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Abstract

Flatness of the loss curve is conjectured to be connected to the generalization
ability of machine learning models, in particular neural networks. While it has
been empirically observed that flatness measures consistently correlate strongly
with generalization, it is still an open theoretical problem why and under which
circumstances flatness is connected to generalization, in particular in light of
reparameterizations that change certain flatness measures but leave generalization
unchanged. We investigate the connection between flatness and generalization
by relating it to the interpolation from representative data, deriving notions of
representativeness, and feature robustness. The notions allow us to rigorously
connect flatness and generalization and to identify conditions under which the
connection holds. Moreover, they give rise to a novel, but natural relative flatness
measure that correlates strongly with generalization, simplifies to ridge regression
for ordinary least squares, and solves the reparameterization issue.

1 Introduction

Flatness of the loss curve has been identified as a potential predictor for the generalization abilities of
machine learning models [6, 10, 11]. In particular for neural networks, it has been repeatedly observed
that generalization performance correlates with measures of flatness, i.e., measures that quantify the
change in loss under perturbations of the model parameters [4, 8, 16, 21, 34, 39, 41, 44]. In fact, Jiang
et al. [14] perform a large-scale empirical study and find that flatness-based measures have a higher
correlation with generalization than alternatives like weight norms, margin-, and optimization-based
measures. It is an open problem why and under which circumstances this correlation holds, in
particular in the light of negative results on reparametrizations of ReLU neural networks [5]: these
reparameterizations change traditional measures of flatness, yet leave the model function and its
generalization unchanged, making these measures unreliable. We present a novel and rigorous
approach to understanding the connection between flatness and generalization by relating it to the
interpolation from representative samples. Using this theory we, for the first time, identify conditions
under which flatness explains generalization. At the same time, we derive a measure of relative
flatness that simplifies to ridge/Tikhonov regularization for ordinary least squares [36], and resolves
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Figure 1: Decomposition of f = ψ ◦ φ
into a feature extractor φ and a model
ψ for neural networks.

Figure 2: Overview: We theoretically connect a notion of
representative data with a notion of feature robustness and a
novel measure of flatness of the loss surface.

the reparametrization issue for ReLU networks [5] by appropriately taking the norm of parameters
into account as suggested by Neyshabur et al. [25].

Formally, we connect flatness of the loss surface to the generalization gap Egen(f, S) = E(f) −
Eemp(f, S) of a model f : X → Y from a model classH with respect to a twice differentiable loss
function ` : Y × Y → R+ and a finite sample set S ⊆ X × Y , where

E(f) = E(x,y)∼D

[
`(f(x), y)

]
and Eemp(f, S) =

1

|S|
∑

(x,y)∈S

`(f(x), y) .

That is, Egen(f, S) is the difference between the risk E(f) and the empirical risk Eemp(f, S) of f on
a finite sample set S drawn iid. according to a data distribution D on X × Y . To connect flatness to
generalization, we start by decomposing the generalisation gap into two terms, a representativeness
term that quantifies how well a distribution D can be approximated using distributions with local
support around sample points and a feature robustness term describing how small changes of feature
values affect the model’s loss. Here, feature value refers to the implicitly represented features by
the model, i.e., we consider models that can be expressed as f(x) = ψ(w, φ(x)) = g(wφ(x)) with
a feature extractor φ and a model ψ (which includes linear and kernel models, as well as most
neural networks, see Fig. 1). With this decomposition, we measure the generalization ability of a
particular model by how well its interpolation between samples in feature space fits the underlying
data distribution. We then connect feature robustness (a property of the feature space) to flatness (a
property of the parameter space) using the following key identity: Multiplicative perturbations in
feature space by arbitrary matrices A ∈ Rm×m correspond to perturbations in parameter space, i.e.,

ψ(w, φ(x) +Aφ(x)) = g(w(φ(x) +Aφ(x))) = g((w + wA)φ(x)) = ψ(w + wA, φ(x)) . (1)

Using this key equation, we show that feature robustness is approximated by a novel, but natural,
loss Hessian-based relative flatness measure under the assumption that the distribution can be
approximated by locally constant labels. Under this assumption and if the data is representative, then
flatness is the main predictor of generalization (see Fig. 2 for an illustration).

This offers an explanation for the correlation of flatness with generalization on many real-world data
distributions for image classification [14, 21, 26], where the assumption of locally constant labels
is reasonable (the definition of adversarial examples [35] even hinges on this assumption). This
dependence on locally constant labels has not been uncovered by previous theoretical analysis [26, 37].
Moreover, we show that the resulting relative flatness measure is invariant to linear reparameterization
and has a stronger correlation with generalization than other flatness measures [14, 21, 26]. Other
measures have been proposed that similarly achieve invariance under reparameterizations [21, 37],
but the Fisher-Rao norm [21] is lacking a strong theoretical connection to generalization, our measure
sustains a more natural form than normalized sharpness [37] and for neural networks, it considers
only a single layer, given by the decomposition of f (including the possibility of choosing the input
layer when φ = idX ). An extended comparison to related work is provided in Appdx. A.

The limitations of our analysis are as follows. We assume a noise-free setting where for each x ∈ X
there is a unique y = y(x) ∈ Y such that Px,y∼D(y|x) = 1, and this assumption is also extended to
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the feature space of the given model, i.e., we assume that φ(x) = φ(x′) implies y(x) = y(x′) for
all x, x′ ∈ X and write y(x) = y(φ(x)). Moreover, we assume that the marginal distribution DX is
described by a density function pD(x), that f(x) = ψ(w, φ(x)) = g(wφ(x)) is a local minimizer of
the empirical risk on S, and that g, ψ, φ are twice differential. Quantifying the representativeness
of a dataset precisely is challenging since the data distribution is unknown. Using results from
density estimation, we derive a worst-case bound on representativeness for all data distributions that
fulfill mild regularity assumptions in feature space φ(X ), i.e., a smooth density function pφ(D) such
that

∫
z∈φ(X )

∣∣∇2
(
pφ(D)(z)||z||2

)∣∣ dz and
∫
z∈φ(X )

pφ(D)(z)/||z||m dz are well-defined and finite.
This yields a generalization bound incorporating flatness. In contrast to the common bounds of
statistical learning theory, the bound depends on the feature dimension. The dimension-dependence
is a result of the interpolation approach (applying density estimation uniformly over all distributions
that satisfy the mild regularity assumptions). The bound is consistent with the no-free-lunch theorem
and the convergence rate derived by Belkin et al. [2] for a model based on interpolations. In practical
settings, representativeness can be expected to be much smaller than the worst-case bound, which we
demonstrate by a synthetic example in Sec. 6. Generally, it is a bound that remains meaningful in the
interpolation regime [1, 3, 24], where traditional measures of generalization based on the empirical
risk and model class complexity are uninformative [22, 42].

Contribution. In summary, this paper rigorously connects flatness of the loss surface to generalization
and shows that this connection requires feature representations such that labels are (approximately)
locally constant, which is also validated in a synthetic experiment (Sec. 6). The empirical evaluation
shows that this flatness and an approximation to representativeness can tightly bound the general-
ization gap. Our contributions are: (i) the rigorous connection of flatness and generalization; (ii)
novel notions of representativeness and feature robustness that capture the extent to which a model’s
interpolation between samples fits the data distribution; and (iii) a novel flatness measure that is layer-
and neuron-wise reparameterization invariant, reduces to ridge regression for ordinary least squares,
and outperforms state-of-the-art flatness measures on CIFAR10.

2 Representativeness

In this section, we formalize when a sample set S is representative for a data distribution D.

Partitioning the input space. We choose a partition {Vi |i = 1, . . . , |S|} of X such that each
element of this partition Vi contains exactly one of the samples xi from S. The distribution can then
be described by a set of densities pi(x) = 1

αi
· pD(x) · 1Vi(x) with support contained in Vi (where

1Vi(x) = 1 if x ∈ Vi and 0 otherwise) and with normalizing factor αi =
∫
Vi
pD(x)dx. Then the risk

decomposes as E(f) =
∑|S|
i=1 αi · Ex∼pi [`(f(x), y(x))]. Since xi ∈ Vi for each i, we can change

variables and consider density functions λ∗i (ξ) = pi(xi + ξ) with support in a neighborhood around
the origin of X . The risk then decomposes as

E(f) =

|S|∑
i=1

αi · Eξ∼λ∗i [`(f(xi + ξ), y(xi + ξ))] . (2)

Starting from this identity, we formalize an approximation to the risk: In a practical setting, the
distribution pD is unknown and hence, in the decomposition (2), we have unknown densities λ∗i and
unknown normalization factors αi. We assume that each neighborhood contributes equally to the loss,
i.e., we approximate each αi with 1

|S| . Then, given a sample set S and an |S|-tuple Λ = (λi)1≤i≤|S|
of “local” probability density functions on X with support supp(λi) in a neighborhood around the
origin 0X , we call the pair (S,Λ) ε-representative for D with respect to a model f and loss ` if
|ERep(f, S,Λ)| ≤ ε, where

ERep(f, S,Λ) = E(f)−
|S|∑
i=1

1

|S|
· Eξ∼λi [`(f(xi + ξ), y(xi + ξ))] . (3)

If the partitions Vi and the distributions λi are all chosen optimal so that the approximation αi = 1
|S|

is exact and λi = λ∗i , then ERep(f, S,Λ) = 0 by (2). If the support of each λi is decreased to
the origin so that λi = δ0 is a Dirac delta function, then ERep(f, S,Λ) = Egen(f, S) equals the
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generalization gap. For density functions with an intermediate support, the generalization gap can be
decomposed into representativeness and the expected deviation of the loss around the sample points:

Egen(f, S) = ERep(f, S,Λ) +

|S|∑
i=1

1

|S|
· Eξ∼λi [`(f(xi + ξ), y(xi + ξ))− `(f(xi), yi)]

The main idea of our approach to understand generalization is to use this equality and to control both
representativeness and expected loss deviations for a suitable |S|-tuple of distributions Λ.

From input to feature space. An interesting aspect of ε-representativeness is that it can be considered
in a feature space instead of the input space. For a model f = (ψ ◦ φ) : X → Y , we can apply
our notion to the feature space φ(X ) (see Fig. 1 for an illustration). This leads to the notion of ε-
representativeness in feature space defined for an |S|-tuple Λφ = (λφi )1≤i≤|S| of densities on φ(X ) by
replacing xi with φ(xi) in (3), which we denote by EφRep(f, S,Λφ). By measuring representativeness
in a feature space, this becomes a notion of both data and feature representation. In particular,
it assumes that a target output function y(φ(x)) also exists for the feature space. We can then
decompose the generalization gap Egen(f) of f = (ψ ◦ φ) into

EφRep(f, S,Λ
φ) +

 1

|S|

|S|∑
i=1

Eξ∼λφi [`(ψ(φ(xi) + ξ), y(φ(xi) + ξ))− `(f(xi), yi)]


The second term is determined by how the loss changes under small perturbations in the feature space
for the samples in S. As before, for λi = δ0 the term in the bracket vanishes and EφRep(f, S,Λφ) =
Egen. But the decomposition becomes more interesting for distributions with support of nonzero
measure around the origin. If the true distribution can be interpolated efficiently in feature space
from the samples in S with suitable λφi so that EφRep(f, S,Λφ) ≈ 0, then the term in the bracket
approximately equals the generalization gap and the generalization gap can be estimated from local
properties in feature space around sample points.

3 Feature Robustness

Having decomposed the generalisation gap into a representativness and a second term of loss
deviation, we now develop a novel notion of feature robustness that is able to bound the second term
for specific families of distributions Λ using key equation (1). Our definition of feature robustness
for a model f = (ψ ◦ φ) : X → Y depends on a small number δ > 0, a sample set S and a feature
selection defined by a matrix A ∈ Rm×m of operator norm ||A|| ≤ 1. With feature perturbations
φA(x) = (I +A)φ(x) and

EφF (f, S,A) :=
1

|S|

|S|∑
i=1

[
`(ψ(φA(xi)), y[φA(xi)])− `(f(xi), yi)

]
, (4)

the definition of feature robustness is given as follows.
Definition 1. Let ` : Y × Y → R+ denote a loss function, ε and δ two positive (small) real numbers,
S ⊆ X × Y a finite sample set, and A ∈ Rm×m a matrix. A model f(x) = (ψ ◦ φ)(x) with

φ(X ) ⊆ Rm is called ((δ, S,A), ε)((δ, S,A), ε)((δ, S,A), ε)-feature robust, if
∣∣∣EφF (f, S, αA)

∣∣∣ ≤ ε for all 0 ≤ α ≤ δ. More
generally, for a probability distribution A on perturbation matrices in Rm, we define

EφF (f, S,A) = EA∼A
[
EφF (f, S,A)

]
,

and call the model ((δ, S,A), ε)((δ, S,A), ε)((δ, S,A), ε)-feature robust on average over A, if
∣∣∣EφF (f, S, αA)

∣∣∣ ≤ ε for 0 ≤
α ≤ δ.

Given a feature extractor φ, feature robustness measures the performance of ψ when feature values
are perturbed (with constant feature extractor φ). This local robustness at sample points differs from
the robustness of Xu and Mannor [40] that requires a data-independent partitioning of the input
space. The matrix A in feature robustness determines which feature values shall be perturbed. For
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each sample, the perturbation is linear in the expression of the feature. Thereby, we only perturb
features that are relevant for the output for a given sample and leave feature values unchanged that
are not expressed. For φ mapping into an intermediate layer of a neural network, traditionally, the
activation values of a neuron are considered as feature values, which corresponds to a choice of A
as a projection matrix. However, it was shown by Szegedy et al. [35] that, for any other direction
v ∈ Rm, ||v|| = 1, the values 〈φ(x), v〉 obtained from the projection φ(x) onto v, can be likewise
semantically interpreted as a feature. This motivates the consideration of general feature matrices A.

Distributions on feature matrices induce distributions on the feature space Feature robustness
is defined in terms of feature matrices (suitable for an application of (1) to connect perturbations
of features with perturbations of weights), while the approach exploiting representative data from
Section 2 considers distributions on feature vectors, cf. (3). To connect feature robustness to the
notion of ε-representativeness, we specify for any distributionA on matrices A ∈ Rm×m an |S|-tuple
ΛA = (λi) of probability density functions λi on the feature space Rm with support containing
the origin. Multiplication of a feature matrix with a feature vector φ(xi) defines a feature selection
Aφ(xi), and for each z ∈ Rm there is some feature matrix A with φ(xi) + z = φ(xi) + Aφ(xi)
(unless φ(xi) = 0). Our choice for distributions λi on Rm are therefore distributions that are
induced via multiplication of feature vectors φ(xi) ∈ Rm with matrices A ∈ Rm×m sampled from
a distribution on feature matrices A . Formally, we assume that a Borel measure µA is defined
by a probability distribution A on matrices Rm×m. We then define Borel measures µi on Rm by
µi(C) = µA({A | Aφ(xi) ∈ C}) for Borel sets C ⊆ Rm. Then λi is the probability density function
defined by the Borel measure µi. As a result, we have for each i that

EA∼A
[
`(ψ(φA(xi)), y(φA(xi)))

]
= Ez∼λi

[
`(ψ(φ(xi) + z), y(φ(xi) + z))

]
Feature robustness and generalization. With this construction and a distribution ΛA on the
feature space induced by a distribution A on feature matrices, we have that

E(f) = Eemp(f, S) + EφRep(f, S,ΛA) + EφF (f, S,A) (5)

Here,A can be any distribution on feature matrices, which can be chosen suitably to control how well
the corresponding mixture of local distributions approximates the true distribution. The third term
then measures how robust the model is in expectation over feature changes for A ∼ A. In particular,
if EφRep(f, S,ΛA) ≈ 0, then Egen(f, S) ≈ EφF (f, S,A) and the generalization gap is determined by
feature robustness. We end this section by illustrating how distributions on feature matrices induce
natural distributions on the feature space. The example will serve in Sec. 5 to deduce a bound on
EφRep(f, S,ΛA) from kernel density estimation.

Example: Truncated isotropic normal distributions are induced by a suitable distribution on
feature matrices. We consider probability distributions Kδ||φ(xi)|| on feature vectors z ∈ Rm in the
feature space defined by densities kδ||φ(xi)||(0, z) with smooth rotation-invariant kernels, bounded
support and bandwidth h:

kh(zi, z) =
1

hm
· k
(
||zi − z||

h

)
· 1||zi−z||<h (6)

with 1||zi−z||<h = 1 when ||z − zi|| < h and 0 otherwise, and such that
∫
z∈Rm kh(z0, z) dz =

1 for all z0. An example for such a kernel is a truncated isotropic normal distribution with variance
h2σ2I , kh(zi, z) = N (zi, h

2σ2)(z). The following result states that the densities in (6) can indeed
be induced by distributions on feature matrices, which will enable us to connect feature robustness
with ε-representativeness.
Proposition 2. Let Sφ = {φ(xi) |xi ∈ S} be a set of feature vectors in Rm. With kh defined as in
(6), let λi(z) = kδ||φ(xi)||(0, z) define an |S|-tuple Λδ of densities. Then there exists a distribution
Aδ on matrices in Rm×m of norm less than δ such that for each i = 1, . . . , |S|,

EA∼Aδ
[
`(ψ(φA(xi)), y(φA(xi)))

]
= Eξ∼λi

[
`(ψ(φ(xi) + ξ), y(φ(xi) + ξ))

]
The technical proof is deferred to the appendix, but we describe the distribution Aδ on matrices for
later use: The desired distribution is defined on the set of matrices of the form rO for a real number r
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and an orthogonal matrix O (i.e. OOT = OTO = I) as a product measure combining the (unique)
Haar measure on the set of orthogonal matrices O(m) with a suitable distribution on R. The Haar
measure on O(m) induces the uniform measure on a sphere of radius r via multiplication with a
vector of length r [17], and we choose a measure on R to match the radial change of the kernel kh.

4 Relative Flatness of the Loss Surface

Flatness is a property of the parameter space quantifying the change in loss under small parameter
perturbations, classically measured by the trace of the loss Hessian Tr(H), where H is the matrix
containing the partial second derivatives of the empirical risk with respect to all parameters of
the model. In order to connect feature robustness (a property of the feature space) to flatness, we
present how key equation (1) translates to the empirical risk: For a model f(x,w) = ψ(w, φ(x)) =
g(wφ(x)) with parameters w ∈ Rd×m and g : Rd → Y a function on a matrix product of parameters
w and a feature representation φ : X → Rm and any feature matrix A ∈ Rm×m we have that

Eemp(w+wA, φ(S)) =
1

|S|

|S|∑
i=1

`(ψ(w + wA, φ(xi)), yi)

=
1

|S|

|S|∑
i=1

`(ψ(w, φ(xi) +Aφ(xi)), yi) =
1

|S|

|S|∑
i=1

`(ψ(w, φA(xi)), yi)

(7)

Subtracting Eemp(w, φ(S)) = 1
|S|
∑|S|
i=1 `(ψ(w, φ(xi)), yi), we can recognize feature robustness

(4) on the right side of this equality when labels are constant under perturbations of the features,
i.e. y(φA(xi)) = yi. In other words, flatness Eemp(w + v, φ(S)) − Eemp(w, φ(S)) describes the
performance of a model function on perturbed feature vectors while holding labels constant. We
proceed to introduce a novel, but natural, loss Hessian-based flatness measure that approximates
feature robustness, given that the underlying data distribution D satisfies the assumption of locally
constant labels.

With ws = (ws,t)t ∈ R1×m denoting the s-th row of the parameter matrix w, we let
Hs,s′(w, φ(S)) ∈ Rm×m denote the Hessian matrix containing all partial second derivatives of
the empirical risk Eemp(w, φ(S)) with respect to weights in rows ws and ws′ , i.e.

Hs,s′(w, φ(S)) =

[
∂2Eemp(w, φ(S))

∂ws,t∂ws′,t′

]
1≤t,t′≤m

. (8)

Definition 3. For a model f(x,w) = g(wφ(x)), w ∈ Rd×m, with a twice differentiable function g,
a twice differentiable loss function ` and a sample set S, relative flatness is defined by

κφTr(w) :=

d∑
s,s′=1

〈ws,ws′〉 · Tr(Hs,s′(w, φ(S))), (9)

where Tr denote the trace and 〈ws,ws′〉 = wsw
T
s′ the scalar product of two row vectors.

Properties of relative flatness (i) Relative flatness simplifies to ridge regression for linear models
f(x,w) = wx ∈ R (X = Rd, g = id and φ = id) and squared loss: To see this, note that for
any loss function `, the second derivatives with respect to the parameters w ∈ Rd computes to
∂2`

∂wi∂wj
= ∂2`

∂(f(x,w))2xixj . For `(ŷ, y) = ||ŷ − y||2 the squared loss function, ∂2`/∂ŷ2 = 2 and
the Hessian is independent of the parameters w. In this case, κidTr = c · ||w||2 with a constant
c =

∑
x∈S 2Tr(xxT ), which is the well-known Tikhonov (ridge) regression penalty.

(ii) Invariance under reparameterization: We consider neural network functions

f(x) = wLσ(. . . σ(w2σ(w1x+ b1) + b2) . . .) + bL (10)

of a neural network of L layers with nonlinear activation function σ. By letting φl(x) denote the
composition of the first l − 1 layers, we obtain a decomposition f(x,wl) = gl(wlφl(x)) of the
network. Using (9) we obtain a relative flatness measure κlTr(w) for the chosen layer.
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For a well-defined Hessian of the loss function, we require the network function to be twice differ-
entiable. With the usual adjustments (equations only hold almost everywhere in parameter space),
we can also consider neural networks with ReLU activation functions. In this case, Dinh et al. [5]
noted that the network function —and with it the generalization performance— remains unchanged
under linear reparameterization, i.e., multiplying layer l with α > 0 and dividing layer k 6= l by α,
but common measures of the loss Hessian change. Our measure fixes this issue in relating flatness to
generalization since the change of the loss Hessian is compensated by multiplication with the scalar
products of weight matrices and is therefore invariant under layer-wise reparameterizations [cf. 26].
It is also invariant to neuron-wise reparameterizations, i.e., multiplying all incoming weights into a
neuron by a positive number α and dividing all outgoing weights by α [23], except for neuron-wise
reparameterizations of the feature layer φl. Using a simple preprocessing step (a neuron-wise repa-
rameterization with the variance over the sample), our proposed measure becomes independent of all
neuron-wise reparameterizations.
Theorem 4. Let σi denote the variance of the i-th coordinate of φl(x) over samples x ∈ S and
V = diag

(
σ1, . . . , σnl−1

)
. If the relative flatness measure κlTr is applied to the representation

f(x) = wLσ(. . . σ(wlV σ(V −1wl−1σ(. . . σ(w1x+ b1)) . . .) + V −1bl−1) + bl) . . .) + bL

then κlTr is invariant under all neuron-wise (and layer-wise) reparameterizations

We now connect flatness with feature robustness: Relative flatness approximates feature robustness
for a model at a local minimum of the empirical risk, when labels are approximately constant in
neighborhoods of the training samples (φ(x), y) ∈ φ(S) in feature space.
Theorem 5. Consider a model f(x,w) = g(wφ(x)) as above, a loss function ` and a sample set S,
and let Om ⊂ Rm×m denote the set of orthogonal matrices. Let δ be a positive (small) real number
and w = ω ∈ Rd×m denote parameters at a local minimum of the empirical risk on a sample set
S. If the labels satisfy that y(φδA(xi)) = y(φ(xi)) = yi for all (xi, yi) ∈ S and all ||A|| ≤ 1, then
f(x, ω) is ((δ, S,Om), ε)-feature robust on average over Om for ε = δ2

2mκ
φ
Tr(ω) +O(δ3).

Applying the theorem to Eq. 5 implies that if the data is representative, i.e., EφRep(f, S,ΛAδ) ≈ 0

for the distribution Aδ of Prop. 2, then Egen(f(·, ω), S) . δ2

2mκ
φ
Tr(ω) +O(δ3). The assumption on

locally constant labels in Thm. 5 can be relaxed to approximately locally constant labels without un-
raveling the theoretical connection between flatness and feature robustness. Appendix B investigates
consequences from even dropping the assumption of approximately locally constant labels.

5 Flatness and Generalization

Combining the results from sections 2–4, we connect flatness to the generalization gap when the
distribution can be represented by smooth probability densities on a feature space with approximately
locally constant labels. By approximately locally constant labels we mean that, for small δ, the loss
in δ||φ(xi)||-neighborhoods around the feature vector of a training sample xi is approximated (on
average over all training samples) by the loss for constant label y(xi) on these neighborhoods. This
and the following theorem connecting flatness and generalization are made precise in Appendix D.4.
Theorem 6 (informal). Consider a model f(x,w) = g(wφ(x)) as above, a loss function ` and a
sample set S, let m denote the dimension of the feature space defined by φ and let δ be a positive
(small) real number. Let ω denote a local minimizer of the empirical risk on a sample set S. If the
distribution D has a smooth density pφD on the feature space Rm with approximately locally constant
labels around the points x ∈ S, then it holds with probability 1−∆ over sample sets S that

Egen(f(·, ω), S) . |S|−
2

4+m

(
κφTr(ω)

2m
+ C1(pφD, L) +

C2(pφD, L)√
∆

)
up to higher orders in |S|−1 for constants C1, C2 that depend only on the distribution in feature
space pφD induced by φ, the chosen |S|-tuple Λδ and the maximal loss L.

To prove Theorem 6 we bound both ε-representativeness and feature robustness in Eq. 5. For that, the
main idea is that the family of distributions considered in Proposition 2 has three key properties: (i) it
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Figure 3: The correlation between flatness and
generalization increases with the degree of locally
constant labels.

Figure 4: Approximation of representativeness
via KDE together with relative flatness leads to a
tight generalization bound.

provides an explicit link between the distributions on feature matrices Aδ used in feature robustness
and the family of distributions Λδ of ε-representativeness (Proposition 2) (ii) it allows us to bound
feature robustness using Thm. 5; and (iii) it is simple enough that it allows us to use standard results
of kernel density estimation (KDE) to bound representativeness.

Our bound suffers from the curse of dimensionality, but for the chosen feature space instead of
the (usually much larger) input space. The dependence on the dimension is a result of using KDE
uniformly over all distributions satisfying mild regularity assumptions. In practice, for a given
distribution and sample set S, representativeness can be much smaller, which we showcase in a toy
example in Sec. 6. In the so-called interpolation regime, where datasets with arbitrarily randomized
labels can be fit by the model class, the obtained convergence rate is consistent with the no free lunch
theorem and the convergence rate derived by Belkin et al. [2] for an interpolation technique using
nearest neighbors.

A combination of our approach with prior assumptions on the hypotheses or the algorithm in
accordance to statistical learning theory could potentially achieve faster convergence rate. Our herein
presented theory is instead based solely on interpolation and aims to understand the role of flatness (a
local property) in generalization: If the data is representative in feature layers and if the distribution
can be approximated by locally constant labels in these layers, then flatness of the empirical risk
surface approximates the generalization gap. Conversely, Equation 7 shows that flatness measures
the performance under perturbed features only when labels are kept constant. As a result, we offer an
explanation for the often observed correlation between flatness and generalization: Real-world data
distributions for classification are benign in the sense that small perturbations in feature layers do
not change the target class, i.e., they can be approximated by locally constant labels. (Note that the
definition of adversarial examples hinges on this assumption of locally constant labels.) In that case,
feature robustness is approximated by flatness of the loss surface. If the given data and its feature
representation are further ε-representative for small ε ≈ 0, then flatness becomes the main contributor
to the generalization gap leading to their noisy, but steady, correlation.

6 Empirical Validation

We empirically validate the assumptions and consequences of the theoretical results derived above 2.
For that, we first show on a synthetic example that the empirical correlation between flatness and
generalization decreases if labels are not locally constant, up to a point when they are not correlated
anymore. We then show that the novel relative flatness measure correlates strongly with generalization,
also in the presence of reparameterizations. Finally, we show in a synthetic experiment that while
representativeness cannot be computed without knowing the true data distribution, it can in practice
be approximated. This approximation—although technically not a bound anymore—tightly bounds
the generalization gap. Synthetic data distributions for binary classification are generated by sampling
4 Gaussian distributions in feature space (two for each class) with a given distance between their
means (class separation). We then sample a dataset in feature space Sφ, train a linear classifier

2 Code is available at https://github.com/kampmichael/relativeFlatnessGeneralization.
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ψ on the sample, randomly draw the weights of a 4-layer MLP φ, and generate the input data as
S = (φ−1(Sφx ), Sφy ). This yields a dataset S and a model f = φ ◦ ψ such that φ(S) has a given class
separation. Details on the experiments are provided in Appdx. C.

Locally constant labels: To validate the necessity of locally constant labels, we measure the correla-
tion between the proposed relative flatness measure and the generalization gap for varying degrees of
locally constant labels, as measured by the class separation on the synthetic datasets. For each chosen
class separation, we sample 100 random datasets of size 500 on which we measure relative flatness
and the generalization gap. Fig. 3 shows the average correlation for different degrees of locally
constant labels, showing that the higher the degree, the more correlated flatness is with generalization.
If labels are not locally constant, flatness does not correlate with generalization.

Figure 5: The generalization gap for various local minima corre-
lates stronger with relative flatness than standard flatness, Fisher-
Rao norm, PacBayes based measure and weights norm (points
corresp. to local minima).

Approximating representative-
ness: While representativeness
cannot be calculated without
knowing the data distribution, it
can be approximated from the
training sample S by the error
of a density estimation on that
sample. For that, we use mul-
tiple random splits of S into a
training set Strain and a test set
Stest, train a kernel density estima-
tion on Strain and measure its er-
ror on Stest. Again, details can be
found in Appx. C. The lower the
class separation of the synthetic
datasets, the harder the learning
problem and the less represen-
tative a random sample will be.
For each sample and its distribu-
tion, we compute the generaliza-
tion gap and the approximation
to the generalization bound. The
results in Fig. 4 show that the approximated generalization bound tightly bounds the generalization
error (note that this approximation is technically not a bound anymore). Moreover, as expected, the
bound decreases the easier the learning problems become.

Relative flatness correlates with generalization: We validate the correlation of relative flatness
to the generalization gap in practice by measuring it for 110 different local minima—achieved via
different learning setups, such as initialization, learning rate, batch size, and optimization algorithm—
of LeNet5 [19] on CIFAR10 [18]. We compare this correlation to the classical Hessian-based flatness
measures using the trace of the loss-Hessian, the Fisher-Rao norm [21], the PACBayes flatness
measure that performed best in the extensive study of Jiang et al. [14] and the L2-norm of the weights.
The results in Fig. 5 show that indeed relative flatness has higher correlation than all the competing
measures. Of these measures, only the Fisher-Rao norm is reparameterization invariant but shows the
weakest correlation in the experiment. In Appdx C we show how reparameterizations of the network
significantly reduce the correlation for non-reparameterization invariant measures.

7 Discussion and Conclusion

Contributing to the trustworthiness of machine learning, this paper provides a rigorous connection
between flatness and generalization. As to be expected for a local property, our association between
flatness and generalization requires the samples and its representation in feature layers to be represen-
tative for the target distribution. But our derivation uncovers a second, usually overlooked condition.
Flatness of the loss surface measures the performance of a model close to training points when labels
are kept locally constant. If a data distribution violates this, then flatness cannot be a good indicator
for generalization.
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Whenever we consider feature representations other than the input features, the derivation of our
results makes one strong assumption: the existence of a target output function y(φ(x)) on the
feature space φ(X ). By moving assumptions on the distribution from the input space to the feature
space, we achieve a bound based on interpolation that depends on the dimension of the feature
layer instead of the input space. Hence, we assume that the feature representation is reasonable and
does not lose information that is necessary for predicting the output. To achieve faster convergence
rates independent of any involved dimensions, future work could aim to combine our approach of
interpolation with a prior-based approach of statistical learning theory.

Our measure of relative flatness may still be improved in future work. Better estimates for the
generalization gap are possible by improving the representativeness of local distributions in two
ways: The support shape of the local distributions can be improved and their volume-parameter δ
can be optimally chosen. Both improvements will affect the derivation of the measure of relative
flatness as an estimation of feature robustness for the corresponding distributions on feature matrices.
Whereas different support shapes change the trace to a weighted average of the Hessian eigenvalues,
the volume parameter can provide a correcting scaling factor. Both approaches seem promising to us,
as our relative measure from Definition 3 already outperforms the competing measures of flatness in
our empirical validation.
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Organization of the Appendix The appendix is organized as follows:

A – Related work contains an extended discussion on related work.

B – The effect of local label changes discusses consequences for the association of flatness and
generalization for general output function y(x) without the assumption of locally constant labels.

C – Details on the Empirical Validation contains a detailed description of the experiments.

D – Proofs contains the full proofs to all statements. In detail:

D.1: Proposition 2,
D.2: Theorem 4,
D.3: Theorem 5,
D.4: Theorem 6.

E – Relative flatness for a uniform bound over general distributions on feature matrices defines
a variant of relative flatness that uniformly bounds feature robustness over all feature matrices.

A Related Work

It has long been observed that algorithms searching for flat minima of the loss curve lead to better
generalization [10, 11]. More recently, an association between flatness and low generalization error
has also been validated empirically in deep learning [16, 27, 38]. Here, flatness is measured by
the Hessian of the empirical loss evaluated at the model at hand. Indeed, in their recent extensive
empirical study of generalization measures, Jiang et al. [14] found that measures based on flatness
have the highest correlation with generalization.

For models trained with stochastic gradient descent (SGD), this could present a (partial) explanation
for their generalization performance, since the convergence of SGD can be connected to flat local
minima by studying SGD as an approximation of a stochastical differential equation [13, 43].
However, while large and small batch methods appear to converge in different basins of attraction,
the basins can be connected by a path of low loss, i.e., they can actually converge into the same basin
[32]. Moreover, as Dinh et al. [5] remarked, classical flatness measures—which are based only on
the Hessian of the loss function—cannot theoretically be related to generalization: For deep neural
networks with ReLU activation functions, there are linear reparameterizations that leave the network
function unchanged (hence, also the generalization performance), but change any measure derived
only from the loss Hessian. Novel measures related to flatness have been proposed that are invariant
to linear reparameterizations [21, 31, 37]. Rangamani et al. [31] measure flatness in the quotient
space of a suitable equivalence relation, and Liang et al. [21] utilize the Fisher-Rao metric, but the
theoretical connection of these two measures to generalization is not well-understood. Neyshabur
et al. [26] noted that the reparamterization-issue can in general be resolved by balancing a measure
of flatness with a norm on the parameters, which is the way that normalized flatness [37], Fisher-Rao
metric [21] and our proposed relative flatness become reparameterization-invariant. However, the
solution proposed in Neyshabur et al. [26] necessitates data-dependent priors [7] or related approaches,
which "adds non-trivial costs to the generalization bounds" [37].

The question arises in which way the loss Hessian and parameter norm should be combined. A simple
scaling of the full Hessian with the squared parameter norm does not provide a reparamterization-
invariant measure. Doing so for each layer independently and summing up the results provides a
measure that is only invariant under layer-wise reparameterizations. Similarly, only considering
a single feature layer yields a measure that is layer-wise reparameterization invariant [30]. While
the resulting measure can also be analyzed within our framework to obtain a bound on feature
robustness, our proposed measure yields a tighter bound and is also invariant under neuron-wise
reparameterizations.

Tsuzuku et al. [37] derive a flatness measure that scales an approximation to the loss Hessian by
a parameter-dependent term. Their proposed measure correlates well with generalization and is
theoretically connected to it via the PAC-Bayesian framework. However, this connection requires
the assumption of Gaussian priors and posteriors and is not informative with respect to conditions
under which this connection holds. Moreover the measure is impractical, since computing it requires
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solving an optimization problem for every layer that can be numerically unstable. (Tsuzuku et al. [37]
propose a solution to the numerical instability at the cost of losing the reparameterization-invariance.)
Instead, relative flatness can be computed directly and takes only parameters of a specific layer into
account—although combining relative flatness of all layers by simple summation is possible.

A series of recent papers studies flatness by minimizing the loss at local perturbations of the parameters
considering mina Eemp(f(w + a), S) [8, 34, 39, 44]. Regularization techniques enforcing these
notions of flatness during training in classification tasks lead to better generalization. These empirical
results follow earlier works by Chaudhari et al. [4] and Izmailov et al. [12] that similarly obtained
better generalization by enforcing flatter minima. Their observations are well-explained by our theory:
Low error at perturbations Eemp(f(w + a), S) lead to good generalization around training samples.
This requires that the underlying distribution has (approximately) locally constant labels (using key
equation (1)), which is reasonable for the image classification tasks they consider.

Xu and Mannor [40] propose a notion of robustness over a partion of the input space and derive
generalization bounds based on it. However, their notion requires the choice of a partitioning of the
input space before seeing any samples. Thus, robustness over the partition can be hard to estimate
for a model that depends on a sample set S. Our notion of feature robustness is measured around a
given sample set and thus does not require a uniform data-independent partitioning. Such a sample-
dependent notion of robustness is necessary to connect it to the flatness of the loss surface, since
flatness is a local property around training points.

Novak et al. [27] find that robustness to input perturbation as measured by the input-output Jacobian
correlates well with generalization on classification tasks. This is in line with our findings applied
to φ = idX chosen as the identity (for neural networks this means considering the input layer as
features): it follows from Equation 1 that robustness to input perturbations directly relates to flatness.
Therefore, these findings give additional empirical evidence to the correlation between flatness and
generalization. Yao et al. [41] study the Hessian with respect to the input x ∈ X and also find that
robust learning tends to converge to minima where the input-ouptut Hessian has small eigenvalues.
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B The effect of local label changes

For classification tasks with one-hot vectors as labels, the assumption of locally constant labels, i.e.,
locally constant target output function y(x), seems reasonable since we would not expect the class
label to change under (infinitesimally) small changes. One could nonetheless consider a smooth
output function with values encoding class probabilities for classification, which may change locally
around the training points. For regression tasks, the assumption of locally constant output function is
rather unrealistic or at the very least restrictive.

Taking the term defining feature robustness (4) as a starting point, we investigate its connection to
flatness when the output function y(x) is a smooth function. In the usual setting of machine learning,
this information is unknown. We will show that label changes can contribute stronger to the loss in
neighborhoods around training samples than (relative) flatness.

To investigate the label dependence, we use the same trick as in (7) to transfer perturbations in the
input x to perturbations in parameter space w. To simplify the analysis, we apply feature robustness
to the input space (i.e., we only consider φ = idX here). Let f(x,w) = ψ(wx) be a model composed
of a matrix multiplication of x with w and a differentiable predictor function ψ.

EF̃ (f, S,A) = 1
n

∑n
i=1 (`(f(xi + δAxi,w), y[xi + δAxi])− `(f(xi,w), yi))

= 1
n

∑n
i=1 (`(f(xi,w + δwA), y[xi + δAxi])− `(f(xi,w), yi))

Defining a function
γi(δ) = `(f(xi,w + δwA), y[xi + δAxi]), (8)

we have that EF̃ (f, S,A) = 1
n

∑n
i=1 γi(δ). For each γi we use Taylor approximation in δ. In

the following, we write `w(xi,w
∗, yi) for the first derivative of the loss with changes in w at

xi, yi = y[xi] and w∗, and we write `y(xi,w
∗, yi) for the first derivative of the loss with changes of

the output y at xi, yi = y[xi] and w∗. Similarly, we consider second derivatives `ww, `yy and `wy.
Finally, we denote the derivative of y(x) with respect to x by yx and the second derivative by yxx.
Then,

γ′i(0) = `w(xi,w
∗, yi) · (w∗A) + `y(xi,w

∗, yi) · (yx(xi) ·Axi) (9)
and

γ′′i (0) = (w∗A)T `ww(xi,w
∗, yi)(w

∗A) + (yx(xi) ·Axi)T `yy(xi,w
∗, yi)(yx(xi) ·Axi) (10)

+
∑

labels c

`yc(xi,w
∗, yi) · (Axi)T (yc)xx(xi) · (Axi) + 2(yx(xi) ·Axi)T `yw(xi,w

∗, yi)(w
∗A) (11)

At a critical point we have that
∑
i `w(xi,w

∗, yi) = 0, but since we do not know how the target
output function y(x) changes locally, we do not necessarily3 enforce that

∑
i `y(xi, w

∗, yi) = 0 at a
local optimum. In that case, EF̃ (f, S,A) =

∑
i `y(xi, w

∗, yi)δ +O(δ2) has a non-zero term of first
order in δ and flatness only contributes as a term of order two. Similarly, other terms in (10) can be
nonzero, further reducing the influence of relative flatness to a bound on feature robustness.

As an interesting special case, we note that for one-hot encoded labels in classification and letting the
output function y(x) describe a parameter vector of a conditional label-distribution given x, we have
yx(xi) = 0 (recall that we suppose y(xi) = yi) as each vector component is either 1 or 0 and must
be a local extreme point (y(x) cannot contain values larger than 1 or smaller than 0 by assumption),

We leave a detailed investigation of the consequences of label changes as future work, but identify the
implicit assumption of locally constant labels in loss Hessian-based flatness measures as a possible
limitation: Flatness can only be descriptive if optimal label changes are approximately locally
constant. The fact that a strong correlation between flatness and generalization gap has been often
observed points to the fact that distributions in practice satisfy this implicit assumption.

3This depends on the loss function in use.
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C Details on the Empirical Validation

Here we provide additional details on the empirical evaluation. Jupyter notebooks
containing the experiments are available at https://github.com/kampmichael/
relativeFlatnessGeneralization, ensuring reproducibility, together with an implemen-
tation of the relative flatness measure in pytorch [28].

C.1 Synthetic Experiments

The experiments on locally constant labels and approximating representativeness use a synthetic
sample in feature space. The schema for both experiments is to

1. create a synthetic dataset in feature space Sφ and test set Tφ,
2. create a model f = φ ◦ ψ,
3. derive input data as S =

(
φ−1

(
Sφx
)
, Sφy

)
, T =

(
φ−1

(
Tφx
)
, Tφy

)
4. compute relative flatness (or other measures) of f on S,
5. and estimate its generalization gap by computing the empirical risk of f on S, and computing

the test error on the test test T to estimate the risk.

1) To create Sφ with a given class separation c, we randomly sample 4 cluster centroids θ from a
hypercube in R6 and scale them so that their distance is c. We then sample a random covariance
matrix Σ for each cluster and sample points from a Gaussian N (θ,Σ). Furthermore, we create two
redundant features that are a random linear combination of the 6 informative features. We obtain
labels by assigning two clusters to class 1 and the other two to class −1.

2) We create the model f by first training a linear model ψ on Sφ using ridge regression from
scikit-learn [29]. We then sample a random 4-layer MLP (with architecture 784-512-128-16-8, tanh
activation, and Glorot initialization [9]) that we use as feature extractor φ. With this, we obtain the
5-layer MLP f = φ ◦ ψ by adding an 8− 2 layer with weights obtained from ψ.

3) We obtain input data S by reverse propagation of samples in feature space Sφx through the 4-layer
MLP φ. This is an approximation to the inverse feature extractor φ−1. For the output of each layer
z, we first compute z′ = tanh−1(z), i.e., the inverse of the activation function. We then solve
Wz + b = x, where W, b are the weights and bias of that layer, and x is the corresponding input
we want to compute. This yields Sx = φ−1(Sφx ). Note that this reverse propagation of samples
introduces a small error. To keep experiments realistic, we discard Sφ after this step and use only the
input dataset S and model f in our computations.

4) We compute relative flatness as in Def. 3 (an implementation in pytorch is available on github, see
above).

5) We compute the empirical risk of f on S and estimate the risk on a test set. For the experiments
on locally constant labels, generate 5000 samples, use a training set of size 500, a test set of size
4500 (to ensure an accurate estimate of the risk), and repreat the experiment 100 times for each class
separation c. For the experiment on approximating representativeness, we use a sample of size 600
and perform 3-fold cross-validation.

Locally constant labels: For classification, labels are locally constant if in a neighborhood around
each point the label does not change. They are approximately locally constant, if this holds for most
points. By increasing the distance between the means of the Gaussians, we decrease the likelihood
of a point within a neighborhood having a different label. For a finite sample, this means that the
likelihood of observing two points close by with different labels decreases. Thus, by increasing the
class separation parameter, we increase the degree of locally constant labels.

Approximating representativeness: A finite random sample as described in 1) has a higher chance
of being representative when the means of the Gaussians have a high distance, because each individual
Gaussian can be interpolated easily. Of course, the actual representativeness of a sample at hand can
vary. Note that this is a very simple form of generating datasets with varying "difficulty". It will be
interesting to further explore the impact of the choice of data distribution on (an approximation to)
representativeness.
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Figure 6: Generalization gap and various flat-
ness measures for 110 local minima as presented
in Fig. 5. The generalization gap correlates
stronger with relative flatness than standard flat-
ness, Fisher-Rao norm, a PAC-Bayes based mea-
sure and the weights norm.

Figure 7: Modifying the local minima in the plot
Fig. 6 by reparameterization shows that the pro-
posed relative flatness and the Fisher-Rao norm
are invariant to them. It furthermore shows a
strong decline in correlation for all other mea-
sures.

Experiments on the synthetic datasets are run on a laptop with Intel Core i7 and NVIDIA GeForce
GTX 965 M 2 GB GPU. The code of the experiments is provided as a jupyter notebook so that they
can be easily reproduced.

C.2 Relative Flatness Correlates with Generalization

In this experiment, we validate that the proposed relative flatness correlates strongly with generaliza-
tion in practice. For that, we measure relative flatness (as well as classical flatness measured by the
trace of the loss Hessian, the Fisher-Rao norm, a PAC-Bayes based measure 4, and the weight norm)
together with the generalization gap for various local minima.

Figure 8: The generalization gap for various local minima corre-
lates with relative flatness measured on the layer different from
penultimate layer.

To obtain model parameters
at various local minima, we
train networks (LeNet5 [20])
on the CIFAR10 dataset until
convergence (measured in terms
of achieving a loss of less than
0.1 during an epoch, which
has been used as a criteria
for convergence in similar
experiments [14]) with varying
hyperparameters. In accordance
to works studying the impact
of hyperparameters on general-
ization [14, 16, 27, 31, 38], we
vary learning rate, mini-batch
size, initialization, and optimizer.
We vary the mini batch size
in 64, 128, 256, 512, 1024,
and the learning rate in
0.0001, 0.02, 0.05, running
10 randomly initialized training
rounds for each setup. We use SGD, ADAM, and RMSProp as optimizers. We only use combinations
that lead to convergence. The experiments were conducted on a cluster node with 4 NVIDIA GPU
GM200 (GeForce GTX TITAN X). As discussed in Sec. 6, relative flatness has the highest correlation
with generalization from all measures we analyzed.

4The implementation of PAC-Bayes based flatness measure is taken from https://github.com/
nitarshan/robust-generalization-measures/blob/master/data/generation/measures.py
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Figure 9: Layer1-based relative flatness for
MNIST experiment. Layer1 is the topmost layer.

Figure 10: Layer2-based relative flatness for
MNIST experiment.

Figure 11: Layer3-based relative flatness for
MNIST experiment.

Figure 12: Layer4-based relative flatness for
MNIST experiment. Layer4 is penultimate.

To study the effect of reparameterization, we apply layer-wise reparameterizations on the trained
network using random factors in the interval [5, 25] which yields a set of novel local minima. The
results in Fig. 7 show that both our proposed relative flatness and the Fisher-Rao norm are invariant
to these reparameterization. For all other measures, the correlation with generalization declines
substantially. The same would hold for neuron-wise reparameterizations, since both relative flatness
and the Fisher-Rao norm are also neuron-wise reparameterization invariant. Relative flatness and
the Fisher-Rao norm are also invariant under neuron-wise reparameterizations, which could be used
to further break the correlation for the other measures. For future work it would be interesting to
investigate further symmetries in neural networks and the impact of reparameterizations along these
symmetries on flatness measures.

In addition to the calculation of the relative flatness using the feature space of the penultimate layer,
we also performed calculations for another fully-connected layer in the network. The resulting
correlation can be seen in Fig. 8. It keeps the high correlation value, but due to less optimal feature
space we observe smaller number, than in the previous calculation. Nevertheless, it demonstrates that
any φ-ψ separation allows to compute relative flatness.

For checking deeper the viability of the relative flatness computed in different feature representations,
we ran a similar experiment with a fully-connected (784− 50− 50− 50− 30− 10) neural network
trained on MNIST dataset (Fig. 9, 10, 11, 12). We varied parameters of the optimization (batch size
in 1000− 2000− 4000− 8000 and learning rate in 0.02− 0.04− 0.08− 0.16 in order to keep the
ratio between them constant) and trained each network with SGD for 500 epochs. Only the networks
that achieved training loss lower than 0.07 are used for the plots. The observed correlation with
generalization gap is high for each of the representations in the network.
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D Proofs

D.1 Proof of Proposition 2

Proof. Let Kh denote probability distribution defined by a rotational-invariant kernel kh as in (6)
with kh(0, z) = 1

hm · k
(
||z||
h

)
· 1||z||<h and let λi(z) = kδ||φ(xi)||(0, z). Let L denote a continuous

function on Rm and Om the set of orthogonal matrices in Rm×m. We show that there exists
a probability measure κ on a set Mδ of matrices of norm smaller than δ, defining a probability
distribution Aδ, and a probability measure ω on the product space (0, δ] × Om such that for each
z ∈ Rm \ {0}:

EA∼Aδ
[
L(z +Az)

]
= E(r,O)∼ω

[
L(z + rOz)

]
= Eζ∼Kδ||z||

[
L(z + ζ)

]
(12)

Applying this result for each i = 1, . . . , |S| to Li(z) = `(ψ(w, z), yi[z]) at z = φ(xi) completes the
proof. For all the standard measure-theoretic concepts used in the proof, we refer the reader to [17].

Fix some ζ0 in Rm with ||ζ0|| = 1. We consider the Haar measure µ on the set of orthogonal matrices
Om. By [17, Proposition 3.2.1] and the change of variables formula, we have for each r ∈ (0, δ]∫

O∈Om
L(z + r||z||Oζ0) dµ(O) =

1

Vol(Sm−1)

∫
ξ∈Sm−1

L(z + r||z||ξ) dξ

where Sm−1 is the (m− 1)-sphere. We multiply both sides by Vol(Sm−1)
δm k

(
r
δ

)
rm−1, integrate over

r ∈ (0, δ] to obtain

Vol(Sm−1)

δm

∫ δ

r=0

∫
O∈Om

L(z + r||z||Oζ0)k
(r
δ

)
rm−1drdµ(O)

=
1

δm

∫ δ

r=0

∫
ξ∈Sm−1

L(z + r||z||ξ)k
(r
δ

)
rm−1 dr dξ

=
1

δm

∫
||ζ||≤δ

L(z + ||z||ζ)k

(
||ζ||
δ

)
dζ

=

∫
||ζ||≤δ||z||

L(z + ζ)
1

(δ||z||)m
k

(
||ζ||
δ||z||

)
dζ

Introducing the product measure ω := Vol(Sm−1)
δm · (k

(
r
δ

)
rm−1dr × µ) on (0, δ]×On, this implies

that
E(r,O)∼ω

[
L(z + r||z||Oξ0)

]
= Eζ∼Kδ||z||

[
L(z + ζ)

]
(13)

The measure ω can be pushed forward to a measure on matrices of norm ||A|| ≤ δ. For this, consider
the homeomorphism

H : (0, δ]×On → {rO | r ∈ (0, δ], O ∈ On} =: Mδ ⊆ {A ∈ Rn×n | ||A|| ≤ δ}
given by H(r,O) = rO. We use the inverse of H to push forward the measure ω to a measure κ on
Mδ and obtain from (13) that

EA∼(Mδ,κ)

[
L(z + ||z||Aζ0)

]
= Eζ∼Kδ||z||

[
L(z + ζ)

]
Finally, there exists an orthogonal matrix O such that O||z||ζ0 = z. Since κ(A) = κ(AO−1) by
definition of κ and since MδO = Mδ , we get for any z that

Eζ∼Kδ||z||
[
L(z + ζ)

]
= EA∼(Mδ,κ)

[
L(z +A||z||ζ0)

]
= EA∼(MδO−1,κ)

[
L(z +AO||z||ζ0)

]
= EA∼(Mδ,κ)

[
L(z +Az)

]
Hence, the probability distribution Aδ on matrices with norm bounded by δ defined by the
probability measure κ with support on Mδ, and the space (0, δ] × Om equipped with ω =
Vol(Sm−1)

δm · (k
(
r
δ

)
rm−1dr × µ) give the desired probability distributions satisfying (12).
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D.2 Proof of Theorem 4

We rephrase Theorem 4 split into Theorem 7 and a subsequent corollary that specify the reparam-
eterizations under consideration. Let f = f(w1, b1,w2, b2, . . . ,wL, bL) denote a ReLU network
function parameterized by parameters wk = wks,t and bias bk = bks of the k-th layer given by

f(x) = wLσ(. . . σ(wl σ(wl−1σ(. . . σ(w1x+ b1)) . . .) + bl−1) + bl) . . .) + bL.

Recall that we let φl(x) denote the composition of the first (l − 1) layers so that we obtain a
decomposition f(x,wl) = gl(wlφl(x)) of the network. Using (9) we obtain a relative flatness
measure κlTr(w) for the chosen layer.

A layer-wise reparameterizaton multiplies all weights in a layer l with a positive number λ and
divides the weights of another layer l′ 6= l by the same λ. Due to the positive homogeneity of the
ReLU activation, this does not change the network function. By a neuron-wise reparameterization,
we mean the operation that multiplies all weights into a neuron by some positive λ and divides all
outgoing weights of the same neuron by λ. Again, the positive homogeneity of the activation function
implies that this operation does not change the network function. A layer-wise reparameterization is
simply the parallel application of neuron-wise reparameterization for all neurons of one layer with
the same reparameterization parameter λ > 0.
Theorem 7. Let f = f(w1, b1,w2, b2, . . . ,wL, bL) denote a neural network function parameterized
by parameters wk = wks,t and bias bk = bks of the k-th layer. Suppose there are positive numbers λks,t
such that the parameters wk

λ, b
k
λ, obtained from multiplying wks,t at matrix position (s, t) in layer k by

λks,t and bks by λk(s,0), satisfy that f(w1, b1,w2, b2, . . . ,wL, bL) = f(w1
λ, b

1
λ,w

2
λ, b

2
λ, . . . ,w

L
λ , b

L
λ ).

If for the layer with index l it holds that λl(s,t) = λl(s,t′) for each s, t and t′, then κlTr(w) = κlTr(wλ)

for the notion of relative flatness from Definition 3.
Corollary 8. Let σi denote the variance of the i-th coordinate of φl(x) over samples x ∈ S and
V = diag

(
σ1, . . . , σnl−1

)
. If the relative flatness measure κlTr is applied to the representation

f = f(w1, b1, . . . , V −1wl−1, V −1bl−1,wlV, bl,wl+1, bl+1 . . . ,wL, bL), i.e.,

f(x) = wLσ(. . . σ(wlV σ(V −1wl−1σ(. . . σ(w1x+ b1)) . . .) + V −1bl−1) + bl) . . .) + bL,

then κlTr is invariant under all neuron-wise (and layer-wise) reparameterizations

Proof. We are given a neural network function f(x;w1, b1, . . . ,wL, bL) parameterized by param-
eters wk and bias terms bk of the k-th layer and positive numbers λ1

(s,t), . . . , λ
L
(s,t) such that the

parameters wk
λ obtained from multiplying weight wk(s,t) at matrix position (s, t) in layer k by λk(s,t)

and bks by λk(s,0) satisfies that

f(x;w1, b1,w2, b2, . . . ,wL, bL) = f(x;w1
λ, b

1
λ,w

2
λ, b

2
λ . . . ,w

L
λ , b

L
λ )

for all wk, bk and all x.

For fixed layer l, we denote the s-th row of wl by wl
s before reparameterization, and we denote the

s-th row of wl
λ by wl

λs after reparameterization. For simplicity of the notation, we will collect all
bias terms in terms b,bλ before and after reparameterization respectively. Let

F (u) :=

|S|∑
i=1

`(f(xi;w
1,w2, . . . , [wl

1, . . . ,w
l
s−1,u,w

l
s+1, . . .w

l
d], . . . ,w

L,b), yi)

denote the loss as a function on the parameters of the s-th neuron in the l-th layer (encoded in the
s-th row of wl) before reparameterization and

F̃ (u) :=

|S|∑
i=1

`(f(xi;w
1
λ,w

2
λ, . . . , [w

l
λ1, . . . ,w

l
λ(s−1),u,w

l
λ(s+1), . . .w

l
λd], . . . ,w

L
λ ,bλ), yi)

denote the loss as a function on the parameters into the s-th neuron in the l-th layer (encoded in the
s-th row of wl) after reparameterization.
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For the same layer l, we define a linear function ηs : Rm → Rm by

ηs(u) = ηs(u1, u2, . . . , um) = (u1λ
l
(s,1), u2λ

l
(s,2), . . . , umλ

l
(s,m)).

By assumption, we have that F̃ (ηs(w
l
s)) = F (wl

s) for all wl
s. By the chain rule, we compute for any

coordinate ut of u,
∂F (u)

∂ut

∣∣∣
u=wls

=
∂F̃ (ηs(u))

∂ut

∣∣∣
u=wls

=
∑
k

∂F̃ (ηs(u))

∂(ηs(u)k)

∣∣∣
ηs(u)=ηs(wls)

· ∂(ηs(u)k)

∂ut

∣∣∣
ηs(u)=ηs(wls)

=
∂F̃ (v)

∂vt

∣∣∣
v=wlλs

· λl(s,t).

Similarly, for

G(u,u′) :=

|S|∑
i=1

`(f(xi;w
1,w2, . . . , [wl

1, . . . ,w
l
s−1,u,w

l
s+1, . . . ,w

l
s′−1,u

′,wl
s′+1, . . .w

l
d], . . .

. . . ,wL, ,b), yi)

denoting the loss as a function on the parameters of the s-th and s′-th neuron in the l-th layer (encoded
in the s-th and s′-th row of wl) before reparameterization and for

G̃(u,u′) :=

|S|∑
i=1

`(f(xi;w
1
λ,w

2
λ, . . .

. . . , [wl
λ1, . . . ,w

l
λ(s−1),u,w

l
λ(s+1), . . . ,w

l
s′−1,u

′,wl
s′+1, . . .w

l
λd], . . .

. . .wL
λ , ,bλ), yi)

we have G̃(ηs(w
l
s), ηs′(w

l
s′)) = G(wl

s,w
l
s′). For all s, s′, t, t′ we obtain second derivatives

∂2G(u,u′)

∂ut∂u′t′

∣∣∣
u=wls,u

′=wl
s′

= λl(s,t)λ
l
(s′,t′)

∂2G̃(u,u′)

∂ut∂u′t′

∣∣∣
u=wlλs,u

′=wl
λs′

.

Consequently, the Hessian H(wl, S) of the empirical risk before reparameterization and the Hessian
H̃(wl

λ, S) after reparameterization satisfy at the position corresponding to ws,t and ws′,t′ that

Hs,s′(w
l, S)(t,t′) = λl(s,t)λ

l
(s′,t′) · H̃s,s′(w

l
λ)(t,t′).

Assuming that λls := λl(s,t) = λl(s,t′) for all s, t and t′, then we get that

κlTr(w) =

d∑
s,s′=1

〈wl
s,w

l
s′〉 · Tr(Hs,s′(w

l, S))

=

d∑
s,s′=1

〈w
l
λs

λls
,
wl
λs′

λls′
〉 · Tr(λlsλls′H̃s,s′(wλ, S))

=

d∑
s,s′=1

〈wl
λs,w

l
λs′〉 · Tr(H̃s,s′(wλ, S))

= κlTr(wλ)

This proves Theorem 7.

To show the corollary, we first observe that all layer-wise reparameterizations are covered by the
theorem. To see this, we only need to check that the condition λl(s,t) = λl(s,t′) holds for each s, t and
t′. For layer-wise reparameterizations, we even have that λl(s,t) = λl for all s, t, since all weights of
one layer are multiplied by the same scalar λl, and λl(s,t) = λl(s,t′) is easily seen to hold true.

22



Note further, that any neuron-wise reparameterization given by multiplying all weights into a neuron
in a layer ι 6= l − 1 by λ > 0 and dividing all outgoing weights by λ is also covered by the theorem.
Hence, the only neuron-wise reparameterization that can change the relative flatness measures is
the one multiplying some row of wl−1 by some λ > 0 and dividing the corresponding column of
wl by the same λ. However, by multiplying both wl−1 and wl with V −1 and V from the left and
right respectively, we perform an explicit neuron-wise reparameterization that chooses a unique
representative and therefore removes the dependence on such reparamerizations.
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D.3 Proof of Theorem 5

In this section, we prove Theorem 5. For clarity, we repeat the assumptions and the statement we
prove in this section:

We consider a model f(x,w) = g(wφ(x)), a loss function ` and a sample set S, and letOm ⊂ Rm×m
denote the set of orthogonal matrices. Let δ be a positive (small) real number and w = ω ∈ Rd×m
denote parameters at a local minimum of the empirical risk on a sample set S. If the output function
satisfies that y[φδA(xi)] = y[φ(xi)] = yi for all (xi, yi) ∈ S and all matrices ||A|| ≤ 1, then we want
to show that f(x, ω) is ((δ, S,Om), ε)-feature robust on average overOm for ε = δ2

2mκ
φ
Tr(ω)+O(δ3),

i.e., ∣∣∣EφF (f, S, αA)
∣∣∣ ≤ δ2

2m
κφTr(ω) +O(δ3) for all 0 ≤ α ≤ δ

Proof. Writing zi = φ(xi) and Eemp(w, S) = Eemp(f(w, x), S) and using the assumption that
y[φδA(xi)] = yi for all (xi, yi) ∈ S and all ||A|| ≤ 1, we have for any 0 ≤ α ≤ δ,

EφF (f, S, αA) + Eemp(w, S) =
1

|S|

|S|∑
i=1

`(ψ[w, φαA(xi)], y[φαA(xi)])

=
1

|S|

|S|∑
i=1

`(ψ(w, zi + αAzi), yi)

=
1

|S|

|S|∑
i=1

`(ψ(w + αwA, zi), yi)

= Eemp(w + αwA,S)

(14)

The latter is the empirical error Eemp(w+αwA,S) of the model f on the sample set S at parameters
w + αwA. If δ is sufficiently small, then by Taylor expansion around the local minimum w = ω, we
have up to order of O(δ3) that

Eemp(ω + αωA, S) = Eemp(ω, S) +
α2

2

d∑
s,t=1

(ωsA) ·Hs,t(ω, φ(S)) · (ωtA)T

≤ Eemp(ω, S) +
δ2

2

d∑
s,t=1

(ωsA) ·Hs,t(ω, φ(S)) · (ωtA)T

(15)

where ωs denotes the s-th row of ω.

We consider the set of orthogonal matrices Om as equipped with the (unique) normalized Haar
measure. (For the definition of the Haar measure, see e.g. [17].) We need to show that
EA∼Om

[
EφF (f, S, αA)

]
≤ δ2

2m

∑
s,t〈ws,wt〉 ·Tr(Hs,t) for all 0 ≤ α ≤ δ with EφF (f, S,A) defined

as in Eq. 4. Using (14) and (15) we get

EA∼Om
[
EφF (f, S, αA)

]
≤ EA∼Om

[δ2

2

d∑
s,t=1

(ωsA)Hs,t(ω, S)(ωtA)T
]

+O(δ3)

Using the unnormalized trace Tr([ms,t]) =
∑
sms,s we compute with the help of the so-called

Hutchinson’s trick:

Tr(EA∼Om
[
(ωtA)T (ωsA)

]
) = EA∼Om

[
Tr((ωtA)T (ωsA)

)
]

= EA∼Om
[
Tr((ωsA)(ωtA)T

)
]

= EA∼Om
[
Tr(ωsω

T
t

)
]

= 〈ωs, ωt〉
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We can interchange two vector coordinates by multiplication of a suitable orthogonal matrix B.
Since the Haar measure is invariant under multiplication of an orthogonal matrix, the diagonal of
EA∼Om

[
(ωtA)T (ωsA)

]
) must contain a constant value. This value along the diagonal must then

equal 1
m 〈ωs, ωt〉. Further, we can multiply one vector coordinate by (−1) via multiplication by an

orthogonal matrix, and hence the off-diagonal entries of EA∼Om
[
(ωtA)T (ωsA)

]
) must be zero,

giving that

EA∼Om
[
(ωtA)T (ωsA)

]
) =
〈ωs, ωt〉
m

· I.

Therefore

EA∼Om
[
(ωsA)Hs,t(ωtA)T

]
= Tr

(
EA∼Om

[
(ωsA)Hs,t(ωtA)T

])
= EA∼Om

[
Tr((ωsA)Hs,t(ωtA)T )

]
= EA∼Om

[
Tr(Hs,t(ωtA)T (ωsA))

]
= Tr(Hs,t · EA∼Om

[
(ωtA)T (ωsA))

]
= Tr(Hs,t ·

〈ωs, ωt〉
m

· I)

=
〈ωs, ωt〉
m

Tr(Hs,t)

Putting things together, we have for the local optimum w = ω that

EA∼Om
[
EφF (f, S, αA)

]
≤ δ2

2

d∑
s,t=1

EA∼Om
[
(ωsA)Hs,t(ωtA)T

]
+O(δ3)

=
δ2

2m

d∑
s,t=1

〈ωs, ωt〉 · Tr(Hs,t) +O(δ3)

=
δ2

2m
κφTr(ω) +O(δ3)

We can further generalize Theorem 5 to more complex labels by introducing a notion of approximately
locally constant labels. The following definition frees us from the strong assumption of locally
constant labels, i.e. y[φδA(xi)] = y[φ(xi)] = yi for all (xi, yi) ∈ S and all matrices ||A|| ≤ 1, while
still restricting label changes to be one order smaller than the contribution of flatness.

Definition 9. LetD be a data distribution on a labeled sample space X ×Y and S a finite iid sample
of D. Let f = ψ ◦ φ be a model composed into a feature extractor φ and predictor ψ. We say that
D has approximately locally constant labels of order three around the points (x, y) ∈ S in feature
space φ, if there is some constant C such that

1

|S|

|S|∑
i=1

∣∣∣`(ψ(φ(xi) + ∆i), y[φ(xi) + ∆i])− `(ψ(φ(xi) + ∆i), yi)
∣∣∣ ≤ Cδ3 for ||∆i|| ≤ δ||φ(xi)||

Corollary 10. Consider a model f(x,w) = ψ(w, φ(x)) = g(wφ(x)) as above, a loss function `
and a sample set S, and let Om ⊂ Rm×m denote the set of orthogonal matrices. Let δ be a positive
(small) real number and w = ω ∈ Rd×m denote parameters at a local minimum of the empirical risk
on a sample set S. If D has approximately locally constant labels of order three around the points
(x, y) ∈ S in feature space, then f(x, ω) is ((δ, S,Om), ε)-feature robust on average over Om for
ε = δ2

2mκ
φ
Tr(ω) +O(δ3).

Proof. As before, we abbreviate φ(xi) by zi. We only need to modify (14) to account for the strictly
weaker assumption on the labels. For this, we perform Taylor approximation with respect to the
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labels at y[φ(xi)] = yi to obtain

EφF (f, S, αA) + Eemp(w, S) =
1

|S|

|S|∑
i=1

`(ψ[φαA(xi)], y[φαA(xi)])

Def 9

≤ 1

|S|

|S|∑
i=1

`(ψ(w, zi + αAzi), yi) +O(δ3)

=
1

|S|

|S|∑
i=1

`(ψ(w + αwA, zi), yi) +O(δ3)

= Eemp(w + αwA,S) +O(δ3)

The rest of the proof follows the arguments used to show Theorem 5.
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D.4 Proof of Theorem 6

To prove Theorem 6, we will require a proposition that bounds ε-representativeness for λi the local
densities from Proposition 2. This is achieved in Proposition 12 below uniformly over all distributions
D that satisfy mild regularity assumptions necessary for a well-defined kernel density estimation. We
first compose the proof to Theorem 6 and subsequently show the arguments leading to the required
proposition.

The main idea to prove Theorem 6 is that the family of distributions considered in Proposition 2
(a) provides an explicit link between ε-representativeness and feature robustness (Proposition 2 and
Equation 5), (b) allows us to approximately bound feature robustness by relative flatness (Theorem 5),
and (c) allows us to apply a kernel density estimation to uniformly bound ε-representativeness
(Proposition 12).

Theorem 6 is the informal counterpart to the following version.
Theorem 11. Consider a model f(x,w) = g(wφ(x)), a loss function `, a sample set S, and let m
denote the dimension of the feature space defined by φ and let δ be a positive (small) real number.
Let ω ∈ Rd×m denote a local minimum of the empirical risk on an iid sample set S.

Suppose that the distribution D has a smooth density pφD on the feature space Rm such that∫
z

∣∣∣∇2
(
pφD(z)||z||2

)∣∣∣ dz and
∫
z

pφD(z)

||z||m dz are well-defined and finite. Then for sufficiently large

sample size |S|, if the distribution has approximately locally constant labels of order three (see
Definition 9), then it holds with probability 1−∆ over sample sets S that

Egen(f(·, ω), S) . |S|−
2

4+m

(
κφTr(ω)

2m
+ C1(pφD, L) +

C2(pφD, L)√
∆

)
up to higher orders in |S|−1 for constants C1, C2 that depend only on the distribution in feature
space pφD induced by φ and the chosen |S|-tuple Λδ as in Proposition 2 and the maximal loss L.

Proof. The proof combines Equation 5 with Proposition 12 and Theorem 5. At first we use Equation 5
to split the generalization gap into Egen(f) = EφRep(f, S,ΛAδ) + EF (f, S,Aδ). For the family of
distributions Λδ from Proposition 2, we have by Proposition 12 that

|EφRep(ψ ◦ φ, S,Λ
φ
δ )| ≤

(
C1(pφD, L) +

C2(pφD, L)√
∆

)
· |S|−

2
4+m +O(|S|−

3
4+m )

when δ = |S|−
1

4+m . With EF (f, S,Aδ) = EA∼Aδ
[
EF (f, S,A)

]
, we use (the proof to) Proposition 2

to see that this can be written as

EA∼Aδ
[
EF (f, S,A)

]
= E0≤α≤δ

[
EA∼(Om,µ)

[
EF (f, S, αA)

]]
where Om ⊂ Rm×m denote the set of orthogonal matrices and µ the Haar measure on this set.

Finally, Theorem 5 bounds the latter by |S|
− 2

4+m

2m κφTr(ω) up to higher orders in |S|−1.

We finally prove that the bound on ε-representativeness in the proof to the preceding Theorem indeed
holds true.
Proposition 12. Consider a model f(x,w) = ψ(w, φ(x)), a loss function ` and let S ⊆ X × Y be
a finite sample set. With xi ∈ S, let λi(z) = kδ||φ(xi)||(0, z) define an |S|-tuple Λδ of densities as in
Proposition 2 and assume that the loss function is bounded by L. Suppose that the distribution D
has a smooth density pφD on a feature space Rm such that

∫
z
∇2
(
pφD(z)||z||2

)
dz and

∫
z

pφD(z)

||z||m dz

are well-defined and finite. Then there exist constants C1(pφD, L), C2(pφD, L) depending on the
distribution and the maximal loss such that, with probability 1 − ∆ over possible sample sets S,
ε-interpolation is bounded for δ = |S|−

1
4+m by

|EφRep(f, S,Λδ)| ≤

(
C1(pφD, L) +

C2(pφD, L)√
∆

)
· |S|−

2
4+m +O(|S|−

3
4+m )
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Proof. We let

p̂(z) =
1

|S|

|S|∑
i=1

kδ||φ(xi)||(φ(xi), z)

With λi = kδ||φ(xi)||(0, z) we have

∣∣∣ EφRep(f, S,Λδ)∣∣∣ =

∣∣∣∣∣∣E(f)− 1

|S|

|S|∑
i=1

Eξ∼λi [`(ψ(φ(xi) + ξ), y[φ(xi) + ξ]]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
z

pφD(z) · `(ψ(z), y(z)) dz − 1

|S|

|S|∑
i=1

∫
z

kδ||φ(xi)||(φ(xi), z) · `(ψ(z), y(z)) dz

∣∣∣∣∣∣
≤
∣∣∣∣∫
z

(pφD(z)− ES [p̂(z)]) · `(ψ(z), y(z)) dz

∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∫
z

(ES [p̂(z)]− p̂(z)) · `(ψ(z), y(z)) dz

∣∣∣∣︸ ︷︷ ︸
(II)

(16)

For the further analysis, we make use of Jones et al. [15] and combine it with the generalization to
the multivariate case in Chp. 4.3.1 in Silverman [33]. A Taylor approximation with respect to the
bandwidth of the kernel δ yields

(I) =
δ2

2
τ2

∣∣∣∣∫
z

∇2
(
pφD(z)||z||2

)
`(ψ(z), y(z))dz

∣∣∣∣+O(δ3)

where
τ2 =

∫
z

‖z‖2k1(0, z)dz.

For (II) we consider the random variable Z =
∫
z
p̂(z)`(ψ(z), y(z)) dz as a function on the set of

possible sample sets of a fixed size. Applying Chebychef’s inequality on Z, we get that

Pr
(∣∣∣Z − ES

[
Z
]∣∣∣ > εest

)
≤ V ar(Z)

ε2est
=: ∆ .

Solving for εest yields that with probability 1−∆ we have

(II) = |Z − ES
[
Z
]
| ≤

√
V ar(Z)√

∆

Further, the variance of Z can be bounded by

V ar(Z) = ES
[
(Z − ES

[
Z
]
)2
]

= ES
[(∫

p̂(z)`(ψ(z), y(z)) dz − ES
[ ∫

p̂(z)`(ψ(z), y(z)) dz
])2 ]

= ES
[(∫ (

p̂(z)− ES
[
p̂(z)

])
`(ψ(z), y(z)) dz

)2 ]
≤ ES

[ ∫ (
p̂(z)− ES

[ ∫
p̂(z)

])2

dz
]

︸ ︷︷ ︸
(III)

·
(∫

z

`(ψ(z), y(z))2 dz

)
︸ ︷︷ ︸

≤L2Vol(φ(D))

It follows from Eq. (2.3) in Jones et al. [15] together with Eq. 4.10 in Silverman [33] for (III) that for
small δ and large sample size |S| the term (III), i.e., the variance of p̃, is given by

(III) = β|S|−1δ−mα+O(|S|−2) ,

where α =
∫
z

pφD(z)

||z||m dz and β =
∫
z
k1(0, z)2 dz. Putting things together gives

EφRep(f, S,Λδ)| ≤L
δ2

2
τ2

∣∣∣∣∫
z

∇2
(
pφD(z)||z||2

)∣∣∣∣ dz +
L
√
αβ√
∆

√
Vol(φ(D))|S|− 1

2 δ−
m
2

+O(|S|−2) +O(δ3) .
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Choosing the bandwidth as δ = |S|−
1

4+m gives

|EφRep(f, S,Λδ)| ≤|S|
− 2

4+m

(
τ2L

∣∣∣∣∫
z

∇2
(
pφD(z)||z||2

)∣∣∣∣ dz +

√
αβL√
∆

√
Vol(φ(D))

)
+O(|S|−

3
m+4 ) .

The result follows from setting

C1 =τ2L

∣∣∣∣∫
z

∇2
(
pφD(z)||z||2

)∣∣∣∣ dz
C2 =

√
αβL

√
Vol(φ(D)) .
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E Relative flatness for a uniform bound over general distributions on
feature matrices

This article based its consideration on the specific distribution on feature matrices of Proposition 2,
since this distribution allows to use standard results of kernel density estimation in the proof to
Theorem 6. However, the decomposition of the risk in Equation 5 holds for any distribution on
feature matrices A and induced distributions on feature space ΛA. To allow maximal flexibility in
the choice of a distribution A on feature matrices of norm ||A|| ≤ 1, we define another version of
relative flatness based on the maximal eigenvalues of partial Hessians instead of the trace.

Definition 13. For a model f(w, x) = g(wφ(x)) with a twice differentiable function g, a twice
differentiable loss function ` and a sample set S we define maximal relative flatness by

κφ(w) :=

d∑
s=1

||ws||2 · λmax(Hs,s(w, φ(S))) (17)

where λmax denotes the maximal eigenvalue of a matrix and Hs,s′ the Hessian matrix as in (8).

The analogue to Theorem 5 for maximal relative flatness shows that maximal flatness bounds feature
robustness uniformly over all feature matrices of norm ||A|| ≤ 1.

Theorem 14. Consider a model f(x,w) = g(wφ(x)) as above, a loss function ` and a sample set
S, and let Om ⊂ Rm×m denote the set of orthogonal matrices. Let δ be a positive (small) real
number and w = ω ∈ Rd×m denote parameters at a local minimum of the empirical risk on a sample
set S. If the labels satisfy that y[φδA(xi)] = y[φ(xi)] = yi for all (xi, yi) ∈ S and all ||A|| ≤ 1,
then, for each feature selection matrix ||A|| ≤ 1 the model f(x, ω) is ((δ, S,A), ε)-feature robust for
ε = δ2d

2 κφ(ω) +O(δ3)

Proof. Writing zi = φ(xi) and Eemp(w, S) = Eemp(f(w, x), S) and using the assumption that
y[φδA(xi)] = yi for all (xi, yi) ∈ S and all ||A|| ≤ 1, we have by the first part of the proof of
Theorem 5 that for any 0 ≤ α ≤ δ,

EφF (f, S, αA) + Eemp(w, S) = Eemp(w + αwA,S) (18)

and

Eemp(ω + αωA, S) ≤ Eemp(ω, S) +
δ2

2

d∑
s,t=1

(ωsA) ·Hs,t(ω, φ(S)) · (ωtA)T +O(δ3) (19)

at a local minimum ω, where ωs denotes the s-th row of ω.

Note that for ||A|| ≤ 1 and a row vectors ws it holds that ||wsA|| ≤ ||ws||. Further, since the full
Hessian matrix H(ω, S) = (Hs,t(ω, S))s,t is a positive semidefinite matrix at a local minimum ω, it
holds for each row vectors ws,wt that

wsHs,t(ω, S)wT
t ≤

1

2

(
wsHs,s(ω, S)wT

s + wtHt,t(ω, S)wT
t

)
, (20)
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We therefore get that for any feature matrix A with ||A|| ≤ 1,

EφF (f, S, δA) ≤ max
||A||≤1

EF (f, S, δA)

(18),(19)
≤ max

||A||≤1

δ2

2

d∑
s,t=1

(ωsA) ·Hs,t(ω, S) · (ωtA)T +O(δ3)

(20)
≤ max
||A||≤1

δ2d

2

d∑
s=1

(ωsA) ·Hs,s(ω, S) · (ωsA)T +O(δ3)

≤ δ2d

2

d∑
s=1

max
||z||≤||ωs||

zHs,s(ω, S)zT +O(δ3)

=
δ2d

2

d∑
s=1

max
||z||=1

||ωs||2 zHs,s(ω, S)zT +O(δ3)

=
δ2d

2

d∑
s=1

||ωs||2 λmax(Hs,s(ω, S)) +O(δ3)

=
δ2d

2
κφ(ω) +O(δ3)

(21)

where we used the identity that max||x||=1 x
TMx = λmax(M) for any symmetric matrix M .

With this, the analogue to Theorem 6 (or its version Theorem 11 in the appendix) allows maximal
flexibility to choose Aδ (and δ > 0) to bound representativeness. This leads to the following
generalization bound.
Theorem 15. Consider a model f(x,w) = g(wφ(x)), a loss function `, a sample set S, and let m
denote the dimension of the feature space defined by φ and let δ be a positive (small) real number.
Let ω ∈ Rd×m denote a local minimum of the empirical risk on an iid sample set S.

Let Υδ be the set of all |S|-tuple of distributions ΛAδ on feature vectors induced by a distribution Aδ
on feature matrices of norm smaller than δ as in Section 3. Then it holds that

Egen(f(·, ω), S) ≤ inf
Aδ∈Υδ

EφRep(f, S,ΛAδ) +
δ2d

2

d∑
s=1

κφ(ω) +O(δ3).

Proof. Part (i) follows from combining Equation 5 with Theorem 14. First, we use (5) to split the
generalization gap into Egen(f) = EφRep(f, S,ΛAδ) + EF (f, S,Aδ). Then, Theorem 14 shows that

EF (f, S,Aδ) ≤ δ2d
2 κφ(ω) +O(δ3) as EF (f, S, δA) ≤ δ2d

2 κφ(ω) +O(δ3) for all ||A|| ≤ 1.
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