A  Proofs

A.1 Proof of Claim 4.1

We first define the notion of restricted minimum eigenvalue.

Definition A.1 (Restricted minimum eigenvalue). Given a symmetric matrix H € R?*¢ and integer
s > 1,and L > 0, the restricted minimum eigenvalue of H is defined as

2 . . <07H9>
H, s L):— {
¢°(H,s,L) sc[g]l}lggs (?elﬁgl 6513

10 e R, ||0se |1 < L||9s||1}~

Suppose {z(M}k_ C R? are k independent random vectors who first d — 1 coordinates are drawn
uniformly from {—1,1} and the last coordinate is 1. Denote 3. = Zle Mz MT Tt is easy to see
E[i] = Iz and opin (E[i]) = 1. From the definition of restricted minimum eigenvalue, we have for
any L > 0, R R
¢*(E[Z], s, L) > 07, (E[X]) = L.

According to Theorem 10 in Javanmard and Montanari [2014] (essentially from Theorem 6 in
Rudelson and Zhou [2013]), if the population covariance matrix satisfies the restricted eigenvalue
condition, the empirical covariance matrix satisfies it as well with high probability. Specifically, when

k = Cislog(ed/s) for some large constant C; > 0, the following holds:
a 1
P <¢2(E, $,3) > 4> >1—2exp(—k/Cy) > 0.5.

According to probabilistic argument, there exists a set of fixed actions {as(l), ceey :z:(k)} with k =
C1slog(ed/s) such that if we pull uniformly at random from them, the restricted minimum eigenvalue
of the resulting covariance matrix is at least 1/4.

Next we compute how many rounds at most the optimism-based algorithm will choose from infor-
mative action set Z. Let N;_1(a) as the number of pulls for action @ until round ¢. Since we have
0* € C,; with high probability, then

max max(a, ) > max(a, 0*) > se.
a€ll gec, aeld

On the other hand for any action a € Z,

max/(a, 8) = max(a, — %) + (a,0*) < max(a,d — 6*) + max(a, 6*)

gec, gec, gec, a€l
= max({a, 6 — 0%) + se — 1 < 2¢,/|al|,-15log(n) 4+ s — 1
0eCy ¢
1
< 2c M +se — 1.
Nt_l(a/)

If N;—1(a) > 4c*slog(n) for a € Z, then we have maxg,, (a,0) < sc. Based on the optimism
principle, the algorithm will switch to pull uninformative actions. This leads to the fact that optimism-
based algorithm will pull at most |Z|4c?slog(n) rounds of information actions. According to the
proof of minimax lower bound in Hao et al. [2020b], we have when Y7 Ny, (a) < 1/(se?), there
exists another sparse parameter 6 such that

2.2
Ry(n) + Ry (n) 2 nseexp <— Qni‘i i > . (A.1)
By choosing £ = /1/(s%log(n)4c?|Z|), we have for d > n/(slog(n)log(ed/s))
R Ry/(n) > ——— . A2
o(n) + Ror(n) 2 a2l (A2)

Note that |Z| = O(slog(d/s)) as we proved before. Then we can argue there exists a sparse linear
bandit instance such that optimism-based algorithm will suffer linear regret for a data-poor regime.
This ends the proof.
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A.2 Proof of Lemma 5.6

We decompose the Bayesian regret in terms of the instantaneous regret:

E ZEt [(z*,6%) — V]

n

Z<l‘*,9> - ZK&

t=1

BR(n; 7% = E

N . (A.3)
:E ZZEtKI‘*,H (a 9*> Zﬂ't,At s
t=1 a t=1
where the third equation is due to the zero mean of the noise.
We then bound one-step instantaneous regret. From the definition of 7, we have
A 2
7, = argmin (m, A)” (A.4)
reD(A) (T 1t)
In addition, we denote
A A
gxt = argmin ¥y »(7) = argmin M (A.5)

7€D(A) reD(A) (T, 1t)

Note that
2<7raAt>At <7raAt>2It
<7T,It> <7T7It>2

By the first-order optimality condition in Lemma C.1,

) = 2(qx,t — e, Ag)(me, Ay) o {gae — me, o) (i, Ar)?
' (e, Iy) (e, It)? '

vﬂ—\I/t,Q(TF) =

0 S <V7T\I/t,2(7rt)7q)\,t — T
This further implies

2gae, Ag) > (m, Ay) (1 + M) > (my, Ay).

Based on the above equation, we can bound the generalized information ratio as follows:

(1, Ag)? o (e, Ag)2 (my, Ag) 2 < 222, A) (gae, D)2

(me, It) (me, It) a (me, Iy)
A—2 A—2 2 A
< 2 <qA1t7 At> <q)\,t7 At> _ 2)\,2 min <7T, At> :
(are: It) meD(A) (T, 1)

where the first inequality is from Eq. (A.4) and the second inequality is from Eq. (A.5). According to
the definition of W, », we have

<7Tt, At> S 2172/>\<7Tt,1t>1/>\\:[/i’/i\.

Next we prove (¢, It} = I;(z*; (A, Y:)). By the chain rule of mutual information,
Ii(x™5 (Ar, Ye)) = Li(2%5 Ap) + Eo[Le (275 Vi Ar)] = B[ (275 Y| Ay

—Zﬂ't It.li Y,5|At—a)
acA

where we use the fact that A; and z* are independent. If Z is independent of X and Y, then we have
I(X,;Y|Z) =I(X;Y). Since A, is independent of x* and Y; conditional on F;, then

> mla) (@ YilAr = a) = Y m(a)(a*; Vea) = (m, IL).

acA acA
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This proves the previous claim. Combining with Eq. (A.3),

n

BR(n; 7P = [Z(m, Ay)

t=1

<E |3 2L (a7 (A Y)) A

t=1

_

n

=212y NE [Z I(z*; (Ag, Yy))/ (A.6)

1/x

)

21 2/)\\111//\ 1— 1/>‘E [th At)Yt))
t=1

where the last inequality is from Holder’s inequality with p = A/(A — 1) and ¢ = A.

In the end, we bound the cumulative information gain using the chain rule of mutual information,

n

ZE [T(a"; (A, Yi))] = > (2% (A, V)| Fe) = I(2*; Frga).

t=1
Combining with Eq. (A.6), we have
BR,, (7, p) < 2172/>\(\I/*,/\I(x*§ ‘Fn-‘rl))l/)\nlil/)‘.

This ends the proof.

A.3 Proof of Lemma 5.8

Denote 71 = (A1,Y1),...,Zn = (A, Ys) such that Z™ = (Zy,..., Z,). When the number of
actions K is small, we could directly bound it by

I(a%;2") = H(z") — H(2"|2") < H(z") < log |A[ = log(K),
where for the first inequality we use the non-negativity of Shannon entropy.

When the number of actions is large or infinite, we will bound it through the following information-
theoretic argument. Recall that 2* = argmin,c 4 x 6% so x* can be viewed as a deterministic
function 6*. By the data processing lemma (Lemma C.2), we have I(x*; Z™) < I(6*; Z™). In other
words, we bound the information gain regarding the optimal action by the information gain regarding
the true parameter.

Recall that we assume the prior distribution of 6* is p(6*) that takes the value in ©. From Vershynin
[2009] , we know © enjoys an e-net A under ¢3-norm and its cardinality at most (C'd/se)® where C'
is a constant. Hence, its metric entropy satisfies

log \./\/5| < slog(Cd/se). (A7)

Suppose the Bayes mixture density p,(2") = [,_g P(2"10)dp(0). According to the definition of
mutual information,

1(0*;2") = Eg- [DkL(Pznjp~|[Pzn)]

-/ » [ otz 10g W)Mdz")dp(e*)

/069/ 2"167) log ((n| ;)) (dz")dp(0") (A.8)

= DKL(]P)ZW‘Q* an)dp(a*)

e

where the inequality is due to the fact that Bayes mixture density p,(z") minimizes the average KL
divergences over any choice of densities ¢(2™). Then we choose p; as an uniform distribution over
N such that ¢(2") = p,, (2") = [ycq P(2"|0)dp1(0) and we denote Qz~ as the corresponding
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probability measure. Since N is an e-net over O under ¢5-norm, for each § € O, there exists co
such that ||0 — 0||> < e.

To bound the KL-divergence term, we follow

(2"0")
DiL(Pnipl|Qzn) = E |10 P N]
KL(Pzn10]|Qzn) [ g(1/|N€|)Z§eNEp(Zn|0)

& [log N
(1/INc|)p(2"6)

<log|Ne| + DKL(PZ"|0HPZ"|§)'

(A9)

By the chain rule of KL-divergence,

n
E DKL(]P)Yt\At,thl,O*
t=1

where we define Z° = (). Under linear model and bandit 6, we know Y; ~ N(A/6,1). A
straightforward computation leads to

DKL(PZ”WH]PZTL‘@) <E

PYtAg,Zt_17§)] )

P

Y,,|At,Zf*1,§) = AtTa* - AtTG”%

1
DKL(PYtlAt’thl}G* T‘.Q”
7 _
A% 6% - 63
202 (A.10)

IA

1 ~
—s]|60* — 0|3
szl — B3
< —¢
where the first inequality we use the fact that ||a||oo < 1 and the parameters are sparse. Here actually

we only require ||a||« for a € A being bounded by a constant since evetually it will only appears
inside the logarithm term. Putting Eqs. (A.7)-(A.10) together, we have

1(0%;Z2™) < /
AR

With the choice of e = 1/+/n, we finally have
I(0*; Z™) < 2slog(Cdn'/?/s).

(s log(Cd/se) + ﬁaQ)dG* = slog(Cd/se) + 25 c2,
202 202

This ends the proof.

A.4 Proof of Lemma 5.7

For any particular policy 7, if one can derive an worse-case bound of ¥, »(7), we get an upper bound
for U, » automatically. The remaining step is to choose proper policy 7.

First, we bound the information ratio with A = 2 that essentially follows Proposition 5 in Russo and
Van Roy [2014] and Lemma 3 in Russo and Van Roy [2014] for a Gaussian noise. By the definition
of mutual information, for any a € A, we have

Li(x"; Yi0) = D (Pe((2", Vo) )[Pe(2” € )Py (Yia €))
= > Pya" =a")Dxp (P(Yia = |27 = a”)||Py(Yia = 1)) - (A.11)
a*eA

Define Ryax as the upper bound of maximum expected reward. It is easy to see Y o isa /R2, +1

max
sub-Gaussian random variable. According to Lemma 3 in Russo and Van Roy [2014], we have

2 2
It(:c*;yt,a) > m Z Pt(:ﬂ* — a*)(Et[Y;,am* — a*} _ Et[Yt,a]) . (A.12)

max a* EA
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We bound the information ratio of IDS by the information ratio of TS:
TS A 2
U, o < max M
teln] (mfS, 1)
Using the matrix trace rank trick described in Proposition 5 in Russo and Van Roy [2014], we have
VU, o < (R%,. +1)d/2in the end.

max

Second, we bound the information ratio with A = 3. Recall that the exploratory policy y is defined as

-
max Omin zx du(x ) .
HED(A) (/o;eA ule)
Consider a mixture policy 7™ = (1 — ~)m}> + yu where the mixture rate v > 0 will be decided
later. Then we will bound the following in two steps.

<7T1£nixa At>3
\IJ mix — 2 .
o) = e 1)

Step 1: Bound the information gain  According the lower bound of information gain in Eq. (A.12),

(P10 2 s SR 3 P’ = ) (Bl = 0] = EifY;.))

max aEA a*eA
(R%)Z (a) 3 Py(a* = a*) (TR 00" = o] — a T Ei[67)) .
max a*€A
By the definition of the mixture policy, we know that 7¢(a) > yu(a) for any a € A. Then we have
(mmx 1) > (R?MX GZEAIE% ¥ =a"
Y (@) (Be[07]a” = a*] — Eq[07]) Taa T (B4 [07[* = a¥] - Ef[07]).
acA

From the definition of minimum eigenvalue, we have

(M, L) > m ZPt 2" = a)Cpin || E¢[0"|2" = a*] — Et[e*]”g'
max acA

Step 2: Bound the instant regret We decompose the regret by the contribution from the ex-
ploratory policy and the one from TS:

(™, A)
:ZEt[@c*,e )

AR ) ]+ T )
_ ZPtx_a)Et[@:w }MZEt[xe (0,0 uta)

Since Ry,,x is the upper bound of maximum expected reward, the second term can be bounded
2Rmax7y- Next we bound the first term as follows:

S P = a)E:[(",0%) — (a,07)]
=Y P = ) (Billa,07) 2" = a] — Eyl{a,67)))
=Y P2 = PP = ) (Bdlla,0%)]a" = a] — Eil(a,0°)])

\/ZR @) (Edl{a, 0) | = a] - Et[(a,6*>])27
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where we use Cauchy-Schwarz inequality. Since all the optimal actions are sparse, any action a with
P;(z* = a) > 0 must be sparse. Then we have

(T (Baf6*[o* = a] — Eu[6])” < 8 [ Be[6*]0” = a*] — Euf6"]]3,

for any action a with P;(2* = a) > 0. This further implies

S Pia" = a)Ed[(",6%) — (a,6")]
\/Zm a)s? ||Ey[0*|x* = a*] — E.[6%]|

s2(R2,.x +1) . a2

(Riax + 1),

< max e A
- \/ Q’chln <7Tt ’ t>

Putting Eq. (A.13) and (A.14) together, we have

(A.14)

. R2 .
(m™, Ay) < \/(2'75)() (™, It) + 2 Rmax?Y-

By optimizing the mixture rate vy, we have
ﬂ_mix A,)3 RZ
(np, A® _ 5

max ) 82
<7T:I£nix7[t> - 8Rr2mx0min = 4Cmin

This ends the proof.

B Detailed algorithms
For each a € A, we expand v:(a) as follows:
u(a) = Var, (fa” 02" = By [a B, 012"] - Ey[a By f61a"]]]
=E|a E[0]2*] — a"E, [e]} g a "B [(E[0]2*] — E[60]) (Eq[0]2*] — E[60]) Ta.
We denote 11; = E,;[6] as the posterior mean and uf = E;[f|z* = a]. We let & € RIAIX? as the

feature matrix where each row of ® represent each action in .A. We summarize the procedure of
estimating Ay, I; in Algorithm 3.

Algorithm 3 Approximate A;, v; based on posterior samples

1: Input: M posterior samples 0, ..., 0 from Eq. (6.2), action set A.
2: Calculate iy = >, 6™ /M.

3: fora € Ado

4:  Find O, = {m € [M] : (PO™), = maxy c4(PO™), }.

5:  Calculate p = |, /M.

6:  Calculate uf =

7:  Calculate

me@a em/lea‘

=a Zpa —fir)Ta, A(a) = Y pra if —a' fir.

acA

end for N
Output: vy, A;.

2o ®
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C Supporting lemmas

Lemma C.1 (First-order optimality condition.). Suppose that f; in a convex optimization problem
is differentiable. Let X denote the feasible set. Then x is optimal if and only if x € X and
Vio(z)T(y—z)>0,Vy € X.

Lemma C.2 (Data processing lemma). If Z = ¢g(Y") for a deterministic function g, then I(X;Y") >
1(X;2).
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