NeurIPS 2024 Submission #1840. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table A1: Ablation of our simplified formula. Our simplified formula

achieves a	better result than trac	litional w	ith CORUN.	
	ASM formula	$\big NIMA\uparrow$	BRISQUE \uparrow	FADE↑
	w/o simplify	5.203	14.469	0.817
	w/ simplify(CORUN+)	5.315	11.956	0.751

Table A2: Our method still achieves a leading place under the two settings compared with existing methods in their corresponding settings.

RIDCP[4	8]	-	Metrics				
Data.+Gen. Aug. OTS NIMA \uparrow BRISQUE \uparrow FADE \uparrow							
\checkmark			4.845	20.779	0.765		
		\checkmark	4.991	16.478	0.840		
\checkmark	\checkmark		5.315	11.956	0.751		

Table A3: Effects of integrating our Colabator with more cutting-edge dehazing methods. The gains brought by Colabator are significant.

ASM formula	NIMA \uparrow	BRISQUE \uparrow	FADE↑
C2PNet[60]	4.715	34.314	2.064
C2PNet+	4.823	23.662	1.329
FFA-Net[35]	4.822	33.235	2.080
FFA-Net+	4.839	29.219	0.958
GDN[27]	5.074	33.051	2.611
GDN+	5.258	23.691	0.947

Table A4: Experiment of the full-reference setting with O-HAZE and e.

022	I-HAZE On both datasets ou	ir meth	od achiev	ves leadir	or nerformance	
023	Datasets		JAZE			
024						
025	Methods	PSNR 1		PSNR †	SSIM ↑	
026	GDN[27]	18.92	0.672	18.73	0.769	
027	MSBDN[10] FEA_Net[35]	24.30	0.749	19.62	0.018	
028	DeHamer[13]	25.11	0.777	-	-	
020	EDN-GTM[63]	23.46	0.820	22.90	0.827	
029	MB-TaylorFormer[36]	25.05	0.788	-	-	
030	CORUN (Ours)	25.66	0.847	23.90	0.868	
031	Table A5: Superiority of our	method	l than pre	evious del	hazing methods.	
032	Methods	NI	MA ↑ BR	ISQUE↑	FADE ↑	
033	C2PNet [60]	4	.715	34.314	2.064	
034	RIDCP [48]	4	.965	17.293	0.944	
035	CORUN+ (OTS)	4 (inc) 5	215	16.478	0.840	
036		· ,	.515	(1	0.731	
037	Table Ao: Comparison exper	iments	on differ	rent densi	ty level of haze.	
038	Medium Density		High Density			
039	D4[52] 4.814 36.731	1.170	D4[52]	4.809	32.362 1.475	
040	RIDCP[48] 5.036 18.503	1.006	RIDCP[48]	5.131	16.784 1.076	
041	DGUN[33] 4.816 29.767 Ours CORUN+ 5.290 10.101	0.810	Ours CORU	4.949 N+ 5.350	27.669 1.336 12.180 0.839	
042	Table A7: Ablations of eq.1	5 and e	a.16 los	s function	ns. Our strategy	
043	achieves a better result.		1			
044	Loss	MA↑I	BRISOUE	↑ FADE	<u>_</u>	
045	eq 15 Only \downarrow 5	249	13 997	1.035	<u>,</u>	
046	eq.16 Only 5	.220	12.484	0.795	i	
047	Both (Ours) 5	.315	11.956	0.751		
048	Table A8: Robustness eval	uation	of DA-C	LIP, the	differences be-	
049	tween CLIP result and human	result.				
050	difference	e<0.2 0	.2≤ differ	ence ≤ 0.5	difference>0.5	
051	User & DA-CLIP[31] 71%	, ,	21	%	8%	
052	Table A9: Ablations of DA-	CLIP r	nodule a	nd other	modules of Co-	
053	labator. Our strategy achieves	a bette	er result.			
054	Methods	NIMA	↑ BRISO)E ↑	
055		4 007	157	$\frac{02}{02}$ 09	202	
056	w/o DA-CLIP[31]	5.358	11.2	00 0.8	856	
057	Ours CORUN+	5.315	11.9	56 0.3	751	
058	Table A10: Our Colabator	achieve	better et	ffect than	mean-teacher	
059	Strategy					
060				5QUE I		
061	w/ Mean-teacher	+) 5.3	21 I: 15 I	1 956	0.912	
062	w colabatol (COROL	., 5.5	1.5		0.751	

Figure A1: Red region reflects all past methods have had haze residues, but our method have the least in the same case. Purple region shows our method restores richer detail and truer colors.

Figure A2: Examples of correct and incor- Figure A3: Ablation of rect judgments of DA-CLIP.

CPMM module.

Table A11: Ablation of our trusted weights present as a map or value.

Metho	ds		:	NIMA	↑ BR	ISQU	JE↑	FADE ↑	
Only Full				5.229		13.09	9	0.803	
Partition+Full(CORUN+				5.315		11.95	6	0.751	
Table A12: Ablation of CPMM module of our CORUN.									
Modules NIMA \uparrow BRISQUE \uparrow FADE \uparrow									
Hazy	(Input)		-	4.483		36.642		2.484	
w/o C	CPMM		4.836		- 38	38.197		1.362	
w/ Cl	PMM (COR	UN+)		5.315	1	11.956		0.751	
Table A13: E	Effects of s	trong	au	g. witł	n othe	r Co	labat	or comp	onents.
Augme	entation			NIMA	↑BF	RISQU	JE ↑	FADE ↑	_
w/o Co	labator			4.856	5	16.541		1.091	
w/o Str	ong aug.			5.084	L I	12.67	/1	0.813	
w/ Stro	ng aug. (CO) NUN-	+)	5.315	5	11.95	56	0.751	
Table A14: R	esults of C	Colaba	toı	work	with	more	e netv	vorks an	d tasks.
Real underwater image	e enhancement.			Real	obotic la	parosco	pic hyste	erectomy des	moke.
Methods	NIMA † BRISO	QUE ↑ FA	ADE	↑ Meth	ods		NIMA	BRISQUE	↑ FADE ↑
SwinIR [64]	3.392 31.	775 0	0.536	5 Swin	R [64]		3.056	40.668	0.655
Swinik+Colabator Restormer[65]	3.650 27.	588 0	0.472 0.482	2 Swin	SwinIR+Colabator Restormer[65]		3.554	33.356	0.639
Restormer+Colabator	4.185 16.4	489 0	0.381	Resto	rmer+Co	labator	3.738	30.933	0.614
GRL [66]	3.816 25.7	795 0	95 0.506		GRL [66]		3.503	31.682	0.601
GRL+Colabator	3.925 18.	854 0).423	423 GRL+Colabator		or	3.716	27.663	0.585
AST+Colabator 4.186 16.353 0.42		0.475	3 AST [67] 5 AST+Colabator		3.952	29.733	0.538		
Table A15	: Ablation	of ca	lcu	lation	strate	egy o	f trus	ted wei	ghts.
Meth	ods		N	IMA ↑	BRI	SQUI	E↑ F	ADE ↑	
Produ	ıct			5.487	14	4.949		0.807	
Sumr		5.315	11.956			0.751			
Table A16: Ablation of the selection of NR-IQA modules.									
Metrics $ NIMA \uparrow BRISQUE \uparrow FADE \uparrow$									
NIMA			5.	5.337		12.242		.825	
BRISQUE			5.245		11.	11.652		.813	
NIQE			5.122		12.	12.900		.835	
MUSIQ(CORUN+) 5.315 11.956 0.751									
Table A17: Comparison of whether to clean URHI dataset.									
Datasets NIMA \uparrow BRISQUE \uparrow FADE \uparrow									
	URHI-	5.34	8	12.	784	0.	832		
	5	11.956		0.751					