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A Proof of Theorem 2

Let z′ = f̂(x′). Then, by definition of f̂ ,

P [f(X ′) ∈ B(z′, r̂(x′,∆))] ≥ 1

2
−∆, (1)

where X ′ ∼ x′ + P and

r̂(x′,∆) = min
z′′

r s.t. P[f(X ′) ∈ B(z′′, r)] ≥ 1

2
+ ∆.

And, by definition of R̂,

P[f(X ′) ∈ B(f̂(x), R̂)] >
1

2
+ ∆. (2)

Therefore, from (1) and (2), B(z′, r̂(x′,∆)) and B(f̂(x), R̂) must have a non-empty intersection.
Let, y be a point in that intersection. Then,

d(f̂(x), f̂(x′)) ≤ d(f̂(x), y) + d(y, z′)

≤ r̂(x′,∆) + R̂.

Since, by definition, r̂(x′,∆) is the radius of the smallest ball with 1/2 + ∆ probability mass of
f(x′ + P) over all possible centers in Rk and R̂ is the radius of the smallest such ball centered at
f̂(x), we must have r̂(x′,∆) ≤ R̂. Therefore,

d(f̂(x), f̂(x′)) ≤ 2R̂.

B Proof of Lemma 1

Consider the smallest ball B(z′, r̂(x,∆1)) that encloses at least 1/2 + ∆1 probability mass of
f(x+ P). By Hoeffding’s inequality, with at least 1− e−2n∆2

1 probability, at least half the points in
Z must be in this ball. Since, r is the radius of the minimum enclosing ball that contains at least half
of the points in Z, we have r ≤ r̂(x,∆1).

C Proof of Theorem 3

β-MEB(Z, 1/2) computes a β-approximation of the minimum enclosing ball that contains at least
half of the points of Z. Therefore, by lemma 1, with probability at least 1− e−2n∆2

1 ,

β-MEB(Z, 1/2) ≤ βr̂(x,∆1) ≤ βr̂(x,∆),
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since ∆ ≥ ∆1. Thus, the procedure to compute f̂ , if succeeds, will output a point z ∈ Rk which,
with probability at least 1− 2e−2n∆2

1 , will satisfy,

P [f(X) ∈ B(z, βr̂(x,∆))] ≥ 1

2
−∆.

Now, using the definition of R̂ and following the same reasoning as theorem 2, we can say that,

d(f̂(x), f̂(x′)) ≤ βr̂(x′,∆) + R̂

≤ (1 + β)R̂.

D Proof of Lemma 2

Given z = f̂(x), define a random variable Q = d(z, f(X)), where is X ∼ x + P . For m i.i.d.
samples of X , the values of Q are independently and identically distributed. Let F (r) denote the true
cumulative distribution function of Q and define the empirical cdf Fm(r) to be the fraction of the m
samples of Q that are less than or equal to r, i.e.,

Fm(r) =
1

m

m∑
i=1

1{Qi≤r}

Using the Dvoretzky–Kiefer–Wolfowitz inequality, we have,

P
[
sup
r∈R

(Fm(r)− F (r)) > ε

]
≤ e−2mε2

for ε ≥
√

1
2m ln 2. Setting, e−2mε2 = α2 for some α2 ≤ 1/2, we have,

sup
r∈R

(Fm(r)− F (r)) <

√
ln (1/α2)

2m

with probability at least 1− α2. Set r = R̃q , the qth quantile of of the m samples. Then,

F (R̃q) > Fm(R̃q)−
√

ln (1/α2)

2m

or, P
[
Q ≤ R̃q

]
> q −

√
ln (1/α2)

2m
= p.

With probability 1− α2,
P
[
f(X) ∈ B(f̂(x), R̃q)

]
> p.

E High-dimensional Outputs

For functions with high-dimensional outputs, like high-resolution images, it might be difficult to
compute the minimum enclosing ball (MEB) for a large number of points. The smoothing procedure
needs us to store all the n ∼ 103 − 104 sampled points until the MEB computation is complete,
requiring O(nk′) space, where k′ is the dimensionality of the output space. It does not allow us to
sample the n points in batches as is possible for the certification step. Also, computing the MEB by
considering the pair-wise distances between all the sampled points is time-consuming and requires
O(n2) pair-wise distance computations. To bring down the space and time requirements, we design
another version (Smooth-HD, algorithm 1) of the smoothing procedure where we compute the MEB
by first sampling a small number n0 ∼ 30 of candidate centers and then returning one of these
candidate centers that has the smallest median distance to a separate sample of n (� n0) points.
We sample the n points in batches and compute the distance d(ci, zj) for each pair of candidate
center ci and point zj in a batch. The rest of the procedure remains the same as algorithm 1. It only
requires us to store batch-size number of output points and the n0 candidate centers at any given time,
significantly reducing the space complexity. Also, this procedure only requires O(n0n) pair-wise
distance computations. The key idea here is that, with very high probability (> 1− 10−9), at least
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Algorithm 1 Smooth-HD

Input: x ∈ Rk, σ,∆, α1.
Output: z ∈M .
Set C = {ci}n0

i=1 s.t. ci ∼ f(x+N (0, σ2I)).
Set ∆1 =

√
ln (2/α1) /2n.

Sample Z = {zj}nj=1 s.t. zj ∼ f(x+N (0, σ2I)) in batches.
For each batch, compute pair-wise distances d(ci, zj) for ci ∈ C and zj in the batch.
Compute the center c ∈ C with the minimum median distance to the points in Z.
Re-sample Z in batches.
Compute p∆1

.
Set ∆2 = 1/2− p∆1

.
If ∆ < max(∆1,∆2), discard c and abstain.

one of the n0 candidate centers will lie in the smallest ball that encloses at least 1/2 + ∆1 probability
mass of f(x + P). Also, with high probability, at least half of the n samples will lie in this ball
too. Thus, the median distance of this candidate center to the n samples is at most 2γr̂(x,∆1), after
accounting for the factor of γ in the relaxed version of the triangle inequality as discussed in section 4.
Ignoring the probability that none of the n0 points lie inside the ball, we can derive the following
version of theorem 3:
Theorem 1. With probability at least 1− α1,

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ γ(1 + 2γ)R̂

where α1 = 2e−2n∆2
1 .

F Baseline for `2-Metric

In this section, we compare the certificates from center smoothing against a bound derived in [2]
for functions like f smoothed by taking the expectation of f under a Gaussian noise. This bound
only applies when the output metric is `2. For a vector-valued function f , the change in the function
defined as Eδ[f(x+ δ)] where δ ∼ N (0, σ2I), under an `2-perturbation of the input of size ε1, can
be bounded by (max ‖f‖2 + min ‖f‖2)erf

(
ε1/2
√

2σ
)
. We apply our center smoothing procedure on

the autoencoder and image reconstruction models used in section 6.3 with `2 as the output metric and
compare its certificates to the above bound. Since the minimum `2-norm of the output of these models
can be zero and we keep h = ε1/σ = 2 for these experiments, the change in the output of Eδ[f(x+δ)]

can be bounded by max ‖f‖2erf
(
1/
√

2
)
≤ 0.68

√
d, where d is the number of dimensions of the

output space. For 28 × 28 gray-scale MNIST images and 32 × 32 RGB CIFAR-10 images, the
corresponding bounds are 19.04 and 37.69 respectively. Figure 1 shows that the certificates obtained
for center smoothing remain below the baseline for all the values of ε1 used. Thus, by observing the
neighborhood of an input point, center smoothing can yield better certificates for individual points in
the input space than the baseline bound which is a global guarantee.

G Angular Distance

A common measure for similarity of two vectors A and B is the cosine similarity between them,
defined as below:

cos(A,B) =
A ·B

‖A‖2‖B‖2
=

∑
iAiBi√∑

j A
2
j

√∑
k B

2
k

.

In order to convert it into a distance, we can compute the angle between the two vectors by taking the
cosine inverse of the above similarity measure, which is known as angular distance:

AD(A,B) = cos−1(cos(A,B))/π.

Angular distance always remains between 0 and 1, and similar to the total variation distance, angular
distance also defines a pseudometric on the output space. We repeat the same experiments with the
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(a) Dimensionality Reduction on MNIST (b) Dimensionality Reduction on CIFAR-10

(c) Image Reconstruction on MNIST (d) Image Reconstruction on CIFAR-10

Figure 1: Comparison with baseline (h = 2).

same models and hyper-parameter settings as for total variation distance (figure 2). The results are
similar in trend in all the experiments conducted, showing that center smoothing can be reliably
applied to a vast range of output metrics to obtain similar robustness guarantees.

H Effect of Training with Noise

A common practice in the randomized smoothing literature is to train the base model with noise
added to the training examples [1]. This helps the model to learn to ignore the smoothing noise and
leads to better robustness certificates for classification tasks. For the total variation certificates in
section 6.3, we train the autoencoders and the reconstruction models using a Gaussian noise with the
same variance as the one used for prediction and certification. In this section, we perform an ablation
experiment to study the effect of the training noise in the certified output radius of the base model
(figure 3). We observe that both the smoothing error and the certified output radius deteriorate in the
absence of training noise. However, models trained without noise also produce non-trivial certificates.
This shows that both center smoothing and training with noise contribute towards the robustness and
performance of the smoothed models.
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(a) Dimensionality Reduction on MNIST (b) Dimensionality Reduction on CIFAR-10

(c) Image Reconstruction on MNIST (d) Image Reconstruction on CIFAR-10

Figure 2: Certifying Angular Distance

(a) Dimensionality Reduction on MNIST (b) Dimensionality Reduction on CIFAR-10

(c) Image Reconstruction on MNIST (d) Image Reconstruction on CIFAR-10

Figure 3: Impact of training noise on the performance of the robust model and its certificates.
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