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Abstract

The Configurable Markov Decision Process framework includes two entities: a
Reinforcement Learning agent and a configurator that can modify some environ-
mental parameters to improve the agent’s performance. This presupposes that
the two actors have identical reward functions. What if the configurator does not
have the same intentions as the agent? This paper introduces the Non-Cooperative
Configurable Markov Decision Process, a framework that allows modeling two
(possibly different) reward functions for the configurator and the agent. Then,
we consider an online learning problem, where the configurator has to find the
best among a finite set of possible configurations. We propose two learning algo-
rithms to minimize the configurator’s expected regret, which exploit the problem’s
structure, depending on the agent’s feedback. While a naïve application of the
UCB algorithm yields a regret that grows indefinitely over time, we show that our
approach suffers only bounded regret. Furthermore, we empirically validate the
performance of our algorithm in simulated domains.

1 Introduction

The standard Reinforcement Learning [RL, 40] framework involves an agent whose objective is to
maximize the reward collected during its interaction with the environment. However, there exist
real-world scenarios in which the agent itself or an external supervisor (configurator) can partially
modify the environment. In a car racing problem, for example, it is possible to modify the car setup
to better suit the driver’s needs. Recently, the Configurable Markov Decision Processes [Conf-MDPs,
29] were introduced to model these scenarios and exploit the configuration opportunities. Solving a
Conf-MDP consists of simultaneously optimizing a set of environmental parameters and the agent’s
policy to reach the maximum expected return. In many scenarios, however, the configurator does
not know the agent’s reward, and their intentions are different, leading to new forms of interaction
between the two actors. For instance, imagine we are the owner of a supermarket, and we have to
arrange the products on the shelves. Our objective is to increase the company’s final profit; on the
other hand, a customer aims to spend the shortest time possible inside the supermarket and buy the
indispensable products only. Since we do not know the customer reward function, the only possibility
is to try different dispositions and observe the customers’ reactions. What if we knew what buyers
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are most interested in? In this case, we can strategically decide how to position other products close
to the popular ones to induce the customer in a more profitable behavior for the supermarket owner.

In this paper, we model these scenarios introducing the Non-Cooperative Markov Decision Processes
(NConf-MDP). This novel framework handles the possibility of having different reward functions for
the agent and the configurator. While Conf-MDP assumes that the configurator acts to help the agent
to optimize its expected reward, an NConf-MDP, instead, allows modeling a wider set of situations,
including the cases in which agent and configurator display a non-cooperative behavior. Obviously,
this setting cannot be addressed with straightforward application of the algorithms designed for
cooperative Conf-MDP. In fact, if the configurator and the agent optimize separately different
objectives, they might not converge to an equilibrium strategy [52, 12, 51, 13]. In this novel setting,
we consider an online learning problem, where the configurator has to select a configuration, within a
finite set of possible configurations, in order to maximize its own return. This framework can be seen
as a leader-follower game, in which the follower (the agent) is selfish and optimizes its own reward
function, and the leader (the configurator) has to decide the best configuration, based on its reward.
Clearly, to adapt its decisions, the configurator has to receive some form of feedback related to the
agent’s behavior. We analyze two settings based on whether the configurator observes just the agent’s
actions or, in addition, a noisy version of the agent’s reward.

Contributions In this paper, we extend the Configurable Markov Decision Process setting to deal
with situations where the configurator and the agent have different reward functions. We call this
new framework the Non-Cooperative Markov Decision Process (NConf-MDP, Section 3). Then, we
formalize the problem of finding the best environment configuration, according to the configurator’s
reward, as a leader-follower game, in which the agent (follower) reacts to each presented configuration
with its best response policy (Section 4). We provide a first algorithm, Action-feedback Optimistic
Configuration Learning (AfOCL), to tackle this problem under the assumption that the configurator
observes the agent’s actions only (Section 5.1). We show AfOCL achieves finite expected regret,
scaling linearly with the number of admissible configurations. As far as we know, this represents
the first problem-dependent regret analysis in a Multi-Agent RL setting. Then, we introduce a
second algorithm, Reward-feedback Optimistic Configuration Learning (RfOCL), that assumes the
availability of a noisy version of the agent’s reward, in addition to the agent’s actions (Section 5.2).
We prove that, under suitable conditions, RfOCL further exploits the structure underlying the decision
process, removing the dependence on the number of configurations. The analysis use novel ideas,
combining the suboptimality gaps of the configurator with those of the agent. Finally, we provide an
experimental evaluation on benchmark domains, inspired by scenarios that motivate the NConf-MDPs
framework (Section 7). The proofs of the results presented in the paper are reported in Appendix B. A
preliminary version of this work was presented at “AAAI-21 Workshop on Reinforcement Learning
in Games” [36].

2 Preliminaries

A finite-horizon Markov Decision Process [MDP, 35] is a tupleM = (S,A, p, µ, r,H) where S
is a finite state space (S = |S|), A is a finite action space (A = |A|), p : S ×A× S → [0, 1]
is the transition model, which defines the density p(s′|s, a) of state s′ ∈ S when taking action
a ∈ A in state s ∈ S, µ : S → [0, 1] is the initial state distribution, r : S → [0, 1] is the reward
function, and H ∈ N≥1 is the horizon. A stochastic decision rule πh : S ×A → [0, 1] with h ∈ [H]
prescribes the probability πh(a|s) of playing action a ∈ A in state s ∈ S. A stochastic policy
π = (π1, · · · , πH) ∈ ΠH is a sequence of decision rules, where ΠH is the set of stochastic policies
over the horizon H .

A finite-horizon Configurable Markov Decision Process [Conf-MDP, 29] is defined as CM =
(S,A,P, µ, r,H) and extends the MDP considering a configuration spaceP instead a single transition
model p. The Q-value of a policy π ∈ ΠH and configuration p ∈ P is the expected sum of the
rewards starting from (s, a) ∈ S ×A at step h ∈ [H]:

Qπ,ph (s, a) = r(s) + E
sh′∼p,π

[
H∑

h′=h+1

r(sh′)|sh = s, ah = a

]
,

denoting with Esh′∼p,π the expectation w.r.t. the state distribution induced by π and p at step
h′. The value function is given by V π,ph (s) = Ea∼πh(·|s)[Q

π,p
h (s, a)] and the expected return
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is defined as V π,p = Es∼µ[V π,p1 (s)]. In a Conf-MDP the goal consists in finding a policy π∗
together with an environment configuration p∗ so as to maximize the expected return, i.e., (π∗, p∗) ∈
arg maxπ∈ΠH ,p∈P V

π,p.

3 Non-Cooperative Conf-MDPs

The definition of Conf-MDP allows modeling scenarios in which agent and configurator share the
same objective, encoded in a single reward function r. In this section, we introduce an extension of
this framework to account for the presence of a configurator having interests that might differ from
those of the agent.
Definition 3.1. A Non-Cooperative Configurable Markov Decision Process (NConf-MDP) is defined
by a tuple NCM = (S,A,P, µ, rc, ro, H), where (S,A,P, µ,H) is a Conf-MDP without reward
and rc, ro : S → [0, 1] are the configurator and agent (opponent) reward functions, respectively.

Given a policy π ∈ ΠH and a configuration p ∈ P , for every (s, a) ∈ S ×A and h ∈ [H] we define
the configurator and agent Q-values as:

Qπ,pc,h (s, a) = rc(s) + E
sh′∼p,π

[
H∑

h′=h+1

rc(sh′)|sh = s, ah = a

]
,

Qπ,po,h(s, a) = ro(s) + E
sh′∼p,π

[
H∑

h′=h+1

ro(sh′)|sh = s, ah = a

]
.

We denote with V π,pc,h (s) = Ea∼πh(s)[Q
π,p
c,h (s, a)] and V π,po,h = Ea∼πh(s)[Q

π,p
o,h(s, a)] the value func-

tions and with V π,pc = Es∼µ[V π,pc,1 (s)] and V π,po = Es∼µ[V π,po,1 (s)] the expected returns for the
configurator and the agent respectively.

4 Problem Formulation

While for classical Conf-MDPs [29, 27] a notion of optimality is straightforward as agent and config-
urator share the same objective, in an NConf-MDP, they can display possibly conflicting interests.
We assume a sequential interaction between the configurator and the agent that resembles the leader-
follower protocol [10, 6, 34, 38]. First, the configurator (leader) selects an environment configuration
p ∈ P , where P is a finite set made of M stochastic transition models P = {p1, . . . , pM}. Then
the agent (follower) plays a policy chosen by a best response function f : P → ΠH , such that:
f(p) ∈ arg maxπ∈ΠH V π,po . The solution concept that we use is the well-known Stackelberg equi-
librium [43, 15, 30, 32, 19]. It captures the outcome in which the configurator’s transition model
is optimal, under the assumption that the agent will always respond optimally [26]. However, this
definition includes the possibility of ties, i.e., situations in which multiple agent optimal policies
exist, with possibly different performance for the configurator. Therefore, it is necessary to employ
a tie-breaking rule, i.e., a criterion to select one agent best response. Different tie-breaking rules
lead to different Stackelberg equilibria, and the two prevailing solution concepts in the literature
are the Strong Stackelberg Equilibrium (SSE) and the Weak Stackelberg Equilibrium (WSE). A
policy-transition model pair (π∗, p∗) forms an SSE if ties are broken in favor of the configurator:

p∗ ∈ arg max
p∈P

V f
S(p),p

c and π∗ := fS(p) ∈ arg max
π∈f(p)

V π,po .

The WSE can be constructed by breaking the ties against the configurator. In the rest of the paper, we
employ the concept of SSE; however, every result can be applied to any deterministic tie-breaking
rule. We call π∗p the application of the best response function fS to a transition model p. Notice
that the goal of the configurator is well-defined, whenever deciding the function fS . From an online
learning perspective, this goal is to minimize the expected regret:

E[Regret(K)] = E
[ ∑
k∈[K]

max
p∈P

V πp,p
c − V πpk

,pk
c

]
. (1)

To lighten the notation, in the following, we will denote with πi the agent’s best response policy to the
configuration pi, i.e., π∗pi and with V i the configurator expected returned attained with configuration
pi and policy πi, i.e., V πi,pi

c . Finally, we denote with V ∗ = maxi∈[M ] V
i.
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Agent’s Feedback The configurator knows its reward rc, but it does not know the agent reward ro.
At each episode k ∈ [K], the configurator selects a configuration pIk ∈ P and observes a trajectory
of H steps generated by the agent’s best response policy πIk . We study two types of feedback:

• Action-feedback (Af). The configurator observes the states and the actions played by the agent
(s1, a1, . . . , sH−1, aH−1, sH), where ah ∼ πIk,h(sh).

• Reward-feedback (Rf). The configurator observes the states, the actions played by the agent, and a
noisy feedback of the agent reward function (s1, r̃1, a1, . . . , sH−1, r̃H−1, aH−1, sH , r̃H), where
ah ∼ πIk,h(sh) and r̃h is sampled from a distribution with mean ro(s) and support [0, 1].2

The Rf models situations in which the agent’s reward is known under uncertainty, or it is obtained in
an approximate way through Inverse Reinforcement Learning [33].

Connections with Bandit Algorithms The online problem that we are facing can be seen as a
stochastic multi-armed bandit [25], in which the arms are configurations, and the configurator receives
a random realization of its expected return at every episode. Thus, in principle, it can be solved by
standard algorithms for bandit problems, such as UCB1 [1]. These algorithms are computationally
less demanding than those we will present in the next sections. On the other hand, they suffer regret
that grows logarithmically, i.e., indefinitely, with the number of episodes. Indeed, they do not exploit
either the information regarding the agent’s policy or the structure induced by the agent’s reward
function. We will prove that, instead, the proposed algorithms, which use the problem structure,
suffer bounded regret. Furthermore, our algorithms are combined with UCB1 confidence intervals,
so their regret, at finite time, is never worse than the one of UCB1.

5 Optimistic Configuration Learning

In this section, we present two algorithms for the online learning problem introduced in Section 4. The
first algorithm uses only the collected agent decisions to optimistically learn the best configuration
(Section 5.1). In the second algorithm, we also use the noisy reward feedback to construct an
algorithm that leverages the structure that links together all the transition probability models: the
agent’s reward function ro (Section 5.2). In Appendix C, we provide some hints about the adversarial
case to illustrate the additional complexities that arise. In the adversarial setting, the agent can play a
different policy at each step, inside the set of possible policies that satisfy the SSE.

5.1 Action-feedback Optimistic Configuration Learning

We start with the action-feedback (Af) setting, in which the configurator observes the agent’s actions
only. The idea at the basis of the algorithm we propose, Action-feedback Optimistic Configuration
Learning (AfOCL), is to maintain, for each configuration, a set of plausible policies that contains an
agent’s best response policy. The configurator plays the transition model that maximizes an optimistic
approximation of its value function. Specifically, for every i ∈ [M ], k ∈ [K], and h ∈ [H] we denote
with Aik,h(s) ⊆ A the set of plausible actions in state s at step h for configuration pi at the beginning
of episode k. For every model pi, the first time we visit an (s, h)-pair and observe the agent’s action
a ∼ πi,h(·|s), we setAik,h(s) = {a}. For the non-visited (s, h)-pairs, we leaveAik,h(s) = A. Based
on this, we can compute an optimistic approximation Ṽ ik,h of the configurator value function V ih :

Ṽ ik,h(s) = rc(s) + max
a∈Ai

k,h(s)

∑
s′∈S

pi(s
′|s, a)Ṽ ik,h+1(s′), (2)

and Ṽ ik,H(s) = rc(s). Ṽ ik,h can be computed applying a value-iteration-like algorithm [35] that
employs the iterate as in Equation (2).3 Clearly, if the agent is playing deterministically, it holds that
Aik,h(s) = {πi,h(s)} for all visited (s, h)-pairs and, consequently, Ṽ ik,h(s) ≥ V ih(s). Instead, if the
agent is playing stochastically, we possibly observe different actions whenever visiting (s, h) and
we record just the first one. The following lemma shows that even for stochastic agents, if the SSE
tie-breaking rule is employed, Ṽ ik,h is optimistic.

2Clearly, the results we present can be directly extended to subgaussian distributions on the reward.
3Notice that the computational complexity decreases as the number of visited states increases and, in any case,

is bounded by that of value iterationO
(
HS2A

)
. Therefore, the time complexity of AfOCL isO

(
KMHS2A

)
.
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Algorithm 1 Action-feedback Optimistic Configuration Learning (AfOCL).

1: Input: S, A, H , P = {p1, . . . , pM}
2: Initialize Ai1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]
3: for episodes 1, 2, . . . ,K do
4: Compute Ṽ i,UCB

k for all i ∈ [M ]

5: Compute Ṽ ik for all i ∈ [M ]

6: Play pIk with Ik ∈ arg maxi∈[M ] min{Ṽ ik , Ṽ UCB
k }

7: Observe (sk,1, ak,1, . . . , sk,H−1, ak,H−1, sk,H)
8: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Aik+1,h(s) =

{
{ak,h} if i = Ik and s = sk,h and Nk,h(s) = 0

Aik,h(s) otherwise

9: end for

Lemma 5.1. The value function Ṽ ik,h(s) computed as in Equation (2) is such that Ṽ ik,h(s) ≥ V ih(s)

for all s ∈ S, h ∈ [H], and i ∈ [M ].

In addition, we compute the confidence interval for UCB1 looking at the transition models as arms:
Ṽ i,UCB
k = V̄ ik +H

√
2 log k/Ni,k, where V̄ ik is the sample mean of the observed return for model pi

and Ni,k is the number of times the algorithm plays model i up to episode k. Thus, at each episode
k ∈ [K] the configurator plays the transition model pIk maximizing the optimistic approximation:

Ik ∈ arg max
i∈[M ]

min{Ṽ ik , Ṽ
i,UCB
k }.

The pseudocode of AfOCL is reported in Algorithm 1.

Regret Guarantees We now provide an expected regret bound for the AfOCL algorithm. If the
agent’s policy πi is deterministic, it is not hard to get convinced that AfOCL suffers bounded regret
since whenever an (s, h)-pair is visited under a pi, the agent reveals its (deterministic) policy πi.
Thus, either an (s, h)-pair is visited with high probability, or it will impact only marginally on the
performance. The main challenge arises when the agent is playing a stochastic policy πi for some
pi. AfOCL just memorizes the first observed action for each (s, h), pretending the agent’s policy to
be deterministic. Let π̂i be the policy that plays the action memorized by AfOCL at the end of the
K episodes, filled with the true agent’s policy for the non-visited (s, h)-pairs. By construction, the
support of π̂i is contained into the support of the true agent’s policy πi. Clearly, if πi is optimal for
the agent reward, π̂i is too. Furthermore, since the agent and the configurator are playing an SSE,
π̂i will lead to the same configurator’s performance as πi. Indeed, if this were not the case, there
would exist another deterministic policy optimal for the agent, leading to higher performance for the
configurator, contradicting the definition of SSE. The following result shows that by switching πi
with π̂i changes the regret just by a multiplicative factor depending on the mismatch between the
visitation distributions induced by the two policies, di,h and d̂i,h respectively.
Theorem 5.1 (Regret of AfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be
the M configurations. The expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤ O

(
min

{
H2

∑
i∈[M ]:∆i>0

log(K)

∆i︸ ︷︷ ︸
UCB1 regret

, MH3S2ρ

︸ ︷︷ ︸
AfOCL regret

})
, (3)

where ρ is the maxi∈[M ]:∆i>0 E
[
maxs∈S maxh∈[H]

d̂i,h(s)
di,h(s)

]
.

The result might be surprising as the regret is constant and independent of the suboptimality gaps
between the configurations, i.e., ∆i = V ∗ − V i for every i ∈ [M ]. As supported by intuition, we
need to spend more time discarding MDPs that are more similar in performance to the optimal one.
Formally, the maximum number of times a suboptimal configuration pi is played is proportional to
1/∆i (and not proportional to 1/∆2

i as in standard bandits). This is because we just need one visit to
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every reachable state. We underline that the term ρ , which indicates the expected ratio between the
estimated policy’s induced states distribution and real policy’s induced states distribution, is equal to
1 when the agent plays a deterministic policy and bounded by SH in the worst case (see Lemma B.3).
As far as we know, Theorem 5.1 is the first problem-dependent result for regret minimization for a
multi-entity MDP. More details on the proof are given in the Appendix B.

5.2 Reward-feedback Optimistic Configuration Learning

The main drawback of AfOCL is that every transition model is treated separately, preventing from
employing the underlying structure of the environment, which is represented by the agent reward
function ro. Indeed, if the configurator knew ro, it could find the optimal configuration with no need
for interaction by simply computing an agent’s best response policies for the SSE.

The algorithm we propose in this section, Reward-feedback Optimistic Configuration Learning
(RfOCL), employs the reward feedback (Rf), i.e., at every interaction, the configurator can see also
a noisy version of the agent’s reward function. The crucial point is that ro is the same regardless
of the chosen configuration, and, for this reason, it provides a link between them. Specifically, for
every k ∈ [K] and s ∈ S, RfOCL maintains a confidence interval for the agent reward function
Rk(s) = [ro,k(s), ro,k(s)] obtained using the samples collected up to episode k − 1 regardless
of the played configuration. We apply Höeffding’s inequality to build the confidence interval:

r̂o,k(s)±
√

log(2SHk2)
max{Nk(s),1} , where Nk(s) is the number of visits of state s in the first k − 1 episodes,

and r̂o,k(s) is the sample mean of the observed rewards for state s up to episode k. Given the
estimated reward, for every configuration i ∈ [M ], we can compute a confidence interval for the
agent’s Q-valuesQk,h(s, a) = [Qi

o,k,h
(s, a), Q

i

o,k,h(s, a)], by simply applying the Bellman equation:

Qi
o,k,h

(s, a) = ro,k(s) +
∑
s′∈S

pi(s
′|s, a) max

a′∈A
Qi
o,k,h+1

(s′, a′),

Q
i

o,k,h(s, a) = ro,k(s) +
∑
s′∈S

pi(s
′|s, a) max

a′∈A
Q
i

o,k,h+1(s′, a′),

and Qi
o,k,H

(s, a) = ro,k(s) and Q
i

o,k,H(s, a) = ro,k(s). If the true reward function belongs to the
confidence interval, i.e., ro ∈ Rk, then the true Q-value belongs to the corresponding confidence
interval, i.e., Qih ∈ Qk,h. Consequently, we can use Qk,h to restrict the set of plausible actions in
a state without actually observing the agent playing the action in that state. Indeed, the plausible
actions are those that have a Q-value upper bound larger than the maximum Q-value lower bound:

Ãik,h(s) =

{
a ∈ A : Q

i

o,k,h(s, a) ≥ max
a′∈A

Qi
o,k,h

(s, a′)

}
. (4)

In other words, if the upper Q-value of an action is smaller than the largest lower Q-value, it cannot
be the greedy action, and it is discarded. Clearly, if we observe, for the first time, the agent playing
an action in (s, h) at episode k we can reduce the plausible actions to the singleton ak,h, as in the
action-feedback setting (Section 5.1). Based on this refined definition of plausible actions, we can
compute the optimistic estimate Ṽ ik,h of the configurator value function V ih as in Equation (2) and
proceed playing the optimistic configuration.

The pseudocode of RfOCL is reported in Algorithm 2. It is worth noting that we need to keep track
of the states that have been already visited because for those, we know the agent’s action, and there is
no need to apply Equation (4). This is why we introduce the counts Nk,h(s)4.

Regret Guarantees We now give a regret bound for the RfOCL algorithm. Obviously, the same
arguments for AfOCL can also be applied for this extended version, and then the regret bound of
Theorem 5.1 is valid for RfOCL. Moreover, for this algorithm, we prove that the regret, under the
following assumption, does not depend on the number of configurations.
Assumption 1. There exists ε > 0 such that: mini∈[M ] mins∈S maxh∈[H] d

i
h(s) ≥ ε, where dih(s)

is the probability of visiting the state s ∈ S at time h ∈ [H] in configuration pi under the agent’s
best response policy πi.

4The value iteration dominates the computational complexity of an individual iteration of RfOCL (steps 5
and 9), leading, as for AfOCL, to O

(
KMHS2A

)
.
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Algorithm 2 Reward-feedback Optimistic Configuration Learning (RfOCL)

1: Input: S, A, H , P = {p1, . . . , pM}
2: Initialize Ai1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]
3: Initialize ro,1(s) = 1, ro,1(s) = 0, and N1,h(s) = 0 for all s ∈ S and h ∈ [H]
4: for episodes 1, 2, . . . ,K do
5: Compute Ṽ i,UCB

k for all i ∈ [M ]

6: Compute Ṽ ik for all i ∈ [M ]

7: Play pIk with Ik ∈ arg maxi∈[M ] min{Ṽ ik , Ṽ UCB
k }

8: Observe (sk,1, r̃k,1, ak,1, . . . , sk,H−1, r̃k,H−1, ak,H−1, sk,H , r̃k,H)
9: Compute ro,k+1(s), ro,k+1(s), and Nk+1,h(s) for all s ∈ S and h ∈ [H] using r̃k,1 · · · r̃k,H

10: Compute Qi
o,k+1,h

(s, a) and Q
i

o,k+1,h(s, a) for all s ∈ S, a ∈ A, h ∈ [H], and i ∈ [M ]

11: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Aik+1,h(s) =


{ak,h} if i = Ik and s = sk,h and Nk,h(s) = 0

Aik,h(s) if Nk,h(s) > 0

Ãik+1,h(s) otherwise

with Ãik+1,h(s) as in Equation (4).
12: end for

This assumption requires that in every model pi ∈ P the agent has non-zero probability, in some
step h, to visit every state s. This allows shrinking the confidence intervals for the reward of every
state to estimate the agent’s policy correctly, regardless of the played configuration. Notice that this
assumption is less strict than requiring the well-known ergodicity of the Markov process induced by
any policy, used in many algorithms [9, 21, 44].5 Under Assumption 1 we prove the following regret
guarantee.
Theorem 5.2 (Regret of RfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be
the M configurations. Under Assumption 1, the expected regret of RfOCL at every episode K > 0 is
bounded by:

E[Regret(K)] ≤ O

(
min

{
H2

∑
i∈[M ]:∆i>0

log(K)

∆i︸ ︷︷ ︸
UCB1 regret

, MH3S2ρ

︸ ︷︷ ︸
AfOCL regret

, K∆ +
π2

3︸ ︷︷ ︸
RfOCL regret

})
,

where ρ is defined as in Theorem 5.1, K is the smallest integer solution of the inequality K ≥ 1 +(
2H2S2 log(2SHK

2
)

2∆2
Q

+

√
K−1

2 log(SHK
2
)

)
1
ε , ∆ = maxi∈[M ] ∆i, i.e., the maximum suboptimality

gap, and ∆Q is the minimum positive gap of the agent’s Q-values (see Appendix B).

The regret bound removes the dependence on the number of models M , as K is clearly independent
of M , but it introduces, as expected, a dependence on the minimum visitation probability ε. The
proof of the result is reported in Appendix B. Since RfOCL exploits additional information compared
to AfOCL and the set of plausible actions Aik,h of RfOCL are subsets of those of AfOCL, the regret
bound AfOCL (Theorem 5.1) also holds for RfOCL. Thus, we can take as regret bound for RfOCL
the minimum between K∆ + π2

3 and MH3S2. We underline that, as far as we know, this is the first
proof that takes into consideration the sub-optimality gap of the uncontrollable entity, the agent, and
the sub-optimality gap of the controllable entity, the configurator. This permits to derive a problem
dependent regret bound. We think that similar techniques can also be of interest for Markov games.

6 Related Works

The idea of altering the environment dynamics to improve the agent’s learning experience has been
exploited before the introduction of Conf-MDPs. Curriculum learning [8] provides the agent with

5Moreover, the configurator can force this assumption since it has the control over the environmental
transition model.
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Figure 1: Cumulative regret for the Gridworld experiment.
50 runs, 98% c.i.
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Figure 2: Cumulative regret for the
Gridworld experiment without ergod-
icity. 50 runs, 98% c.i.

a sequence of environments, of increasing difficulty, to shape the learning process with possible
benefits on the learning speed [e.g., 14, 16]. Although the learning process is carried out in a different
environment, the configuration is typically performed in simulation only. The setting more similar
to Non-Conf-MDP is the one presented in [47], where the configurator and the agent have opposite
reward functions (similar to a zero-sum game).

In the Conf-MDP framework, instead, the configuration opportunities are an intrinsic property of
the environment [29]. The initial approaches entitled the agent of the configuration activity and,
consequently, this task was totally auxiliary to its learning experience [29, 39, 27]. More recently, it
has been observed that environment configuration can be actuated even by an external entity, opening
new opportunities for the application of environment configurability, including settings in which the
configurator’s interest conflicts with those of the agent. For instance, in [28] the configurator acts on
the environment to induce the agent to reveal its capabilities in terms of perception and actuation.
Instead, in [17] a threatener entity can change the transition probabilities either in a stochastic or
adversarial manner. More generally, environment configuration carried out by an external entity
has been studied in the field of planning as a form of environment design [48]. Thus, our NConf-
MDP unifies these settings, allowing for arbitrary agent’s and configurator’s reward functions. An
interesting connection is established with the robust control literature [31, 20]. Whenever the two
reward functions are opposite, i.e., the interaction between the agent and the configuration is fully
competitive, the resulting equilibrium corresponds to a robust policy. Indeed, while the agent tries to
maximize its expected return, the configurator places the agent in the worst possible environment.

Configurable environments (cooperative and non-cooperative) share similarities with environment
design [49]. At a high level, the two frameworks share analogous objectives: they both aim at
determining an environment with a certain goal that can differ from that of the agent. However,
there are some notable differences. In particular, the classical environment design formulation [49]
assumes that the configurator (called “interested party”) knows the agent’s best response function,
while in our approach, we learn it by interaction. Nevertheless, the general environment design makes
no assumption about the underlying environment, that might not me an MDP. Instead, [22] limit to
MDPs and considers a form of cooperative environment design in which the goal is to maximize the
agent’s performance. Interestingly, some works [22, 37] also account for a cost function to penalize
expensive environment configurations.

The design of our approaches is based on the OFU principle used for stochastic multi-armed ban-
dits [e.g., 23, 1, 18, 25] and MDPs [e.g., 2, 7, 3]. Moreover, our learning setting with reward feedback
is related to structured bandits or bandits with correlated arms.6 Interestingly, for certain structures, it
is known that bounded regret is achievable [11, 24], a property that is enjoyed by both our algorithms.
Our setting is also close to the Stochastic Games model, in which two or more agents act in an MDP
to maximize their own reward functions. Recently, the stochastic game’s framework gains growing
interest [5, 4, 50], especially in the offline setting i.e., we can control all the agents. For this reason,
these approaches do not apply to our setting, where we have the control of the configurator only.

6In our case, playing a single configuration provides information about the opponent’s reward, which, in turn,
provides information about the value of all configurations.
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Figure 3: Cumulative regret as a function of the episodes for the Student-Teacher experiment. 50
runs, 98% c.i.

Although some works tackle the online setting [44, 45, 41], where we can control only one agent, all
of these algorithms work in the zero-sum setting only.

7 Experiments

In this section, we provide the experimental evaluation of our algorithms in two different settings:
when the policies are stochastic and when the policies are deterministic. For these experiments, we
provide two novel environments: Configurable Gridworld and the Student-Teacher. We compare the
algorithms with the standard (theoretical) implementation of UCB1 [1]. The environment description
and additional results can be found in Appendix D.

Stochastic policies The Configurable Gridworld is a configurable version of a classic 3× 3 Grid-
world. The agent’s starting state is in the cell (0, 1), and its goal is to minimize the number of steps
required to reach the exit located in the cell (2, 1). The configurator takes reward 1 when the agent
occupies the central cell (1, 1) and 0 otherwise. In a classic Gridworld, the optimal policy would be
trivial, as the agent would proceed straight to the exit. In this Configurable Gridworld, instead, the
configurator can set the “power” p of a stochastic obstacle located in the cell (1, 1). When the agent
is in that cell and performs action “go right” to reach the exit, it will hit the obstacle, and will remain
in the same position with probability p. The configurator’s goal is to tune this probability to keep the
agent in the central cell for the maximum number of steps.

The M configurations differ in the probability p and are obtained by a regular discretization of
[0, 1]. In the first experiment (Figure 1), we considered 10 and 30 configurations with a number
of episodes K = 2000 and K = 4000 and horizon H = 10. For this experiment, the agent plays
optimal stochastic policies. We can see that AfOCL and RfOCL suffer constant regret, whereas
UCB1 displays a logarithmic regret, as expected. Specifically, RfOCL outperforms AfOCL and stops
playing suboptimal configuration in less than 500 episodes in both cases. This can be explained
because, being Assumption 1 fulfilled (in fact, the agent has the probability 0.1 of failing its action),
RfOCL is able to exploit the underlying structure of the problem more effectively.

Non-Ergodicity In Figure 2, we have only three configurations designed to induce an optimal
agent’s policy that generates a non-ergodic Markov chain. In this case, the optimal policies are
deterministic, and we violate Assumption 1. For this reason, we observe that AfOCL and RfOCL
display very similar behavior but still significantly better than UCB1.

Deterministic policies: Student-Teacher The Student-Teacher environment models a simple
interaction between a student and a teacher. There is a set of exercises, with a different level of
teacher hardness and student hardness each. The teacher has to decide the optimal sequence of
exercises in order to make the student acquire as much knowledge as possible. The student’s goal is
to maximize the number of exercises and to reduce the hardness of the proposed exercises. At each
timestep, the student decides whether to answer the exercise or not. If it answers, it receives a reward
equal to the level of “correctness” of the exercise, the teacher receives a reward corresponding to the
level of exercise’s “teacher hardness”, and they end up to the next exercise. If the student does not
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answer, the student and the teacher will receive −1, and with a probability of 0.7, the next exercise
will be easier to solve. In Figure 3, the results with M ∈ {40, 60, 100} and horizon H = 10 are
shown. The configurations represent the distribution over the next exercise, given a positive answer.
In every run, we change the student hardness of the exercises. We observe that both AfOCL and
RfOCL suffer significantly less regret compared to UCB1 and tend to converge to constant regret
as expected. It is interesting to observe that, in line with our analysis, the gap between AfOCL and
RfOCL appears more evident as the number of configurations grows.

8 Conclusions

In this paper, we have introduced an extension of the Conf-MDP framework to account for possible
non-cooperative interaction between the agent and the configurator. We focused on an online learning
problem in this new setting, proposing two regret minimization algorithms for identifying the best
environment configuration within a finite set, based on the principle of optimism in the face of
uncertainty. We proved that even when the agent’s policy is stochastic, and the configurator observes
the agent’s actions, it is possible to achieve finite regret that depends linearly on the admissible number
configurations. Furthermore, we illustrated that we can remove this dependence if the configurator
observes a possibly noisy version of the agent’s reward and under sufficient regularity conditions on
the environment. This paper also gives interesting insights on the importance of properly exploiting
the available feedback to construct efficient algorithms. Moreover, as far as we know, the ones we
have presented are the first problem-dependent regret results for multi-entity MDPs. The experimental
evaluation showed that our algorithms display a convergence speed significantly faster than UCB1,
and RfOCL tends to outperform AfOCL thanks to the exploitation of the additional structure. Future
research directions include a deeper analysis of the adversarial setting, as well as the application to
inverse reinforcement learning.

Limitations and Societal Impact

Methods that incentive the manipulation of users’ behavior can have, generally speaking, a negative
societal impact, when used, for instance, in a marketing campaign. Nevertheless, our work is mainly
theoretical and, at the present level, can hardly be used in a malevolent way. Another relevant aspect
is the cost of environment configuration. We are aware that reconfiguring the environment is an
activity that typically leads to higher costs compared with policy learning. However, we did not
consider this aspect in the formalization of the Non-Cooperative Conf-MDP since it would possibly
make the problem more complex (like, for instance, when considering bandits with switching costs).
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A Notation

S State space
A Action space
P Configuration space
M Configuration space size
ro Agent’s reward function
rc Configurator’s reward function
µ Initial state distribution
H Horizon

Qπ,pc,h (s, a) Configurator’s Q-value with policy π and configuration p
Qπ,po,h(s, a) Agent’s Q-value with policy π and configuration p
V π,pc,h (s) Configurator’s value function with policy π and configuration p
V π,po,h (s) Agent’s value function with policy π and configuration p
V π,pc Configurator’s expected return with policy π and configuration p
V π,po Agent’s expected return with policy π and configuration p

πi = π∗pi Agent’s best response to configuration pi
V i = V

π∗pi
,pi

c Configurator’s expected return with the agent’s best response policy π∗pi to
configuration pi

V ∗ = V
π∗pi∗

,pi∗

c Configurator’s expected return with the agent’s best response policy π∗pi to
the best configuration pi∗

Ṽ ik Optimistic configurator’s expected return for configuration pi at episode k
π̃i,k Estimated agent’s best response policy for configuration pi at episode k

∆i = V ∗ − V i Suboptimality gap of the configuration pi
K Number of episodes
Ni Number of times the configuration pi is played

Nk(s) Number of visits of state s before episode k
N i
k,h(s) Number of visits of state s at step h before episode k with configuration pi
ro,k(s) Lower confidence value for the agent’s reward
ro,k(s) Upper confidence value for the agent’s reward
r̂o,k(s) Sample mean of observed rewards

Qi
o,k,h

(s, a) Lower confidence value of the agent’s Q-function with configuration pi

Q
i

o,k,h(s, a) Upper confidence value of the agent’s Q-function with configuration pi
Aik,h(s) Set of agent’s plausible actions in state s at step h up to episode k
dih(s) Visitation probability the state s at step h with configuration pi under the

agent’s best response policy πi
d̃ih(s) Visitation probability the state s at step h with configuration pi under the

estimated agent’s best response policy π̃i,k
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B Missing Proofs

In this appendix, we report the proofs of the results presented in the main paper.

B.1 Proofs of Section 5.1

Lemma 5.1. The value function Ṽ ik,h(s) computed as in Equation (2) is such that Ṽ ik,h(s) ≥ V ih(s)

for all s ∈ S, h ∈ [H], and i ∈ [M ].

Proof. We will prove the lemma by induction. We define N i
k,h(s′) the number of times the state s is visited at

step h with the configuration pi ∈ P up to episode k − 1.

Case base = Ṽ ik,H(s) ≥ V ik,H(s) In this case is proven since Ṽ ik,H(s) = V ik,H(s) = rc(s).

Induction step We assume that Ṽ ik,h+1(s) ≥ V ik,h+1(s) and we will prove that Ṽ ik,h(s) ≥ V ik,h(s).

Ṽ ik,h(s) = rc(s) + max
a∈Ai

k,h
(s)

∑
s′∈S

pi(s
′|s, a)Ṽ ik,h+1(s)

≥ rc(s) + max
a∈Ai

k,h
(s)

∑
s′∈S

pi(s
′|s, a)V ik,h+1(s),

This is true for the induction hypothesis. Now there are two cases:

• N i
k,h(s) > 0 i.e, we have already visited the state s at step h. In this caseAik,h(s) = a where a is the

action that by the agent the last time we have seen state s at step h. If the policy is deterministic then:

rc(s) + max
a∈Ai

k,h
(s)

∑
s′∈S

pi(s
′|s, a)V ik,h+1(s) = rc(s) +

∑
s′∈S

pi(s
′|s, πp(s))V ik,h+1(s).

Instead, if the policy is stochastic:

rc(s) +
∑
s′∈S

pi(s
′|s, a)V ik,h+1(s) = rc(s) +

∑
a′∈A

∑
s′∈S

pi(s
′|s, πp(s, a′))V ik,h+1(s),

since, otherwise, the agent’s policy played when we have seen the realization of a is not optimal and
does not respect the SSE definition.

• N i
k,h(s) = 0. In this case Aik,h(s) = A then, clearly,:

rc(s) +
∑
s′∈S

max
a∈Ai

k,h
(s)
pi(s

′|s, a)V ik,h+1(s) ≥ rc(s) +
∑

a∈Ai
k,h

(s)

∑
s′∈S

pi(s
′|s, a)πp(s, a)V ik,h+1(s).

Then the result follows.

We denote with d̃ih(s) the visitation probability of visiting state s at step h under transition model
pi and playing the estimated agent’s best response policy π̃i,k (we will omit the subscript k in the
following). Then we start by constructing the policy π̂i such that:

π̂i,h(·|s) =

{
π̃i,h(·|s) if N i

K,h(s) > 0

πi,h(·|s) if N i
K,h(s) = 0

(5)

A simple extension of Lemma 5.1 proves that the policy is optimal π̂i,h (thanks to the SSE definition).
We call V̂ i the expected return of π̂i, and, obviously, V̂ i = V i.

The visitation probabilities satisfy the following equalities for all h ≥ 2:

dih(s) =
∑
s′∈S

pi(s|s′, ·)Tπi,h(·|s′)dih−1(s′)

d̂ih(s) =
∑
s′∈S

pi(s|s′, ·)T π̂i,h(·|s′)d̂ih−1(s′)

d̃ih(s) =
∑
s′∈S

pi(s|s′, ·)T π̃i,h(·|s′)d̃ih−1(s′) =
∑
s′∈S

pi(s|s′, π̃i,h(s))d̂ih−1(s′),

(6)

where for d̃ih(s), we exploited the fact that π̃i,h is deterministic, and di1(s) = d̃i1(s) = d̂i1(s) = µ(s).
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Lemma B.1. For every episode k ∈ [K] and configuration pi ∈ P , the difference between the
optimistic expected return Ṽ ik and the true expected return V i is bounded by:

Ṽ ik − V i ≤ 2Hρi
∑
s∈S

H−1∑
h=1

dih(s)1
{
N i
k,h(s) = 0

}
. (7)

where N i
k,h(s) is the number of times the state s ∈ S is visited at step h ∈ [H] with the configuration

pi ∈ P up to episode k − 1, where ρi = maxs∈S maxh∈H
d̂i,h(s)
di,h(s) .

Proof. As observed above, πi and π̂i, given the definition of SSE, induce the same value function V i = V̂ i.
Thus, we have

Ṽ ik − V i = Ṽ ik − V̂ i =
∑
s∈S

[
µ(s)r(s)− µ(s)r(s) +

H∑
h=2

(d̃ih(s)− d̂ih(s))r(s)

]
(P.1)

≤
∑
s∈S

H∑
h=2

∣∣∣d̃ih(s)− d̂ih(s)
∣∣∣ (P.2)

=
∑
s∈S

H−1∑
h=1

∣∣∣∣∣∑
s′∈S

d̃ih(s′)pi(s|s′, π̃i,h(s′))− d̂ih(s′)pi(s|s′, ·)T π̂i,h(·|s′)

∣∣∣∣∣ (P.3)

=
∑
s∈S

H−1∑
h=1

∑
s′∈S

∣∣∣d̃ih(s′)− d̂ih(s′)
∣∣∣ pi(s|s′, π̃i,h(s′)) + d̂ih(s′)

∣∣∣pi(s|s′, π̃i,h(s′))− pi(s|s′, ·)T π̂i,h(·|s′)
∣∣∣

=
∑
s′∈S

H−1∑
h=2

∣∣∣d̃ih(s′)− d̂ih(s′)
∣∣∣+
∑
s∈S

∑
s′∈S

H−1∑
h=1

d̂ih(s′)
∣∣∣pi(s|s′, π̃i,h(s′))− pi(s|s′, ·)T π̂i,h(·|s′)

∣∣∣
(P.4)

=

H∑
H′=2

∑
s∈S

∑
s′∈S

H′−1∑
h=1

d̂ih(s′)
∣∣∣pi(s|s′, π̃i,h(s′))− pi(s|s′, ·)T π̂i,h(·|s′)

∣∣∣ (P.5)

≤ H
∑
s′∈S

H−1∑
h=1

d̂ih(s′)
∑
s∈S

∣∣∣pi(s|s′, π̃i,h(s′))− pi(s|s′, ·)T π̂i,h(·|s′)
∣∣∣ (P.6)

≤ 2H
∑
s′∈S

H−1∑
h=1

1
{
N i
k,h(s) = 0

}
d̂ih(s′) (P.7)

= 2H
∑
s′∈S

H−1∑
h=1

1
{
N i
k,h(s) = 0

}
dih(s′)

d̂ih(s′)

dih(s′)
, (P.8)

where in line (P.1) we use the definition of expected return. In line (P.2) we bound the value of every reward with
its maximum value 1. In line (P.3) we expanded the probability distribution of visiting states using Equations (6).
In line (P.4) we observe that d̃i1(s′) − d̂i1(s′) = µ(s) − µ(s) = 0 to make the first summation starting from
h = 2. In line (P.5), we apply the recursion with line (P.2). In line (P.6), we bound H ′ ≤ H and observe that the
outer summation has less than H terms. Finally, in line (P.8) we upper bound the differences between the two
probabilities with 2, and we use the fact that when we have seen a state s at step h with a configuration pi the
two policies are equal by construction.

Lemma B.2. A configuration pi ∈ P is no longer played after episode k ∈ [K] if for every state
s ∈ S and h ∈ [H], with dih(s) ≥ ∆i−c

2H2Sρi
, we have N i

k,h(s) > 0, where c > 0 is arbitrary and
∆i = V ∗ − V i.
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Proof. It suffices to prove that the optimistic expected return satisfies Ṽ ik < V ∗, that, in turn, will satisfy
V ∗ ≤ Ṽ i

∗
k where i∗ ∈ arg maxi∈[M ] V

i (this way configuration i will no longer be played):

Ṽ ik = V i + Ṽ ik − V i

≤ V i + 2Hρi
∑
s∈S

H−2∑
h=1

dih(s)1
{
N i
h,k(s) = 0

}
(P.9)

≤ V i + 2H2Sρi
∆i − c
2H2Sρi

(P.10)

= V i + ∆i − c < V ∗, (P.11)

where in line (P.9) we apply Lemma B.1. In line (P.10) we bound the state visitation probabilities of the (s, h)
pairs with N i

h,k(s) > 0 with their maximum value, as in the statement hypothesis. In line (P.11) we use the fact
that ∆i = V ∗ − Vi.

Theorem 5.1 (Regret of AfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be
the M configurations. The expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤ O

(
min

{
H2

∑
i∈[M ]:∆i>0

log(K)

∆i︸ ︷︷ ︸
UCB1 regret

, MH3S2ρ

︸ ︷︷ ︸
AfOCL regret

})
, (3)

where ρ is the maxi∈[M ]:∆i>0 E
[
maxs∈S maxh∈[H]

d̂i,h(s)
di,h(s)

]
.

Proof. We start by dividing the analysis between the UCB1 algorithm and the proposed new algorithm. For the
UCB1 algorithm the regret is straightforward from [1]:

E[Regret(K)] ≤ O

H2
∑

i∈[M ]:∆i>0

log(K)

∆i

 ,

since the random variables V i for each model i ∈ [M ] have their support in [0, H].

Then, we analyze the regret of the proposed algorithm. We rephrase the regret as:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni],

where Ni is the number of times that the algorithm plays model pi which is not the optimal configuration pi∗ .
We start bounding for every configuration pi s.t. ∆i > 0 the expected value of Ni. We denote with kil the round
at which model i is selected for the l-th time:

E[Ni] ≤
K∑
l=0

Pr(Ni ≥ l)

≤
∞∑
l=0

Pr(Ni ≥ l) (P.12)

≤
∞∑
l=0

Pr
(
Ṽ iki

l
− V ∗ ≥ 0

)
, (P.13)

(P.14)

where in line (P.12) we extend the sum to∞. In line (P.13) we exploit the fact that if configuration i is selected
then it must be Ṽ i

ki
l
≥ Ṽ i

∗

ki
l

and, because of optimism Ṽ i
∗

ki
l
≥ V ∗. Then, we observe that for Lemma B.2, if

configuration i is played at time kil , then there must exists s ∈ S and h ∈ [H] with dih(s) ≥ ∆i−c
2H2S

that is not
played yet. Formally:
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E[Ni] ≤
∞∑
l=0

Pr
(
Ṽ iki

l
− V ∗ ≥ 0

)
≤ 1 +

∞∑
l=1

Pr

(
∃s ∈ S, ∃h ∈ [H] : dih(s) ≥ ∆i − c

2H2Sρi
∧ N i

ki
l
,h(s) = 0

)
(P.15)

≤ 1 +

∞∑
l=1

∑
s∈S,h∈[H]

Pr

(
dih(s) ≥ ∆i − c

2H2Sρi
∧ N i

ki
l
,h(s) = 0

)
(P.16)

≤ 1 +

∞∑
l=1

∑
s∈S,h∈[H]

E
[
Pr

(
N i
ki
l
,h(s) = 0

∣∣∣∣dih(s) ≥ ∆i − c
2H2Sρi

)
1

{
dih(s) ≥ ∆i − c

2H2Sρi

}]
(P.17)

≤ 1 +

∞∑
l=1

∑
s∈S,h∈[H]

E
[
Pr

(
N i
ki
l
,h(s) = 0

∣∣∣∣dih(s) ≥ ∆i − c
2H2Sρi

)]
(P.18)

≤ 1 + SH E

[
∞∑
l=1

(
1− ∆i − c

2H2Sρi

)l−1
]

(P.19)

= 1 + SH E

[
1

∆i−c
2H2Sρi

]
≤ 1 +

2H3S2 E[ρi]

∆i − c
, (P.20)

where, in line (P.15) we use Lemma B.2. In line (P.16) we use the union bound over the set employed for
existential quantification. In line (P.17) we employed the definition of conditional probability and in line (P.18) we
bounded the indicator with 1. In line (P.19) we bound the probability as Pr

(
N i
ki
l
,h

(s) = 0
)

= (1− dih(s))l−1,
thanks to the independence of the rounds. In line (P.20) we use the geometric series properties.

So the expected regret is bounded by:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni] ≤
∑

i∈[M ]:∆i>0

∆i

(
2H3S2 E[ρi]

∆i − c
+ 1

)
≤ 3MH3S2ρ,

having taken the infimum over c > 0 and ρ = maxi∈[M ]:∆i>0 E[ρi].

Lemma B.3. The expected value of d̂i,h(s)
di,h(s) , taken w.r.t. the randomness of the episodes, is 1.Moreover,

the expectation of ρi = maxs∈S maxh∈[H]
d̂i,h(s)
di,h(s) , taken w.r.t. the randomness of the episodes, is

bounded by SH .

Proof. First of all, we observe that, given its definition, for every s, s′ ∈ S and h, h′ ∈ [H] such that
(s, h) 6= (s′, h′) we have that π̂h(·|s) and π̂h′(·|s′) are independent. This is because π̂ is a policy that plays
deterministically an action in each (s, h), selected by querying the true agent’s policy π. Consequently, since
actions played by the agent in different (s, h) are independent, also the policy entries π̂h(·|s) are independent
for different (s, h)-pairs. Moreover, E[π̂h(·|s)] = πh(·|s), where the expectation is taken w.r.t. the randomness

of the episodes. We are going to prove by induction that E
[
d̂i,h(s)

]
= di,h(s). Let us consider the case h = 2:

E
[
d̂i,2(s)

]
=
∑
s′∈S

µ(s′)p(s|s′, ·)T E[π̂i,1(·|s′)] = di,1(s).

By induction, suppose that the statement hold for all h′ ≤ h, we prove it for h+ 1:

E
[
d̂i,h+1(s)

]
=
∑
s′∈S

E
[
d̂i,h(s′)p(s|s′, ·)T π̂i,h(·|s′)

]
=
∑
s′∈S

E
[
d̂i,h(s′)

]
p(s|s′, ·)T E

[
π̂i,h(·|s′)

]
=
∑
s′∈S

di,h(s′)p(s|s′, ·)Tπi,h(·|s′) = di,h+1(s),

where the last but one line derives from the fact that d̂i,h and π̂i,h are independent. This is due to the fact that
d̂i,h depends on the policies {π̂i,h′} for h′ < h only that, in turn, are independent from {π̂i,h′} as noted at the
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beginning of the proof. The last line follows from the inductive hypothesis. For the second statement, we have:

E[ρi] = E

[
max
s∈S

max
h∈[H]

d̂i,h(s)

di,h(s)

]
≤
∑
s∈S

∑
h∈[H]

E

[
d̂i,h(s)

di,h(s)

]
= SH,

having exploited the first statement.

B.2 Proofs of Section 5.2

In this section, we are going to prove the regret bound RfOCL. In this second algorithm the configu-
rator can observe at every episode also a realization of the agent’s reward function. In the following
we will show how the algorithm exploits this information under Assumption 1.

We start defining the good events Gk for k ∈ [K]:

Gk =

{
∀s ∈ S, |r̂o,k(s)− ro(s)| ≤

√
log(2SHk2)

2Nk(s)

}
The event Gk means that, at episode k ∈ [K], the estimated rewards of each state s ∈ S are inside
the confidence intervals.

Lemma B.4. For every configuration pi ∈ P and state action pair (s, a) ∈ S × A, the difference
between the optimistic state-action value function Q

i

o,k,1(s, a) and the true optimal state-action value
function Qio,1(s, a) is bounded by:

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ ro,k(s)− ro(s) +
∑
s′∈S

H∑
h=2

d
i

k,h(s′) (ro,k(s′)− ro(s′)) ,

where d
i

k,h the visitation distribution induced by a greedy policy πi,k w.r.t. Q
i

o,k. Similarly, the
difference between the true optimal state-action value function Qio,1(s, a) and the pessimistic state-
action value function Qi

o,k,1
(s, a) is bounded by:

Qio,1(s, a)−Qi
o,k,1

(s, a) ≤ ro(s)− ro,k(s) +
∑
s′∈S

H∑
h=2

dik,h(s′)
(
ro(s

′)− ro,k(s′)
)
.

Proof. The proof is basically taken from [46, 3, 42]:

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ Qio,k,1(s, a)−Qπi,k

o,1 (s, a) (P.21)

= ro,k(s)− ro(s) +
∑
s′∈S

H∑
h=2

d
i
k,h(s′)

(
ro,k(s′)− ro(s′)

)
. (P.22)

where line (P.21) is due to Qio,1(s, a) ≥ Q
πi,k

o,1 (s, a), recalling that Qio,1 is the optimal Q-value for the agent,
under configuration pi and the optimal agent’s policy. Line (P.21) derives form the application of the simulation
lemma since Q

i

o,k,1(s, a) and Q
πi,k

o,1 (s, a) are under the same policy πi,k. For the second statement, we proceed
analogously by simply observing that Qi

o,k,1
(s, a) ≥ Qπi

o,1
(s, a) where πi is a greedy policy w.r.t. Qio,k(s, a).

Lemma B.5. If for all k ∈ [K], the good events Gk hold, for all state-action pairs (s, a) ∈ S ×A,
h ∈ [H], and configuration pi ∈ P it holds that:

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ SH

√
log(2SHk2)

2Nk(s)
,

Qio,1(s, a)−Qi
o,k,1

(s, a) ≤ SH

√
log(2SHk2)

2Nk(s)
.
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Proof. We apply Lemma B.4, recall that ro,k(s) = r̂o,k(s) +
√

log(2SHk2)
2Nk(s)

and ro,k(s) = r̂o,k(s) −√
log(2SHk2)

2Nk(s)
, and make use of the definition of the events Gk. Then, we bound the visitation distribution with

1.

Lemma B.6. Let s ∈ S be a state with minimum visitation probability d(s) :=
mini∈[M ] maxh∈[H] d

i
h(s) > 0. Then, at episode k ∈ [K], for every δk ∈ (0, 1), with probability at

least 1− δk it holds that:

Nk(s) ≥ (k − 1)d(s)−

√
k − 1

2
log

(
1

δk

)
.

Proof. First of all, we define the random variable Nu
k (s) as the count of the visits to state s, where multiple

visits in the same episode are considered just once:

Nu
k (s) =

k−1∑
i=1

1 {∃h ∈ [H] : sk,h = s} .

Clearly, Nu
k (s) ≤ Nk(s) and, consequently, E[Nu

k (s)] ≤ E[Nk(s)]. The expectation of E[Nu
k (s)] can be

bounded as:

E[Nu
k (s)] = E

[
k−1∑
i=1

1 {∃h ∈ [H] : sk,h = s}

]

=

k−1∑
i=1

Pr (∃h ∈ [H] : sk,h = s|pIk , πIk ) (P.23)

=

k−1∑
i=1

Pr

 ⋃
h∈[H]

{sk,h = s}|pIk , πIk

 (P.24)

≥
k−1∑
i=1

max
h∈[H]

Pr (sk,h = s|pIk , πIk ) (P.25)

=

k−1∑
i=1

max
h∈[H]

d
Ik
h (s) (P.26)

≥ (k − 1) min
i∈[M ]

max
h∈[H]

dih(s) = (k − 1)d(s), (P.27)

where line (P.23) and line (P.24) we simply rewrite the expectation as probability. In line (P.25) we bound
the probability of the union with just one term. In line (P.26) we employ the definition of dIkh (s). Finally, in
line (P.27), we take the minimum over Ik. Since 0 ≤ Nu

k (s) ≤ k − 1, by using Höeffding’s inequality, we have
that with probability at least 1− δk it holds that:

Nu
k (s) ≥ E[Nu

k (s)]−
√
k − 1

2
log

1

δk
≥ (k − 1)d(s)−

√
k − 1

2
log

1

δk
,

having used the lower bound on E[Nu
k (s)]. The result follows from recalling thatE[Nu

k (s)] ≤ E[Nk(s)].

Lemma B.7. If for all k ∈ [K], the good events Gk hold, and for all s ∈ S it holds that√
log(2SHk2)

2Nk(s) ≤ ∆Q−c
2SH , with arbitrary c > 0, then for every configuration pi ∈ P we have that

π̃i,k = πi.

Proof. Let ∆Q be the minimum gap between the Q-function in the optimal action and a different action in all
transition probabilities pi ∈ P:

∆Q = min
i∈[M ]

min
s∈S

min
h∈[H]

{
max
a∈A

Qio,h(s, a)− max
a′∈A\arg maxa∈A Q

i
o,h

(s,a)
Qio,h(s, a′)

}
.
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For all s ∈ S and h ∈ [H], we denote with a∗ = arg maxa∈AQ
i
o,h(s, a) and we have for all a ∈ A \ {a∗}:

Q
i

o,k,h(s, a)−Qi
o,k,h

(s, a∗) = Q
i

o,k,h(s, a)−Qi
o,k,h

(s, a∗)±Qio,h(s, a)±Qio,h(s, a∗)

= Q
i

o,k,h(s, a)−Qio,h(s, a)︸ ︷︷ ︸
(A)

+Qio,h(s, a∗)−Qi
o,k,h

(s, a∗)︸ ︷︷ ︸
(B)

+Qio,h(s, a)−Qio,h(s, a∗)︸ ︷︷ ︸
(C)

≤ 2SH

√
log(2SHk2)

2Nk(s)
−∆Q

≤ 2SH
∆Q − c
2SH

−∆Q ≤ −c,

where for (A) and (B) we applied Lemma B.5 and for (C) we used the definition of ∆Q. We have proved that the
lower bound on the Q-value of the optimal action Qi

o,k,h
(s, a∗) falls above the upper bound on the Q-value of

all other actions Q
i

o,k,h(s, a). Consequently, the greedy action will be properly identified and π̃i,k = πi.

Theorem 5.2 (Regret of RfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be
the M configurations. Under Assumption 1, the expected regret of RfOCL at every episode K > 0 is
bounded by:

E[Regret(K)] ≤ O

(
min

{
H2

∑
i∈[M ]:∆i>0

log(K)

∆i︸ ︷︷ ︸
UCB1 regret

, MH3S2ρ

︸ ︷︷ ︸
AfOCL regret

, K∆ +
π2

3︸ ︷︷ ︸
RfOCL regret

})
,

where ρ is defined as in Theorem 5.1, K is the smallest integer solution of the inequality K ≥ 1 +(
2H2S2 log(2SHK

2
)

2∆2
Q

+

√
K−1

2 log(SHK
2
)

)
1
ε , ∆ = maxi∈[M ] ∆i, i.e., the maximum suboptimality

gap, and ∆Q is the minimum positive gap of the agent’s Q-values (see Appendix B).

Proof. We rewrite the expected regret as follows:

E[Regret(K)] =

K∑
k=1

(E[∆Ik1 {Gk}] + E[∆Ik1 {¬Gk}])

≤
K∑
k=1

E[∆Ik |Gk]︸ ︷︷ ︸
(A)

+H

K∑
k=1

Pr(¬Gk)︸ ︷︷ ︸
(B)

,

where we bounded Pr(Gk) ≤ 1 in term (A) and ∆Ik with its maximum value H in term (B). We start bounding
the (B) term:

H

K∑
k=1

Pr(¬Gk) = H

K∑
k=1

Pr

(
∃s ∈ S s.t. |r̂o,k(s)− r(s)| >

√
log(2SHk2)

2Nk(s)

)
(P.28)

≤ H
K∑
k=1

∑
s∈S

Pr

(
|r̂o,k(s)− r(s)| >

√
log(2SHk2)

2Nk(s)

)
(P.29)

≤ H
K∑
k=1

∑
s∈S

1

SHk2
≤ π2

6
, (P.30)

where line (P.28) follows from the definition of the good event Gk. Line (P.29) is a union bound on the states.
Line (P.30) comes from Höeffding’s inequality.

For the first term (A) we define the event Ek for all k ∈ [K]:

Ek =

{
∀s ∈ S : Nk(s) ≥ (k − 1)d(s)−

√
k − 1

2
log (SHk2)

}
.
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If this event holds then every state s ∈ S is visited at least (k− 1)d(s)−
√

k
2

log (SHk2) times, where d(s) is
defined as in Lemma B.6.

Considering the term (A), we have:
K∑
k=1

E[∆Ik |Gk] ≤
K∑
k=1

E[∆Ik |Gk, Ek]︸ ︷︷ ︸
(C)

+H

K∑
k=1

Pr(¬Ek)︸ ︷︷ ︸
(D)

,

where we bound the in the second term ∆Ik ≤ H .

We start bounding the second term (D). We apply Lemma B.6 after a union bound over the states:

H

K∑
k=1

Pr(¬Ek) = H

K∑
k=1

Pr

(
∃s ∈ S : Nk(s) < (k − 1)d(s)−

√
k − 1

2
log (SHk2)

)

≤ H
∑
s∈S

K∑
k=1

Pr

(
Nk(s) < (k − 1)d(s)−

√
k − 1

2
log (SHk2)

)

≤ H
∑
s∈S

K∑
k=1

1

SHk2
≤ π2

6
.

Now it remains to bound the term (C) that, using Lemma B.7, is zero whenever
√

log(2SHk2)
2Nk(s)

≤ ∆Q−c
2SH

. Thus,
under the events Ek and recalling that under Assumption 1 we have d(s) ≥ ε, we obtain:√

log(2SHk2)

2Nk(s)
≤
√

log(2SHk2)

2(k − 1)ε−
√

2(k − 1) log (SHk2)
.

From which, we derive the condition:

K ≥ 1 +

2H2S2 log(2SHK
2
)

2(∆Q − c)2
+

√
K − 1

2
log(SHK

2
)

 1

ε
.

Then, we take the infimum over c. Thus, for the term (C), we consider the decomposition:

K∑
k=1

E[∆Ik |Gk, Ek] ≤
K∑
k=1

E[∆Ik |Gk, Ek] +

∞∑
k=K+1

E[∆Ik |Gk, Ek] = K∆ + 0,

where we bounded ∆Ik ≤ ∆ with ∆ = maxi∈[M ] ∆i. Then the total regret is given by:

E[Regret(K)] ≤ K∆ +
π2

3
.

C Adversarial agent

In this paragraph, we provide some hints about the adversarial case, to illustrate the additional
complexities that arise. In the adversarial setting, the agent can play a different policy at each step,
inside the set of possible policies that satisfy the SSE, namely ΠSSE

i . For the Af setting, to have
bounded regret, we have to add the following assumption.

Assumption 2. For all i ∈ [M ], let π, π′ ∈ ΠSSE
i , then di,πh (s) > 0 if and only if di,π

′

h (s) > 0.

Under this assumption (less strict than Assumption 1), Theorem 5.1 continues to hold. Indeed, though
the agent can adversarially change the policies, we can still define the policy π̂, since the policies in
the set ΠSSE do not disconnect the reachable set of states. On the other hand, without this assumption,
the algorithm needs some modifications, since the agent can stuck the configurator with actions that
after some episodes will not be played any more; this behavior can lead to an estimated policy that
visits unreachable states.

For the Rf, instead, under the following assumption (that is a natural extension of Assumption 1),
Theorem 5.2 continues to apply.
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Assumption 3. There exists ε > 0 such that: mini∈[M ] mins∈S maxh∈[H] d
i
h(s) ≥ ε, where dih(s)

is the probability of visiting the state s ∈ S at time h ∈ [H] in configuration pi under every agent’s
best response policy πi ∈ ΠSSE

i .

In this case the reward continues to give the structure to connect the policies and the models. However,
we believe that to solve the adversarial case without these assumptions would require modifying the
algorithm, and it is left to future work.
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D Experimental Details

In this appendix, we report additional experimental details and results.

D.1 Configurable Gridworld

Description In Figure 4 the environment of the Configurable Gridworld is shown. The configurable
Gridworld is a 3× 3 gridworld with an obstacle in the cell (2, 2), which with a probability p causes
the agent action right not to be performed. The starting state is in every configuration (1, 2) and the
goal state is (3, 2).

Additional Experiments We report additional experiments for the Configurable Gridworld envi-
ronment. For the Configurable Gridworld with size 3 × 3, horizon 10, we perform 4 experiments
with an increasing number of configurations. In this case the expert policy is deterministic. Figure 5
shows the results of the experiments. We can notice that with more than 100 configurations AfOCL
does not achieve constant regret in 5000 steps, instead RfOCL converges in every experiment.

Configuration #1 Configuration #2 Configuration #3

Figure 4: Configurable Gridworld: from left to right the 3 configurations represent increasing “power”
of the obstacle.
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Figure 5: From left up to right down 10, 30, 100, 200 configurations’ number.
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Figure 6: Cumulative regret for the Gridworld experiment. 50 runs, 98% c.i.

We report also the same experiment shown in the main paper with a tuned-version of UCB1 (see
figure 6). We would like to underline that, also in this case, the two proposed algorithm AfOCL and
RfOCL achieved a constant behavior while UCB1-tuned has a logarithmic behavior.

D.2 Market

A Configurable Market is a simplified model for a marketplace. The agent, namely the customer,
wants to buy a given set of products QA in the minimum number of steps. Instead, the configurator
has the role in placing all the products Q ⊃ QA in the marketplace to maximize the market’s revenue
inducing the agent to buy other products in addition to those it would buy. The configurator’s reward
is 1 any time the agent passes over a state where a product is placed and 0 in all the other states.
Whereas the agent’s reward is −1 everywhere and gains a bonus of 0.9 when it passes over a state
with a product in QA. In other words, the products remain fixed in the market, and the configurator
can change the transition model within a set of random transition models. However, from an abstract
point of view, this is equivalent to moving the products in the Gridworld.

In Figure 7 the market domain with 3 different configurations is shown. The market domains consists
in K ×K states, where every product is assigned to a specific state. The configurator can change the
transition matrix for all the states except for the starting state and the "exit" state. Every different
configuration can be thought as shuffling the cells of a gridworld.

In Figure 8, AfOCL and RfOCL are compared against UCB1. The number of configurations is 10,
the horizon 15, and the Gridworld size is 4 × 4. In every run, we construct 10 different transition
models, which specify the 10 configurations. Also, in this experiment, the trend is confirmed since
AfOCL and RfOCL outperform UCB1. We observe that the two algorithms, in this environment,
behave similarly, and this is due to the small number of configurations. However, we can notice
RfOCL at the end of the considered episodes approaches the constant regret.

Configuration #1 Configuration #2 Configuration #3

Figure 7: Market: the figure shows a 5 × 5 market. The red state is the starting state, instead the
green state is the “end” state. The stars are the product and the orange star is the only product the
agent is interested in.
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Figure 8: Cumulative regret as a function of the episodes for the Configurable Market experiment. 50
runs, 98% c.i.

D.3 Teacher Student

In Figure 9 an illustrative example of the Teacher-Student domain is reported. Right arrows correspond
to answer No, and green arrows to answer Yes. The transparency is due to the level of probability of
every transition. The configurator can change the transition matrix for the answer Yes, instead the
transition matrix for action No is fixed for all the configurations.
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Figure 9: Teacher Student.
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