
A Proofs

A.1 Proof of Claim 4.1

We first define the notion of restricted minimum eigenvalue.
Definition A.1 (Restricted minimum eigenvalue). Given a symmetric matrix H ∈ Rd×d and integer
s ≥ 1, and L > 0, the restricted minimum eigenvalue of H is defined as

φ2(H, s, L) := min
S⊂[d],|S|≤s

min
θ∈Rd

{ 〈θ,Hθ〉
‖θS‖22

: θ ∈ Rd, ‖θSc‖1 ≤ L‖θS‖1
}
.

Suppose {x(t)}kt=1 ⊆ Rd are k independent random vectors who first d− 1 coordinates are drawn
uniformly from {−1, 1} and the last coordinate is 1. Denote Σ̂ =

∑k
t=1 x

(t)x(t)>. It is easy to see
E[Σ̂] = Id and σmin(E[Σ̂]) = 1. From the definition of restricted minimum eigenvalue, we have for
any L > 0,

φ2(E[Σ̂], s, L) ≥ σ2
min(E[Σ̂]) = 1.

According to Theorem 10 in Javanmard and Montanari [2014] (essentially from Theorem 6 in
Rudelson and Zhou [2013]), if the population covariance matrix satisfies the restricted eigenvalue
condition, the empirical covariance matrix satisfies it as well with high probability. Specifically, when
k = C1s log(ed/s) for some large constant C1 > 0, the following holds:

P
(
φ2(Σ̂, s, 3) ≥ 1

4

)
≥ 1− 2 exp(−k/C1) ≥ 0.5.

According to probabilistic argument, there exists a set of fixed actions {x(1), . . . , x(k)} with k =
C1s log(ed/s) such that if we pull uniformly at random from them, the restricted minimum eigenvalue
of the resulting covariance matrix is at least 1/4.

Next we compute how many rounds at most the optimism-based algorithm will choose from infor-
mative action set I. Let Nt−1(a) as the number of pulls for action a until round t. Since we have
θ∗ ∈ Ct with high probability, then

max
a∈U

max
θ̃∈Ct
〈a, θ̃〉 ≥ max

a∈U
〈a, θ∗〉 ≥ sε.

On the other hand for any action a ∈ I,

max
θ̃∈Ct
〈a, θ̃〉 = max

θ̃∈Ct
〈a, θ̃ − θ∗〉+ 〈a, θ∗〉 ≤ max

θ̃∈Ct
〈a, θ̃ − θ∗〉+ max

a∈I
〈a, θ∗〉

= max
θ̃∈Ct
〈a, θ̃ − θ∗〉+ sε− 1 ≤ 2c

√
‖a‖V −1

t
s log(n) + sε− 1

≤ 2c

√
s log(n)

Nt−1(a)
+ sε− 1.

If Nt−1(a) > 4c2s log(n) for a ∈ I, then we have maxθ̃∈Ct〈a, θ̃〉 < sε. Based on the optimism
principle, the algorithm will switch to pull uninformative actions. This leads to the fact that optimism-
based algorithm will pull at most |I|4c2s log(n) rounds of information actions. According to the
proof of minimax lower bound in Hao et al. [2020b], we have when

∑
a∈I Nn(a) < 1/(sε2), there

exists another sparse parameter θ′ such that

Rθ(n) +Rθ′(n) & nsε exp

(
−2nε2s2

d

)
. (A.1)

By choosing ε =
√

1/(s2 log(n)4c2|I|), we have for d ≥ n/(s log(n) log(ed/s))

Rθ(n) +Rθ′(n) &
n√

log(n)|I|
. (A.2)

Note that |I| = O(s log(d/s)) as we proved before. Then we can argue there exists a sparse linear
bandit instance such that optimism-based algorithm will suffer linear regret for a data-poor regime.
This ends the proof.
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A.2 Proof of Lemma 5.6

We decompose the Bayesian regret in terms of the instantaneous regret:

BR(n;πIDS) = E

[
n∑
t=1

〈x∗, θ〉 −
n∑
t=1

Yt

]
= E

[
n∑
t=1

Et [〈x∗, θ∗〉 − Yt]

]

= E

[
n∑
t=1

∑
a

Et [〈x∗, θ∗〉 − 〈a, θ∗〉]πt(a)

]
= E

[
n∑
t=1

〈πt,∆t〉

]
,

(A.3)

where the third equation is due to the zero mean of the noise.

We then bound one-step instantaneous regret. From the definition of πt, we have

πt = argmin
π∈D(A)

〈π,∆t〉2

〈π, It〉
. (A.4)

In addition, we denote

qλ,t = argmin
π∈D(A)

Ψt,λ(π) = argmin
π∈D(A)

〈π,∆t〉λ

〈π, It〉
. (A.5)

Note that

∇πΨt,2(π) =
2〈π,∆t〉∆t

〈π, It〉
+
〈π,∆t〉2It
〈π, It〉2

.

By the first-order optimality condition in Lemma C.1,

0 ≤ 〈∇πΨt,2(πt), qλ,t − πt〉 =
2〈qλ,t − πt,∆t〉〈πt,∆t〉

〈πt, It〉
− 〈qλ,t − πt, It〉〈πt,∆t〉2

〈πt, It〉2
.

This further implies

2〈qλ,t,∆t〉 ≥ 〈πt,∆t〉
(

1 +
〈qλ,t, It〉
〈πt, It〉

)
≥ 〈πt,∆t〉.

Based on the above equation, we can bound the generalized information ratio as follows:

〈πt,∆t〉λ

〈πt, It〉
=
〈πt,∆t〉2〈πt,∆t〉λ−2

〈πt, It〉
≤ 2λ−2〈πt,∆t〉2〈qλ,t,∆t〉λ−2

〈πt, It〉

≤ 2λ−2〈qλ,t,∆t〉λ−2〈qλ,t,∆t〉2

〈qλ,t, It〉
= 2λ−2 min

π∈D(A)

〈π,∆t〉λ

〈π, It〉
,

where the first inequality is from Eq. (A.4) and the second inequality is from Eq. (A.5). According to
the definition of Ψ∗,λ, we have

〈πt,∆t〉 ≤ 21−2/λ〈πt, It〉1/λΨ
1/λ
∗,λ .

Next we prove 〈πt, It〉 = It(x
∗; (At, Yt)). By the chain rule of mutual information,

It(x
∗; (At, Yt)) = It(x

∗;At) + Et[It(x∗;Yt|At)] = Et[It(x∗;Yt|At)]

=
∑
a∈A

πt(a)It(x
∗;Yt|At = a),

where we use the fact that At and x∗ are independent. If Z is independent of X and Y , then we have
I(X;Y |Z) = I(X;Y ). Since At is independent of x∗ and Yt conditional on Ft, then∑

a∈A
πt(a)It(x

∗;Yt|At = a) =
∑
a∈A

πt(a)It(x
∗;Yt,a) = 〈πt, It〉.
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This proves the previous claim. Combining with Eq. (A.3),

BR(n;πIDS) = E

[
n∑
t=1

〈πt,∆t〉

]
≤ E

[
n∑
t=1

21−2/λIt(x
∗; (At, Yt))

1/λΨ
1/λ
∗,λ

]

= 21−2/λΨ
1/λ
∗,λ E

[
n∑
t=1

It(x
∗; (At, Yt))

1/λ

]

≤ 21−2/λΨ
1/λ
∗,λ n

1−1/λE

[
n∑
t=1

It(x
∗; (At, Yt))

]1/λ

,

(A.6)

where the last inequality is from Holder’s inequality with p = λ/(λ− 1) and q = λ.

In the end, we bound the cumulative information gain using the chain rule of mutual information,
n∑
t=1

E[It(x
∗; (At, Yt))] =

n∑
t=1

I(x∗; (At, Yt)|Ft) = I(x∗;Fn+1).

Combining with Eq. (A.6), we have

BRn(π, ρ) ≤ 21−2/λ(Ψ∗,λI(x∗;Fn+1))1/λn1−1/λ.

This ends the proof.

A.3 Proof of Lemma 5.8

Denote Z1 = (A1, Y1), . . . , Zn = (An, Yn) such that Zn = (Z1, . . . , Zn). When the number of
actions K is small, we could directly bound it by

I(x∗;Zn) = H(x∗)−H(x∗|Zn) ≤ H(x∗) ≤ log |A| = log(K),

where for the first inequality we use the non-negativity of Shannon entropy.

When the number of actions is large or infinite, we will bound it through the following information-
theoretic argument. Recall that x∗ = argmina∈A x

>θ∗ so x∗ can be viewed as a deterministic
function θ∗. By the data processing lemma (Lemma C.2), we have I(x∗;Zn) ≤ I(θ∗;Zn). In other
words, we bound the information gain regarding the optimal action by the information gain regarding
the true parameter.

Recall that we assume the prior distribution of θ∗ is ρ(θ∗) that takes the value in Θ. From Vershynin
[2009] , we know Θ enjoys an ε-netNε under `2-norm and its cardinality at most (Cd/sε)s where C
is a constant. Hence, its metric entropy satisfies

log |Nε| ≤ s log(Cd/sε). (A.7)

Suppose the Bayes mixture density pρ(zn) =
∫
θ∈Θ

p(zn|θ)dρ(θ). According to the definition of
mutual information,

I(θ∗;Zn) = Eθ∗
[
DKL(PZn|θ∗ ||PZn)

]
=

∫
θ∗∈Θ

∫
p(zn|θ∗) log

(p(zn|θ∗)
pw(zn)

)
µ(dzn)dρ(θ∗)

≤
∫
θ∈Θ

∫
p(zn|θ∗) log

(p(zn|θ∗)
q(zn)

)
µ(dzn)dρ(θ∗)

=

∫
θ∈Θ

DKL(PZn|θ∗ ||QZn)dρ(θ∗).

(A.8)

where the inequality is due to the fact that Bayes mixture density pρ(zn) minimizes the average KL
divergences over any choice of densities q(zn). Then we choose ρ1 as an uniform distribution over
Nε such that q(zn) = pρ1(zn) =

∫
θ∈Θ

p(zn|θ)dρ1(θ) and we denote QZn as the corresponding
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probability measure. Since Nε is an ε-net over Θ under `2-norm, for each θ ∈ Θ, there exists θ̃ ∈ Θ
such that ‖θ − θ̃‖2 ≤ ε.

To bound the KL-divergence term, we follow

DKL(PZn|θ||QZn) = E

[
log

p(zn|θ∗)
(1/|Nε|)

∑
θ̃∈Nε

p(zn|θ̃)

]

≤ E

[
log

p(zn|θ∗)
(1/|Nε|)p(zn|θ̃)

]
≤ log |Nε|+DKL(PZn|θ||PZn|θ̃).

(A.9)

By the chain rule of KL-divergence,

DKL(PZn|θ||PZn|θ̃) ≤ E

[
n∑
t=1

DKL(PYt|At,Zt−1,θ∗ ||PYt|At,Zt−1,θ̃)

]
,

where we define Z0 = ∅. Under linear model and bandit θ, we know Yt ∼ N(A>t θ, 1). A
straightforward computation leads to

DKL(PYt|At,Zt−1,θ∗ ||PYt|At,Zt−1,θ̃) =
1

2σ2
‖A>t θ∗ −A>t θ̃‖22

≤ 1

2σ2
‖At‖2∞‖θ∗ − θ̃‖21

≤ 1

2σ2
s‖θ∗ − θ̃‖22

≤ s

2σ2
ε2,

(A.10)

where the first inequality we use the fact that ‖a‖∞ ≤ 1 and the parameters are sparse. Here actually
we only require ‖a‖∞ for a ∈ A being bounded by a constant since evetually it will only appears
inside the logarithm term. Putting Eqs. (A.7)-(A.10) together, we have

I(θ∗;Zn) ≤
∫
θ∗∈Θ

(
s log(Cd/sε) +

ns

2σ2
ε2
)
dθ∗ = s log(Cd/sε) +

ns

2σ2
ε2.

With the choice of ε = 1/
√
n, we finally have

I(θ∗;Zn) ≤ 2s log(Cdn1/2/s).

This ends the proof.

A.4 Proof of Lemma 5.7

For any particular policy π̃, if one can derive an worse-case bound of Ψt,λ(π̃), we get an upper bound
for Ψ∗,λ automatically. The remaining step is to choose proper policy π̃.

First, we bound the information ratio with λ = 2 that essentially follows Proposition 5 in Russo and
Van Roy [2014] and Lemma 3 in Russo and Van Roy [2014] for a Gaussian noise. By the definition
of mutual information, for any a ∈ A, we have

It(x
∗;Yt,a) = DKL

(
Pt((x∗, Yt,a))||Pt(x∗ ∈ ·)Pt

(
Yt,a ∈

))
=
∑
a∗∈A

Pt(x∗ = a∗)DKL (Pt(Yt,a = ·|x∗ = a∗)||Pt(Yt,a = ·)) . (A.11)

Define Rmax as the upper bound of maximum expected reward. It is easy to see Yt,a is a
√
R2

max + 1
sub-Gaussian random variable. According to Lemma 3 in Russo and Van Roy [2014], we have

It(x
∗;Yt,a) ≥ 2

R2
max + 1

∑
a∗∈A

Pt(x∗ = a∗)
(
Et[Yt,a|x∗ = a∗]− Et[Yt,a]

)2

. (A.12)
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We bound the information ratio of IDS by the information ratio of TS:

Ψ∗,2 ≤ max
t∈[n]

〈πTS
t ,∆t〉2

〈πTS
t , It〉

.

Using the matrix trace rank trick described in Proposition 5 in Russo and Van Roy [2014], we have
Ψ∗,2 ≤ (R2

max + 1)d/2 in the end.

Second, we bound the information ratio with λ = 3. Recall that the exploratory policy µ is defined as

max
µ∈D(A)

σmin

(∫
x∈A

xx>dµ(x)
)
.

Consider a mixture policy πmix
t = (1− γ)πTS

t + γµ where the mixture rate γ ≥ 0 will be decided
later. Then we will bound the following in two steps.

Ψt,3(πmix
t ) =

〈πmix
t ,∆t〉3

〈πmix
t , It〉

.

Step 1: Bound the information gain According the lower bound of information gain in Eq. (A.12),

〈πmix
t , It〉 ≥

2

(R2
max + 1)

∑
a∈A

πmix
t (a)

∑
a∗∈A

Pt(x∗ = a∗) (Et[Yt,a|x∗ = a∗]− Et[Yt,a])
2

=
2

(R2
max + 1)

∑
a∈A

πmix
t (a)

∑
a∗∈A

Pt(x∗ = a∗)
(
a>Et[θ∗|x∗ = a∗]− a>Et[θ∗]

)2
.

By the definition of the mixture policy, we know that πt(a) ≥ γµ(a) for any a ∈ A. Then we have

〈πmix
t , It〉 ≥

2

(R2
max + 1)

γ
∑
a∗∈A

Pt(x∗ = a∗)

·
∑
a∈A

µ(a)(Et[θ∗|x∗ = a∗]− Et[θ∗])>aa>(Et[θ∗|x∗ = a∗]− Et[θ∗]).

From the definition of minimum eigenvalue, we have

〈πmix
t , It〉 ≥

2γ

(R2
max + 1)

∑
a∈A

Pt(x∗ = a)Cmin ‖Et[θ∗|x∗ = a∗]− Et[θ∗]‖22 .

Step 2: Bound the instant regret We decompose the regret by the contribution from the ex-
ploratory policy and the one from TS:

〈πmix
t ,∆t〉

=
∑
a

Et
[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
πmix
t (a),

= (1− γ)
∑
a

πTS
t (a)Et

[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
+ γ

∑
a

Et
[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
µ(a)

= (1− γ)
∑
a

Pt(x∗ = a)Et
[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
+ γ

∑
a

Et
[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
µ(a)

(A.13)

Since Rmax is the upper bound of maximum expected reward, the second term can be bounded
2Rmaxγ. Next we bound the first term as follows:∑

a

Pt(x∗ = a)Et
[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
=
∑
a

Pt(x∗ = a)
(
Et[〈a, θ∗〉|x∗ = a]− Et[〈a, θ∗〉]

)
=
∑
a

P1/2
t (x∗ = a)P1/2

t (x∗ = a)
(
Et[〈a, θ∗〉|x∗ = a]− Et[〈a, θ∗〉]

)
≤
√∑

a

Pt(x∗ = a)
(
Et[〈a, θ∗〉|x∗ = a]− Et[〈a, θ∗〉]

)2

,
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where we use Cauchy-Schwarz inequality. Since all the optimal actions are sparse, any action a with
Pt(x∗ = a) > 0 must be sparse. Then we have(

a>(Et[θ∗|x∗ = a]− Et[θ∗])
)2 ≤ s2 ‖Et[θ∗|x∗ = a∗]− Et[θ∗]‖22 ,

for any action a with Pt(x∗ = a) > 0. This further implies∑
a

Pt(x∗ = a)Et
[
〈x∗, θ∗〉 − 〈a, θ∗〉

]
≤
√∑

a

Pt(x∗ = a)s2 ‖Et[θ∗|x∗ = a∗]− Et[θ∗]‖22

=

√
s2(R2

max + 1)

2γCmin

2γ

(R2
max + 1)

∑
a

Pt(x∗ = a)Cmin ‖Et[θ∗|x∗ = a∗]− Et[θ∗]‖22

≤

√
s2(R2

max + 1)

2γCmin
〈πmix
t , It〉.

(A.14)

Putting Eq. (A.13) and (A.14) together, we have

〈πmix
t ,∆t〉 ≤

√
s2(R2

max + 1)

2γCmin
〈πmix
t , It〉+ 2Rmaxγ.

By optimizing the mixture rate γ, we have

〈πmix
t ,∆t〉3

〈πmix
t , It〉

≤ s2(R2
max + 1)

8R2
maxCmin

≤ s2

4Cmin
.

This ends the proof.

B Detailed algorithms

For each a ∈ A, we expand vt(a) as follows:

vt(a) = Vart(Et[a>θ|x∗]) = Et
[
a>Et[θ|x∗]− Et

[
a>Et[θ|x∗]

]]2
= Et

[
a>Et[θ|x∗]− a>Et[θ]

]2
= a>Et[(Et[θ|x∗]− Et[θ])(Et[θ|x∗]− Et[θ])>]a.

We denote µt = Et[θ] as the posterior mean and µat = Et[θ|x∗ = a]. We let Φ ∈ R|A|×d as the
feature matrix where each row of Φ represent each action in A. We summarize the procedure of
estimating ∆t, It in Algorithm 3.

Algorithm 3 Approximate ∆t, vt based on posterior samples
1: Input: M posterior samples θ1, . . . , θM from Eq. (6.2), action set A.
2: Calculate µ̂t =

∑
m θ

m/M .
3: for a ∈ A do
4: Find Θ̂a = {m ∈ [M ] : (Φθm)a = maxa′∈A(Φθm)a′}.
5: Calculate p̂∗a = |Θ̂a|/M .
6: Calculate µ̂at =

∑
m∈Θ̂a

θm/|Θ̂a|.
7: Calculate

v̂t(a) = a>
∑
a

p̂∗a(µ̂at − µ̂t)(µ̂at − µ̂t)>a, ∆̂t(a) =
∑
a∈A

p̂∗aa
>µ̂at − a>µ̂t.

8: end for
9: Output: v̂t, ∆̂t.
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C Supporting lemmas

Lemma C.1 (First-order optimality condition.). Suppose that f0 in a convex optimization problem
is differentiable. Let X denote the feasible set. Then x is optimal if and only if x ∈ X and
∇f0(x)>(y − x) ≥ 0,∀y ∈ X .
Lemma C.2 (Data processing lemma). If Z = g(Y ) for a deterministic function g, then I(X;Y ) ≥
I(X;Z).
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