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1 SUPPLEMENTARY MATERIAL

We provide supplementary material to validate our method. Sec. 1.1 provides an algorithmic
overview of the proposed training policy; Sec. 1.3 shows additional results obtained with ResNet-
18 (He et al. (2016)) on Office-31 (Saenko et al. (2010)) and Office-Caltech (Gong et al. (2012));
In Sec. 1.4 we conduct qualitative studies to verify our choices in terms of batch sizes and distance
measures. Finally, we provide a qualitative visualization using t-sne (Maaten & Hinton (2008)) of
the distribution of our batch normalization embeddings at different depths in the network.

N.B.: Blue references point to the original manuscript.

1.1 TRAINING POLICY

We here provide a formalization of the distance training policy described in Sec. 3.4.

Let T = {bd}d∈D be a training batch composed of K domain batches, each containing n samples
from the corresponding domain d: bd = {(xid, yid)}ni=1. In Alg. 1 we illustrate the training procedure
for a single training batch T using the same notation as in the original manuscript.

Algorithm 1 Training Step for a batch T

1: for bd ∈ T do . for every domain batch
2: Collect domain batch statistics (µ̃d, σ̃d) . forward propagation
3: µ̂l

d ←− 0.99µ̂l
d + 0.01µ̃l

d ∀l ∈ B . update domain population mean
4: (σ̂l

d)2 ←− 0.99(σ̂l
d)2 + 0.01(σ̃l

d)2 ∀l ∈ B . update domain population variance
5: eld ←− (µ̂l

d, (σ̂
l
d)2) ∀l ∈ B . update domain layer embeddings

6: ed ←− [e1d, e
2
d, ..., e

L
d ] . update domain embedding

7: for (xt, yt) ∈ T do . for every sample
8: Collect instance statistics (µt, σt

2) . forward propagation
9: rlt ←− (µl

t, σ
l
t
2
) ∀l ∈ B . define target layer embeddings

10: rt ←− [r1t , r
2
t , ..., r

L
t ] . define target embedding

11: DL(ed, rt) =
∑

l∈BW(eld, r
l
t) ∀d ∈ D . compute domain distances

12: wt
d = 1

DL(ed,rt)
∀d ∈ D . compute domain similarities

13: f td ←− f(xt|d) ∀d ∈ D . compute domain-specific predictions

14: f(xt) =
∑

d∈D wt
df

t
d∑

d∈D wt
d

. compute final predictions

15: L(θ;T ) =
∑

(xt,yt)∈T XE(f(xt), yt) . compute cross-entropy loss
16: θ ←− θ − η · L(θ;T ) . update weights

During every training step, first, the domain batches are first propagated to update the corresponding
domain embedding ed (l:2-6). Then, each individual sample xt is propagated using instance normal-
ization to collect its instance statistics (µl

t, σ1lt
2
) ∀l ∈ B (l:8). Given the statistics we compute the

target embedding rt (l:9-10) and the domain similarities wt
d (l:12), as in Sec. 3.3. Each sample is

propagated under K different domain assumptions (i.e., through the corresponding domain-specific
branches) (l:13). The resulting domain-specific predictions are weighted according to Eq. 11 to
compute the final prediction (l:14). Finally, the cross-entropy loss between the final predictions
f(xt) and the corresponding ground truths yt is computed (l:15) and back-propagated to update the

1



Under review as a conference paper at ICLR 2021

Table 1: State-of-the-art comparison on PACS with AlexNet.

Method Art Cartoon Photo Sketch Avg. DA Avg. ∆%

DICA - Muandet et al. (2013) 64.6 64.5 91.8 51.1 68.7 68.0 -1.02
D-MTAE - Ghifary et al. (2015) 60.3 58.7 91.1 47.9 68.7 64.5 -6.11
DSN - Bousmalis et al. (2016) 61.1 66.5 83.3 58.6 68.7 67.4 -1.89

TF-CNN - Li et al. (2017) 62.9 67.0 89.5 57.5 67.1 69.2 +3.13
CIDDG - Li et al. (2018c) 62.7 69.7 78.7 64.5 71.7 68.9 -3.91

Fusion - Mancini et al. (2018a) 64.1 66.8 90.2 60.1 67.1 70.3 +4.77
CrossGrad - Shankar et al. (2018) 64.1 66.8 90.2 60.1 68.7 70.3 +2.33

MetaReg - Balaji et al. (2018) 69.8 70.4 91.1 59.3 69.3 72.6 +4.76
MLDG - Li et al. (2018a) 66.2 66.9 88.0 59.0 67.2 70.0 +4.17
Epi-FCD - Li et al. (2019) 64.7 72.3 86.1 65.0 68.7 72.0 +4.80

JiGen - Carlucci et al. (2019) 67.6 71.7 89.0 65.2 71.5 73.4 +2.66
MASF - Dou et al. (2019) 70.4 72.5 90.7 67.3 71.7 75.2 +4.88

DeepAll 64.4 65.4 88.0 53.8 - 67.9 -
BNE (Ours) 66.7 65.7 89.5 66.8 67.9 72.2 +6.33

weights θ of the model (l:16). Applying this procedure during training encourages the creation of a
batch normalization latent space.

1.2 TRAINING SETTINGS

Coherently with other works, we evaluate both the AlexNet (Krizhevsky et al. (2012)) and the more
recent ResNet-18 (He et al. (2016)) architecture. Before training each network, we initialize them
with pre-trained weights on ImageNet and fine-tune the last fully-connected layer on the dataset
of interest for 20 epochs. To train AlexNet (Krizhevsky et al. (2012)), we use SGD as optimizer
with momentum 0.95 and L2 regularization on network weights with weight decay 5 × 10−5. The
initial learning rate is 10−3, exponentially decayed with decay rate 0.95. ResNet-18 is trained with
Adam (Kingma & Ba (2014)) and weight decay 10−6. The initial learning rate is 10−4. Coherently
with previous works (Carlucci et al. (2017b;a); Mancini et al. (2018c)), we also compute gradients
through the mean and standard deviation computation for the batch normalization layers. All the
input images are normalized according to the statistics computed on ImageNet. At training time,
data augmentation is performed by first resizing the input image to 256, then randomly cropping to
224× 224 for ResNet-18 and 227× 227 for AlexNet; finally, a random horizontal flip is performed.
Every training batch is composed of 16 samples per domain for ResNet-18 and 6 for AlexNet.

All the models are implemented in Tensorflow 2.0 (Abadi et al. (2015)). We initialize both AlexNet
and ResNet-18 using the publicly available Caffe weights pre-trained on ImageNet, after carefully
converting them.1

1.3 ADDITIONAL RESULTS

Table 2: State-of-the-art comparison on Office-31 with ResNet-18.

Method Amazon Dslr Webcam Avg. DA Avg. ∆%

DeepAll 55.1 99.0 92.6 - 82.2 -
BNE (Ours) 55.5 99.3 95.4 82.2 83.4 +1.42

We here provide additional results with the ResNet-18 (He et al. (2016)) architecture for the dataset
Office-31 (Saenko et al. (2010)) and with the AlexNet (Simon et al. (2016)) architecture for PACS (Li
et al. (2017)). In the original manuscript, we already provide results with AlexNet and ResNet-18
respectively to compare against recently published works. Moreover, we expand the experimental
setting with the addition of the dataset Office-Caltech (Gong et al. (2012)), for which we present
results with both ResNet-18 and AlexNet.

1ResNet-18 and AlexNet ImageNet weights available at https://github.com/heuritech/
convnets-keras and https://github.com/cvjena/cnn-models.
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Table 3: State-of-the-art comparison on Office-Caltech with AlexNet.

Method Amazon Caltech Dslr, Amazon, Avg. DA Avg. ∆%
Webcam Caltech

UB - Khosla et al. (2012) 91.0 86.0 80.5 70.0 84.5 81.9 -3.08
DSN - Bousmalis et al. (2016) - - 85.8 81.2 84.5 - -
MTAE - Ghifary et al. (2015) 93.1 86.2 85.3 80.5 84.5 86.3 +2.13
DGLRC - Ding & Fu (2017) 94.2 87.6 86.3 82.2 84.5 87.6 +3.67

MDA - Hu et al. (2019) 93.5 86.9 84.9 82.6 84.5 87.0 +2.96
CIDG - Li et al. (2018b) 93.2 85.1 83.7 65.91 84.5 82.0 -2.96

MCIT - Rahman et al. (2019) 93.3 86.3 85.2 82.7 84.5 86.9 +2.84

DeepAll 91.7 82.1 83.4 84.5 - 85.4 -
BNE (Ours) 93.7 85.9 89.8 87.7 85.4 89.3 +4.57

Table 4: State-of-the-art comparison on Office-Caltech with ResNet-18.

Method Amazon Caltech Dslr, Amazon, Avg. DA Avg. ∆%
Webcam Caltech

DeepAll 92.7 83.1 85.3 80.7 - 85.5 -
BNE (Ours) 92.9 87.4 93.0 87.3 85.5 90.2 +5.50

1.3.1 PACS

In Tab. 1, we extend the comparison on PACS considering AlexNet to compare against a vast lit-
erature of published works relying on this older architecture. Once again our proposal achieves
absolute performance comparable to the state of the art even if starting from a weaker baseline.
Indeed when comparing the relative gain in performance provided by our method (∆%), we are
clearly outperforming any previously published solutions with an increase of +6.33%, while the
second best obtains +4.88%. Once again, when considering Sketch as unseen domain our method
can boost the performance by a +13% absolute gain in accuracy over our baseline.

1.3.2 OFFICE-31

In Tab. 2, we extend the comparison on Office-31 considering ResNet-18 as it is a good example of
a modern architecture with native batch normalization layers. The results confirms that our method
is able to improve performances over DeepAll across all three tests.

1.3.3 OFFICE-CALTECH

Office-Caltech (Gong et al. (2012)) is a variant of Office-31 featuring one additional domain, derived
from the Caltech-256 dataset (Griffin et al. (2007)). The dataset is composed of the 10 categories
shared between Caltech-256 and the domains in Office-31. We introduce the results on the Office-
Caltech dataset since it represents a challenging setting with a larger number of domains with respect
to those analysed in the main paper; nominally 4 instead of 3. For Office-Caltech we follow the same
evaluation procedure as for the other datasets, but we also test following a leave-two-domain-out
procedure to compare against other published results. In Tab. 3 and Tab. 4 we show the results for
the AlexNet and the ResNet-18 architecture respectively. The standard evaluation on this dataset
enumerates the cases with a single target domain, either Amazon or Caltech, and a pair of targets:
Dslr-Webcam and Amazon-Caltech. We use both AlexNet and ResNet-18 initialized with ImageNet
weights to compare with published results and train it with our method for 100 epochs. Tab. 3
shows that our approach obtains the best average accuracy and the best gain with respect to the
baseline. The gain provided by our method are especially evident in the challenging scenario when
we consider 2 domains as targets, e.g., +6.4% absolute accuracy in the Dslr-Webcam case. The
same good property remains also when considering ResNet as architecture in Tab. 4, with a clear
+5.5% gain over DeepAll.
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1.4 ABLATION STUDY

We here provide additional ablation studies to better highlight different characteristics of our method
with respect to the chosen batch size and the distance measures used in the latent space. All the
following studies are performed with the modified version of AlexNet (Simon et al. (2016)) which
includes batch normalization layers after every convolutional layer. The experiments are conducted
on the PACS dataset (Li et al. (2017)).

1.4.1 BATCH SIZE

Table 5: Comparison of different batch sizes (per domain) on PACS with Alexnet.

Method Batch Size Art Cartoon Photo Sketch Average

DeepAll - 64.4 65.4 88.0 53.8 67.9
BNE (Ours) 16 65.7 66.5 88.9 56.0 69.3
BNE (Ours) 32 67.9 65.7 89.4 62.3 71.3
BNE (Ours) 64 66.7 65.7 89.5 66.8 72.2

We study the impact of different batch sizes on the performance of our method in Tab. 5. As expected
and already documented in several recent works leveraging batch normalization layers (Bjorck et al.
(2018); Wu & He (2018)), the larger the batch size is the better the generalization capability is.
In particular for our method the bigger is the batch size used at training time, the better are the
approximation of the true population statistics (i.e., , the better are the domain embeddings ed). This
translates in better final performance as detailed in Tab. 5 where we can observe an increment of
+2.9 Average accuracy between using batch size 16 and 64.

1.4.2 DISTANCE

Table 6: Comparison of different distance measures with our method on PACS with Alexnet.

Method Distance Art Cartoon Photo Sketch Average

DeepAll - 64.4 65.4 88.0 53.8 67.9

BNE (Ours) Uniform 64.9 64.0 88.7 61.7 69.8
BNE (Ours) Bhattacharyya 66.3 64.6 89.4 64.3 71.2
BNE (Ours) Wasserstein 66.7 65.7 89.5 66.8 72.2

In Sec. 3.3 we explain that we use the Wasserstein distance to measure the distance between two
multivariate gaussian distributions. Before picking this distance we have conducted a detailed study
to select the best option for our task. We report the result of this study on Tab. 6. We considered
three difference distance options: using an fixed value for the distance (Uniform), in this case all
domains will be considered at the same distance from the test sample; the Bhattacharya distance and
the Wasserstein distance. The Wasserstein distance shows to consistently improve over the baseline
for domain generalization DeepAll, and over any other distance measure both on average and on
any specific left-out domain. The significance of a specific distance measure is proven by the better
results obtained by both the Bhattacharyya and the Wasserstein distance over the Uniform distance
case, meaning that the potentiality of our method derives from the accurate distance measuring
system rather than from the lightweight ensemble itself.

1.4.3 ACTIVATIONS DISTRIBUTION

In Fig. 1 we provide a visualization with different two-dimensional t-SNE (Maaten & Hinton (2008))
of the batch normalization embeddings of each sample in the PACS dataset. Different colors repre-
sent different domains: Art Painting (pink), Cartoon (red), Photo (blue), Sketch (cyan). Each figure
illustrates the sample embeddings right before a specific batch normalization layer at different depths
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(a) BN-1 (b) BN-2 (c) BN-3 (d) BN-4 (e) BN-5

Figure 1: T-SNEs of the distribution of samples from PACS Li et al. (2017) at different depths in our
modified AlexNet Simon et al. (2016) architecture. Each point represents the instance statistics of a
sample at a certain level in the network. The model is trained on the domains Art Painting (pink),
Cartoon (red), Photo (blue); Sketch (cyan) is left unseen. Population statistics for seen domains are
shown as green dots.

Table 7: Comparison of different variants of our method on PACS with Alexnet.

Method DT Warm-up Art Cartoon Photo Sketch Avg.

DeepAll - - 64.4 65.4 88.0 53.8 67.9

(a) BNE 7 7 64.4 65.9 89.6 54.2 68.53
(b) BNE 3 7 63.7 67.9 84.6 66.6 70.7
(c) BNE 3 3 66.7 65.7 89.5 66.8 72.2

in the AlexNet architecture. For this test, the model is trained on Art Painting (pink), Cartoon (red),
and Photo (blue), while Sketch is the unseen domain.

Before the first domain-specific normalization (i.e., Fig. 1 (a)), features from different domains can
be easily clustered together. After the first domain-specific normalization, deep features from Art
Painting and Photo start to be similar. On the other side, features from Cartoon and from the unseen
domain Sketch are always well-distinguishable from any other domain at all the considered layers.
This match quite well the dissimilarity between domains in the PACS dataset as judged by a human.

The population statistics of the source domains always fall inside the corresponding cluster, proving
how they represent a good descriptor of the corresponding domain.

1.4.4 METHOD COMPONENTS

In the main paper we measured the contribution to the final performance of the different components
of our methods. The proposed setting leveraged the PACS dataset and the ResNet-18 architecture.
We here consider ablation experiments on the PACS dataset using the AlexNet architecture and
report the results in Tab.3, comparing again with the DeepAll baseline. On row (a) we show the
performance gained by using separate batchnorm statistics for the different train domains and using
the projection and weighting strategy described in Sec. 3.3; row (b) extends the method above by
using the distance weighting at training time (DT) as described in Sec. 3.4; finally, row (c) includes
a warm-up phase in the training of the model to make population statistics converge to stable values
before starting the distance training. By comparing the average accuracy (Avg.) across the four
possible target sets, it is clear how every component contributes to an increase in performance with
respect to the baseline.

1.5 LATENT SPACE VALIDATION

We now want to investigate how well we are able to collect domain specific attributes of samples
by projecting them to the batchnorm latent space. We trained ResNet-18 until convergence without
distance training and warm-up on the PACS dataset considering Photo or Sketch as unseen domains.
Once trained, we forward every training sample through the network and compute its instance statis-
tics to project it to the batchnorm latent space. After the projection we measure the distance from
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Table 8: Analysis of the average similarity value as domain classification metrics with ResNet-18
on PACS without distance training. Classified domain is in bold.

(a) Photo unseen.

Source Art Cartoon Sketch

Art 8.24 5.35 4.21

Cartoon 6.58 7.02 5.97

Sketch 3.94 4.56 10.19

(b) Sketch unseen.

Source Art Cartoon Photo

Art 1.18 0.70 1.15

Cartoon 0.94 1.02 0.90

Photo 1.19 0.70 1.25

every domain embedding: if the closest domain matches the real domain, then the latent space ef-
fectively represents membership to a certain domain. In Tab. 8 we report the average value of the
reciprocal of the distance for every training sample with respect to the centroid of the three training
domains. The higher values on the diagonal confirm our intuition that the batchnorm latent space
can be used to implicitly encode domain attributes.

1.6 DOMAIN DISCOVERY NET

Table 9: Comparison BNE and DNet with or without cross-entropy loss applied also on domain
logits. We report the domain classification accuracy for different runs with different unseen domains,
the average domain classification accuracy (Avg. Domain) and the average image classification
accuracy (Avg. Class).

Method XE Art Cartoon Photo Sketch Avg. Domain Avg. Class

BNE 7 71.2 82.2 75.0 60.1 72.1 83.1
DNet 7 33.3 33.3 33.3 33.3 33.3 79.1

BNE 3 75.9 82.7 74.5 58.7 73.0 80.8
DNet 3 96.0 87.8 62.7 84.3 82.7 74.9

In Sec 4.3, we compared the performance of BNE with DNet. For this purpose, we follow Mancini
et al. (2018b) and implement a domain discovery network (DNet) that takes as input the activa-
tions after the first convolutional block and directly outputs the probability for the input sample
to belong to each one of the training domains. This probability distribution is used to weigh the
domain-specific predictions of our lightweight ensemble. Analogously to Mancini et al. (2018b)
we implemented DNet as a lateral branch to our lightweight ensemble that is composed of a global
pooling layer, followed by a ReLU non linearity, a fully-connected layer and a softmax activation.
DNet is trained in an end-to-end fashion together with the main classifier. We considered two op-
tions: (i) training DNet applying only a cross-entropy loss on the image classification logits with
respect to the input categories; (ii) training DNet directly supervising the classification of samples
in the correct domain using domain labels.

In Tab. 9 we compare the domain classification accuracy (Avg. Domain) of BNE and that of DNet
with or without applying a cross entropy loss over the domain labels across four tests consider-
ing different unseen domains on PACS. When cross-entropy is not applied on domain logits, BNE
largely outperforms DNet. The 33% Avg. Domainfor DNet without cross-entropy on domain logits
denotes that the discovery network learns to disregard the multidomain BN layer, always predicting
the same domain class and thus leveraging only one branch of the multidomain BN layer. However,
when cross-entropy is applied also on domain logits, the domain classification branch of DNet can
adapt its parameters to predict well the domain classes (Avg. Domain). This, however, comes at the
cost of a remarkable drop in image classification accuracy (Avg. Class) that can may be partially
explained by DNet overfitting more to the training data and being less able to generalize to the test
one. BNE instead provides a meaningful domain representation even without cross-entropy on do-
main logits, largely outperforming the image classification accuracy of DNet. Nevertheless, since
our representation is not parametric, we cannot witness a visible increase in Avg. Domainwhen
applying a cross-entropy loss also on the domain membership assigned through our representation.
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The advantages of BNE over DNet are clear, since BNE leverages all the activations throughout the
network to get an estimate of the domain membership, while DNet must rely only on the activations
of the first layer due to the fixed input size of the domain classification branch. Moreover, our
method allows a parameter-free domain representation, while DNet relies on a lateral branch to the
main network. Finally, BNE allows to map samples in a latent space where distances from domain
embeddings are computed, while DNet can only output the distance of the input sample from the
training domains.
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