = 0.1718 ± 0.077, both with p < 0.05) of task
similarity on performance (see Figures 9B and 9C). This suggests that meta-in-context learning does
not only leverage the context but also the relationship to the task’s context even for NLP tasks as we
would expect in a meta-learning framework.
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Figure 9: Meta-in-context learning results on the MMLU benchmark. A: text-davinci-002 perfor-
mance on the STEM category. B: Effects of trial and task similarities for estimating the accuracy of
the mpt-30b LLM on the entire MMLU. C: Effects of trial and task similarities for estimating the
accuracy of the mpt-30b LLM on the entire MMLU.
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