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Abstract

Optimization is a key component for training machine learning models and has
a strong impact on their generalization. In this paper, we consider a particu-
lar optimization method—the stochastic gradient Langevin dynamics (SGLD)
algorithm—and investigate the generalization of models trained by SGLD. We
derive a new generalization bound by connecting SGLD with Gaussian channels
found in information and communication theory. Our bound can be computed
from the training data and incorporates the variance of gradients for quantifying a
particular kind of “sharpness” of the loss landscape. We also consider a closely
related algorithm with SGLD, namely differentially private SGD (DP-SGD). We
prove that the generalization capability of DP-SGD can be amplified by iteration.
Specifically, our bound can be sharpened by including a time-decaying factor if the
DP-SGD algorithm outputs the last iterate while keeping other iterates hidden. This
decay factor enables the contribution of early iterations to our bound to reduce with
time and is established by strong data processing inequalities—a fundamental tool
in information theory. We demonstrate our bound through numerical experiments,
showing that it can predict the behavior of the true generalization gap.

1 Introduction

Modern deep neural networks (DNNs) are highly expressive: they can memorize an entire training
dataset and still generalize well to unseen data (Zhang et al., 2016). This empirical observation is
not captured by traditional generalization bounds found in statistical learning theory, which attribute
the generalization ability to the use of a hypothesis class with constrained complexity (Vapnik and
Chervonenkis, 1971; Valiant, 1984). Recent studies demonstrate that different algorithmic choices
and data distributions may yield DNNs with contrasting generalization behaviors (Hardt et al., 2016;
Neyshabur et al., 2017; Bartlett et al., 2017). In this paper, we study how one optimization method
used for training DNNs, namely the stochastic gradient Langevin dynamics (SGLD) algorithm
(Gelfand and Mitter, 1991; Welling and Teh, 2011), may influence their generalization.

The SGLD algorithm is used in different practical settings. For example, it has been implemented
in open-source libraries (Facebook AI, 2020; Radebaugh and Erlingsson, 2019) for training models
with differential privacy guarantees (Dwork et al., 2006; Song et al., 2013; Abadi et al., 2016). The
additive noise in the SGLD algorithm can also mitigate overfitting for DNNs (Neelakantan et al.,
2015). Recently, there is an increasing number of efforts (see e.g., Raginsky et al., 2017; Mou et al.,
2018; Li et al., 2019; Pensia et al., 2018; Negrea et al., 2019) that investigate the generalization
properties of the SGLD algorithm. It is within this body of work that the present paper is inscribed.
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Figure 1: Illustration of our generalization bound in Theorem 1. We use the SGLD algorithm to
train 3-layer neural networks on MNIST when the training data have different label corruption level
α ∈ {0%, 25%, 50%, 75%}. Left: training accuracy. Middle: (empirical) generalization gap. Right:
(empirical) generalization bound. As shown, the generalization gap is increasing with respect to α
and our bound can capture this phenomenon. We defer detailed discussions to Section 5.

We derive a new generalization bound (Theorem 1) for the SGLD algorithm in Section 3. Our bound
(see Figure 1 for an illustration) incorporates the variance of gradients, which can be estimated from
the training data and captures a particular kind of “sharpness” of the loss landscape (Keskar et al.,
2016). This variance term can also be predictive of the generalization gap as shown in a recent
empirical study (Jiang et al., 2019). We consider a general setting in which the output from the SGLD
algorithm can be any function of the iterates. This is crucial since many theoretical analyses (see e.g.,
Zhang et al., 2017; Jin et al., 2019) require the final output to be the iterate that achieves the smallest
value of the loss function or an average of the iterates, but not necessarily the last iterate. Finally, the
numerical experiments in Section 5 suggest that our generalization bound is highly correlated with
the true generalization gap.

We also investigate the DP-SGD algorithm in Section 4. In particular, we prove that if it is known
a prior, that the algorithm outputs the last iterate rather than an arbitrary function of all iterates,
then our bound can be further tightened by incorporating a time-decaying factor. Our analysis is
motivated by a line of recent works (Feldman et al., 2018; Balle et al., 2019; Asoodeh et al., 2020) on
privacy amplification by iteration. Specifically, the original work by Feldman et al. (2018) provided
two intertwined observations of the DP-SGD algorithm: (i) not releasing the intermediate steps
can amplify the privacy guarantees and (ii) data points used in the early iterations get stronger
privacy protection than those occurring late. In this paper, we establish two analogous results: (i)
our generalization bound can be sharpened by incorporating a time-decaying factor if DP-SGD only
outputs the last iterate (Theorem 2) and (ii) this decay factor enables the impact of early iterations on
our bound to reduce with time (Lemma 4).

The proof techniques of this paper are based on fundamental tools from information theory. We first
use an information-theoretic framework, proposed by Russo and Zou (2016) and Xu and Raginsky
(2017) and further tightened by Bu et al. (2020), for deriving an algorithmic generalization bound.
This framework relates the generalization gap with the mutual information I(W; Zi) between the
output parameter W from the SGLD algorithm and each individual data point Zi. However, estimating
the mutual information from data is often intractable. Given this major challenge, our key contribution
is to connect the SGLD algorithm with a well-understood notion in data transmission, namely additive
white Gaussian noise (AWGN) channels. This connection allows us to use properties of Gaussian
channels for analyzing the mutual information. First, we upper bound I(W; Zi) using the variance
of gradients by exploring the input-output mutual information of a Gaussian channel. This variance
term can be estimated from the training data and is highly correlated with the true generalization gap.
Second, we incorporate a time-decaying factor into our bound. This factor is established by strong
data processing inequalities (Dobrushin, 1956; Cohen et al., 1998) and has an intuitive interpretation:
if a data point is used at an early iteration, its impact on the generalization gap reduces with time due
to external Gaussian noise. The above two aspects correspond to Lemma 4 and Lemma 5 which, in
turn, are the basis of our main results in Theorem 1 and Theorem 2.

The supplementary material of this paper includes: (i) omitted proofs of all theoretical results and (ii)
supporting experimental results.
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Related Works

We contextualize our contributions in regard to existing literature (Mou et al., 2018; Li et al., 2019;
Pensia et al., 2018; Bu et al., 2020; Negrea et al., 2019; Haghifam et al., 2020; Rodríguez-Gálvez
et al., 2020; Neu et al., 2021). Among them, Mou et al. (2018) introduced two generalization bounds.
The first one (Theorem 1 of Mou et al., 2018), a stability-based bound, achieves O(1/n) rate in
terms of the sample size n but relies on the Lipschitz constant of the loss function which makes it
distribution-independent. A distribution-independent bound can be potentially loose and may not
capture empirical observations (e.g., a network trained using true labels generalizes better than a
network trained using corrupted labels as shown in Figure 1). The second one (Theorem 2 of Mou
et al., 2018), a PAC-Bayes bound, replaces the Lipschitz constant by an expected-squared gradient
norm but suffers from a slower rate O(1/

√
n). In contrast, our bound has order O(1/n) and tightens

the expected-squared gradient norm by the variance of gradients. The PAC-Bayes bound in Mou
et al. (2018) is the only SGLD bound, besides ours, which incorporates an explicit time-decaying
factor. However, their decay factor is incomparable with ours since they are established through
distinct proof techniques and rely on different assumptions: their factor relies on an L2 regularization1

whereas ours is focused on the DP-SGD algorithm. A follow-up work by Li et al. (2019) combined
the algorithmic stability approach with PAC-Bayesian theory and presented a bound which achieves
order O(1/n). However, their bound requires the scale of the learning rate to be upper bounded by
the inverse Lipschitz constant of the loss function. In contrast, we do not need any assumptions on
the learning rate.

There are significant recent works that adopt the information-theoretic framework (Xu and Raginsky,
2017) for bounding the SGLD generalization gap. Among them, Pensia et al. (2018) initially
proposed a bound in Corollary 1 for analyzing a class of noisy iterative algorithms, including
SGLD, and their bound was extended in Proposition 3 of Bu et al. (2020). However, the bounds in
Pensia et al. (2018); Bu et al. (2020) are distribution-independent. Recently, Negrea et al. (2019)
improved these bounds by replacing the Lipschitz constant with a gradient prediction residual, which
is distribution-dependent. To compare with the generalization bound in Negrea et al. (2019), we
incorporate a time-decaying factor into our bound under additional assumptions. Furthermore, the
numerical experiments (Section 5) suggest that our bound is more favourably correlated with the true
generalization gap. Negrea et al. (2019) provided another bound in their Theorem 3.1 which involves
a variance term but it suffers from a slower rate O(1/

√
n).

More broadly, there are several recent works considering algorithms closely related to SGLD. For
example, Haghifam et al. (2020) investigated the Langevin dynamics algorithm (i.e., full batch
SGLD), which was later extended by Rodríguez-Gálvez et al. (2020) to SGLD, and observed a
time-decaying phenomenon in their experiments. Specifically, Haghifam et al. (2020) incorporated a
quantity, namely the squared error probability of the hypothesis test, into their bound in Theorem 4.2
and this quantity decays with the number of iterations. This seems to suggest that earlier iterations
have a larger impact on their generalization bound. In contrast, our decay factor and the counterpart
in Mou et al. (2018) indicate that the impact of earlier iterations is reducing with the total number of
iterations. A recent work by Neu et al. (2021) investigated the generalization properties of SGD and
provided a bound that also involves the variance of gradients. Note that the generalization bound in
their Proposition 3 suffers from a weaker order O(1/

√
n) when the analysis is applied to SGLD.

To summarize, our main contribution is to provide a generalization bound for SGLD that incorporates
the variance of gradients for quantifying the “sharpness” of the loss landscape and hasO(1/n) sample
size dependence. Moreover, our bound holds under mild conditions and is applicable to a general
setting in which the output from SGLD can be any function of the iterations. Under additional
assumptions that are satisfied by DP-SGD, our bound includes an explicit time-decaying factor.
Although each of the above contributions has been discussed in existing works, to the best of our
knowledge, our bound is the first one that simultaneously combines all these aspects. Moreover, our
proof techniques based on information-theoretic tools (e.g., strong data processing inequalities and
properties of Gaussian channels) may be of broader interest to the community studying generalization
theory.

1We note that Mou et al. (2018) also provided a bound in Theorem 23 without requiring regularization but
the rate of the decay factor is slower than our factor in this case.

3



2 Preliminaries

Consider the following (possibly non-convex) optimization problem:

min
w∈W

Lµ(w) , E [`(w,Z)] =

∫
Z
`(w, z)dµ(z),

where w ∈ W ⊆ Rd is the parameter (e.g., weights of a neural network) to optimize; µ is the
underlying data distribution that generates Z; and ` : W ×Z → R+ is the loss function (e.g., 0-1
loss). Since µ is unknown, Lµ(w) cannot be computed directly. Hence, one can instead minimize
the empirical risk using a dataset S , (Z1, · · · ,Zn) which contains n i.i.d. points Zi ∼ µ:

min
w∈W

LS(w) ,
1

n

n∑
i=1

`(w,Zi).

Stochastic gradient Langevin dynamics. We consider the stochastic gradient Langevin dynamics
(SGLD) algorithm (Gelfand and Mitter, 1991; Welling and Teh, 2011) for solving this empirical risk
optimization. The dataset S is first divided into m disjoint mini-batches:

S =

m⋃
j=1

Sj , where |Sj | = b and Sj ∩ Sk = ∅ for j 6= k.

We initialize the parameter with a random point W0 ∈ W and update using the following rule:

Wt = Wt−1 − ηt∇w
ˆ̀(Wt−1,SBt

) +

√
2ηt
βt

N, (1)

where ηt is the learning rate; βt is the inverse temperature; N ∼ N(0, Id) is a random variable
drawn independently from a standard Gaussian distribution; Bt ∈ [m] is the mini-batch index2; ˆ̀ is a
surrogate loss (e.g., hinge loss); and

∇w
ˆ̀(Wt−1,SBt

) ,
1

b

∑
Z∈SBt

∇w
ˆ̀(Wt−1,Z). (2)

The recursion in (1) runs for T iterations and the final output is W = f(W1, · · · ,WT ) which is
a function of the parameters across all iterations. For example, the output can be the parameter
at the last iteration W = WT , the one which achieves the smallest value of the loss function
W = argminWt

Lµ(Wt), or an average of the parameters (i.e., Polyak averaging) W = 1
T

∑
t Wt.

Information-theoretic generalization bounds. The goal of this paper is to derive an upper bound
for the expected generalization gap:

E [Lµ(W)− LS(W)] . (3)

A recent work by Xu and Raginsky (2017) provided a new method for bounding the expected
generalization gap in terms of the mutual information between the input dataset S and the output
parameter W. The bound in Xu and Raginsky (2017) was later tightened by Bu et al. (2020).

Lemma 1 (Bu et al. (2020) Proposition 1). Let the loss function `(w,Z) be σ-sub-Gaussian under
Z ∼ µ for all w ∈ W . For any learning algorithm which takes a dataset S = (Z1, · · · ,Zn) as input
and outputs W,

|E [Lµ(W)− LS(W)]| ≤ 1

n

n∑
i=1

√
2σ2I(W; Zi), (4)

where I(W; Zi) is the mutual information between the learning algorithm’s output W and an individ-
ual data point Zi.

2For the sake of illustration, we assume that the mini-batch indices are specified before the SGLD is run.
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Strong data processing inequalities. In order to characterize the time-decaying phenomenon, we
use an information-theoretic tool: strong data processing inequalities (Dobrushin, 1956; Cohen et al.,
1998). The data processing inequality (Cover and Thomas, 2012) states that if a Markov chain
U→ X→ Y holds, then I(U; Y) ≤ I(U; X). In other words, no post-processing of X can increase
the information about U. Under certain conditions, the data processing inequality can be sharpened,
which leads to a strong data processing inequality, often cast in terms of a contraction coefficient.
Next, we recall the contraction coefficients of f -divergences and show their connection with strong
data processing inequalities.

Let f : (0,∞)→ R be a convex function with f(1) = 0 and P , Q be two probability distributions
over a set X ⊆ Rd. The f -divergence (Csiszár, 1967) between P and Q is defined as

Df (P‖Q) ,
∫
X
f
(

dP
dQ

)
dQ. (5)

Examples of f -divergence include KL-divergence (f(t) = t log t) and total variation distance
(f(t) = |t − 1|/2). For a given transition probability kernel PY|X : X → Y , let PY|X ◦ P be the
distribution on Y induced by the push-forward of the distribution P (i.e., the distribution of Y when
the distribution of X is P ). The contraction coefficient of PY|X for Df is defined as

ηf (PY|X) , sup
P,Q:P 6=Q

Df (PY|X ◦ P‖PY|X ◦Q)

Df (P‖Q)
∈ [0, 1].

In particular, when the total variation distance is used, the corresponding contraction coefficient
ηTV(PY|X) is known as the Dobrushin’s coefficient (Dobrushin, 1956), which upper bounds all other
contraction coefficients (Cohen et al., 1998): ηf (PY|X) ≤ ηTV(PY|X). Furthermore, for any Markov
chain U → X → Y, the contraction coefficient of KL-divergence satisfies (Ahlswede and Gács,
1976)

I(U; Y) ≤ ηKL(PY|X) · I(U; X). (6)

When ηKL(PY|X) < 1, the strict inequality I(U; Y) < I(U; X) improves the data processing inequality
and, hence, is referred to as a strong data processing inequality. We refer the reader to Polyanskiy
and Wu (2016) and Raginsky (2016) for a more comprehensive review on strong data processing
inequalities and Calmon et al. (2017) for non-linear strong data processing inequalities in Gaussian
channels.

Gaussian channels. We describe next a few fundamental properties of Gaussian channels. They
will be used to derive a closed-form expression of the decay factor and to upper bound the mutual
information by a quantity that can be estimated from data.

Consider a pair of random variables (X,Y) related by Y = X +mN where X is lying on X ; m > 0 is
a constant; and N ∼ N(0, Id) follows a standard Gaussian distribution. This model can be regarded
as a single use of a Gaussian channel, which has a long history in information theory and possesses
many interesting properties. For example, if X is a compact set, the contraction coefficients have a
non-trivial upper bound

ηKL(PY|X) ≤ ηTV(PY|X) = 1− 2Φ̄

(
diam(X )

2m

)
, (7)

where diam(X ) , supx,x′∈X ‖x− x′‖2 is the diameter of X and Φ̄(t) ,
∫∞
t

1√
2π

exp(−v2/2)dv
is the Gaussian complementary cumulative distribution function (CCDF). Another useful property is
the following inequality (see Lemma 3.4.2 in Raginsky and Sason, 2012, for a proof) which upper
bounds the KL-divergence of the output distributions from the Gaussian channel by the Wasserstein
distance of their input distributions. It also serves as a fundamental lemma for proving Otto-Villani’s
HWI inequality (Otto and Villani, 2000) in the Gaussian case.

Lemma 2. Let X and X′ be a pair of random variables which are independent of N ∼ N(0, Id).
Then for any m > 0

DKL(PX+mN‖PX′+mN) ≤ 1

2m2
W2

2(PX, PX′). (8)
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Here W2(PX, PX′) is the 2-Wasserstein distance equipped with the L2 cost function:

W2
2(PX, PX′) , inf E

[
‖X− X′‖22

]
,

where the infimum is taken over all couplings (i.e., joint distributions) of the random variables X and
X′ with marginals PX and PX′ , respectively.

We recall an analogous result (Guo et al., 2005) which is also used in our proof. It gives an upper
bound for the input-output mutual information of a Gaussian channel.
Lemma 3. Let X be a random variable which is independent of N ∼ N(0, Id). Then for any m > 0

I(X +mN; X) ≤ 1

2m2
Var (X) . (9)

3 Generalization Bounds for SGLD

Although Lemma 1 provides a generalization bound for any learning algorithm, estimating the mutual
information from data is often difficult. In this section, we further upper bound the mutual information
for the SGLD algorithm by using properties of Gaussian channels, discussed in the last section. This
effort leads to a generalization bound (Theorem 1) which can be estimated from the training set. We
observe in our experiments (Section 5) that Theorem 1 captures some generalization phenomena of
DNNs, such as label corruption, and is highly correlated with the true generalization gap. We end
this section by comparing our bound with existing SGLD generalization bounds (Corollary 1) and
extending our analysis to a high-probability bound (Proposition 1).

Before diving into the analysis, we first discuss the main assumption made in this paper.
Assumption 1. The loss function `(w,Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W .

We impose this assumption in order to apply Lemma 1. In particular, if the loss function is bounded
between two constants a and b, this assumption is naturally satisfied with sub-Gaussian constant
σ = (b− a)/2.

Now we present the main result in this section—a generalization bound for the SGLD algorithm. Its
proof relies on the chain rule of mutual information and properties of Gaussian channels (Lemma 3).
As a reminder, the output from SGLD is allowed to be any function of the iterates (i.e., W =
f(W1, · · · ,WT )).
Theorem 1. Under Assumption 1, the expected generalization gap of the SGLD algorithm has the
following upper bound:

E [Lµ(W)− LS(W)] ≤
√

2bσ

2n

m∑
j=1

√∑
t∈Tj

βtηt · Var
(
∇w

ˆ̀(Wt−1,Sj)
)
, (10)

where the set Tj contains the indices of iterations in which the mini-batch Sj is used and

Var
(
∇w

ˆ̀(Wt−1,Sj)
)
, E

[
‖∇w

ˆ̀(Wt−1,Sj)− e‖22
]

with the vector e , E
[
∇w

ˆ̀(Wt−1,Sj)
]
.

Remark 1. Our proof techniques can be extended to analyze a broad class of noisy iterative al-
gorithms besides SGLD. For example, if the probability distribution of the additive noise N is
log-Lipschitz (i.e., the logarithmic probability density function (pdf) is Lipschitz) as considered in Li
et al. (2019), one can derive an analogous generalization bound by adapting our proof. In contrast,
some generalization bounds (e.g., Mou et al., 2018) seem to heavily rely on the Gaussian noise.

The variance of gradients in (10) measures a particular kind of “sharpness” of the loss landscape. A
recent work (Section 4.4 in Jiang et al., 2019) has observed empirically that this quantity is predictive
of and highly correlated with the true generalization gap. Here we evidence this connection from a
theoretical viewpoint by incorporating the gradient variance into the generalization bound.

Many existing SGLD generalization bounds (e.g., Mou et al., 2018; Li et al., 2019; Pensia et al.,
2018; Negrea et al., 2019) are expressed as a sum of errors associated with each training iteration. In
order to compare with these results, we present an analogous bound in the following corollary. This
bound is obtained by combining a key lemma for proving Theorem 1 with Minkowski inequality and
Jensen’s inequality so it is often much weaker than Theorem 1.
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Corollary 1. Under Assumption 1, the expected generalization gap (3) of the SGLD algorithm can
be upper bounded by

√
2σ

2
min

 1

n

T∑
t=1

√
βtηt · Var

(
∇w

ˆ̀(Wt−1,Z
†
t)
)
,

√√√√ 1

bn

T∑
t=1

βtηt · Var
(
∇w

ˆ̀(Wt−1,Z
†
t)
) ,

where Z†t is any data point used in the t-th iteration.

Our bound is distribution-dependent through the variance of gradients in contrast with Corollary 1 of
Pensia et al. (2018), Proposition 3 of Bu et al. (2020), and Theorem 1 of Mou et al. (2018), which rely
on the Lipschitz constant: supw,z ‖∇w

ˆ̀(w, z)‖2. These bounds fail to explain some generalization
phenomena of DNNs, such as label corruption (Zhang et al., 2016), because the Lipschitz constant
takes a supremum over all possible weight matrices w and data points z. In other words, this
Lipschitz constant only relies on the architecture of the network instead of the weight matrices or data
distribution. Hence, it is the same for a network trained from corrupted data and a network trained
from true data. We remark that the Lipschitz constant used by Pensia et al. (2018); Bu et al. (2020);
Mou et al. (2018) is different from the Lipschitz constant of the function corresponding to a network
w.r.t. the input variable. The latter one has been used in the literature (see e.g., Bartlett et al., 2017)
for deriving generalization bounds and, to some degree, can capture generalization phenomena, such
as label corruption.

The order of our generalization bound in Corollary 1 is min
(

1
n

∑T
t=1

√
βηt,

√
β
bn

∑T
t=1 ηt

)
. It is

tighter than Theorem 2 of Mou et al. (2018) whose order is
√

β
n

∑T
t=1 ηt. Our bound is applicable

regardless of the choice of learning rate while the bound in Li et al. (2019) requires the scale of the
learning rate to be upper bounded by the reciprocal of the Lipschitz constant. Our Corollary 1 has the
same order with Negrea et al. (2019) but we incorporate an additional decay factor under additional
assumptions (see Theorem 2) and numerical experiments suggest that our bound is more favourably
correlated with the true generalization gap (see Table 1).

Theorem 1 provides an upper bound for the expected generalization gap of the SGLD algorithm. In
practice, a bound holding with high probability is also worth investigating since the SGLD algorithm
may be run only once using the training set. Next, we leverage the monitor technique (Bassily et al.,
2016; Xu and Raginsky, 2017) and derive a concentration inequality for the generalization gap of
SGLD.

Proposition 1. Under Assumption 1, with probability at least 1− δ over the randomness of (S,W),
the generalization gap of the SGLD algorithm has the following upper bound:

|Lµ(W)− LS(W)| ≤
√

2bσ

n

m∑
j=1

√√√√∑
t∈Tj

βtηt
δ
· Var

(
∇w

ˆ̀(Wt−1,Sj)
)

+ log
2

δ
.

4 Amplifying Generalization by Iteration for DP-SGD

In the last section, we derived a generalization bound for the SGLD algorithm and allowed the
algorithmic output to be any function of all iterates. Here we consider a closely related algorithm—
DP-SGD—and prove that the generalization bound can be sharpened by incorporating a time-decaying
factor if the algorithmic output is the last iterate.

We start by recalling an implementation of the (projected) DP-SGD algorithm (see e.g., Algorithm 1
in Feldman et al., 2018). The parameter of the empirical risk is updated using the following rule:

Wt = ProjW (Wt−1 − η (g(Wt−1,Zt) + N)) , (11)

where N ∼ N(0, Id) and function g indicates a direction for updating the parameter. The parameter
is projected ProjW(w) , argminw′∈W ‖w′−w‖2 onto the domainW at each iteration. We assume

sup
w∈W,z∈Z

‖g(w, z)‖2 ≤ K. (12)
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This assumption is crucial for guaranteeing differential privacy as it controls the sensitivity of each
update. It is satisfied if g is the gradient of a Lipschitz continuous function or the clipped gradient of
a generic loss function.

The recursion in (11) is run for T iterations and we assume that T ≤ n (i.e., data are drawn without
replacement). The final output from the DP-SGD algorithm is the last iterate WT . Again, our goal is
to derive an upper bound for the expected generalization gap:

E [Lµ(WT )− LS(WT )] . (13)

Recall that Lemma 1 provides a generalization bound in terms of the mutual information I(WT ; Zt).
Intuitively speaking, if a data point Zt is used at an early iteration, I(WT ; Zt) should be small due to
the cumulative effect of the noise added in the iterations afterward. We characterize this intuition
rigorously in the following lemma, which is established by strong data processing inequalities.
Lemma 4. For the DP-SGD algorithm, we have

I(WT ; Zt) ≤ I(Wt; Zt) · qT−t. (14)

Here we define

q , 1− 2Φ̄

(
D + 2ηK

2η

)
∈ (0, 1) (15)

where Φ̄(·) is the Gaussian CCDF and the constant D is the diameter of the parameter domainW .

Lemma 4 explains why our generalization bound in Theorem 2 incorporates a time-decaying factor.
In particular, it implies that I(WT ; Zt) → 0 as T → ∞. This time-decaying phenomenon occurs
because the output from DP-SGD is WT while all the intermediate steps are not released. To further
illustrate this point, let us imagine the opposite extreme scenario in which the DP-SGD algorithm
outputs the parameters across all iterations: W1, · · · ,WT . The data processing inequality yields that
for the data point Zt used at the t-th iteration,

I(W1, · · · ,WT ; Zt) ≥ I(Wt; Zt).

Hence, it is impossible to have I(W1, · · · ,WT ; Zt)→ 0 as T →∞ unless I(Wt; Zt) = 0.

Since the underlying data distribution is unknown, so is the mutual information I(Wt; Zt) in (14),
which poses a problem for computing the generalization bound. In order to obtain a computable
bound like Theorem 1, we further upper bound the mutual information by employing properties of
Gaussian channels (Lemma 2).
Lemma 5. For the DP-SGD algorithm, we have

I(Wt; Zt) ≤ 2 · Var (g(Wt−1,Z)) , (16)

where the variance is over the randomness of (Wt−1,Z) ∼ PWt−1 ⊗ µ.

With Lemma 4, 5 in hand, we now present the main result of this section—a generalization bound for
the DP-SGD algorithm.
Theorem 2. Under Assumption 1, the expected generalization gap of the DP-SGD algorithm has the
following upper bound:

E [Lµ(WT )− LS(WT )] ≤ 2σ

n

T∑
t=1

√
Var (g (Wt−1,Z)) · qT−t, (17)

where q is defined in (15).
Remark 2. To qualitatively analyze the role of the decay factor, we demonstrate that as T →∞, the
generalization bound in Theorem 2 converges to 0, whereas the counterpart without a decay factor
may tend to a large constant. Under assumption (12), we can further upper bound the variance term
by K2. In this case, our bound in Theorem 2 becomes

C

n

T∑
t=1

√
qT−t =

C

n

1− qT/2

1−√q
,

where the constant C , 2σK > 0. By choosing T = n and letting them go to infinity, the above
bound converges to 0 but the counterpart without the decay factor can only tend to the constant C.
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Figure 2: Comparison between the generalization gap and our generalization bound in Theorem 1.
We use the SGLD algorithm to train 3-layer neural networks with varying widths on MNIST. As
shown, both the generalization gap and our bound are decreasing w.r.t. the network width.

5 Numerical Experiments

In this section, we demonstrate our generalization bound in Theorem 1 through numerical experiments
on the MNIST dataset. First, we validate the ability of our generalization bound in capturing
generalization phenomena of DNNs observed by empirical studies (see e.g., Zhang et al., 2016).
Second, we examine the correlation between our generalization bound and the true generalization
gap using the three evaluation criteria suggested by Jiang et al. (2019), and compare it with the
benchmarks. We reproduce our experiments on the CIFAR-10 dataset (Krizhevsky et al., 2009) in the
supplementary material.

Corrupted label. As observed in Zhang et al. (2016), DNNs have the potential to memorize the
entire training dataset even when a large portion of the labels are corrupted. For networks with
identical architecture, those trained using true labels have better generalization capability than those
ones trained using corrupted labels, although both of them achieve perfect training accuracy.

In our experiment, we randomly select 5000 samples as our training dataset and change the label of
α ∈ {0%, 25%, 50%, 75%} training samples. Then we use the SGLD algorithm to train a 3-layer
network under different corruption levels. The training process continues until the training accuracy is
1.0 (see Figure 1 Left). We compare our generalization bound with the generalization gap in Figure 1
Middle and Right. As shown, despite being vacuous, our bound is highly correlated with the true gap.
When the corruption level is increasing, both our bound and the generalization gap are increasing
and the curve of our bound has a very similar shape to the generalization gap. Finally, we observe
that the generalization gap tends to be stable since the algorithm converges (Figure 1 Middle). Our
generalization bound captures this phenomenon (Figure 1 Right) as the variance of gradients becomes
negligible when the algorithm starts converging. The intuition is that the variance of gradients reflects
the sharpness of the loss landscape and as the algorithm converges, the loss landscape becomes flatter.

Network width. As observed by several recent studies (see e.g., Neyshabur et al., 2014; Jiang et al.,
2019), wider networks can lead to a smaller generalization gap. This may seem contradictory to the
traditional wisdom as one may expect that a class of wider networks has a higher VC-dimension and,
hence, would exhibit a higher generalize gap. In our experiments, we use the SGLD algorithm to train
neural networks with different widths. The training process runs for 400 epochs until the training
accuracy is 1.0. We compare our generalization bound with the generalization gap in Figure 2. As
shown, both the generalization gap and our bound are decreasing with respect to the network width.

Comparison with benchmarks. To evaluate our bound, we adopt the three criteria proposed in
Jiang et al. (2019): (i) Kendall’s rank-correlation coefficient (τ ) (Kendall, 1938), (ii) Granulated
Kendall’s coefficient (Ψ), and (iii) conditional independent test via mutual information (MI) (Verma
and Pearl, 1991). In our experiments, we select 3 commonly used hyper-parameters (i.e., learning
rate (lr), width, depth), which are believed to influence the generalization gap, and let each hyper-
parameter choose three different values. We train 27 neural networks under all combinations of
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dataset method lr width depth τ Ψ MI

MNIST
OURS (THEOREM 1) 0.70 1.00 0.56 0.50 0.75 0.34

NEGREA ET AL. (2019) 0.26 0.26 0.48 0.25 0.33 0.12

Table 1: We adopt the three evaluation criteria proposed in Jiang et al. (2019) for comparing our generalization
bound with the benchmark method (Theorem 3.1 of Negrea et al., 2019): (i) Kendall’s rank-correlation coefficient
(τ ), (ii) Granulated Kendall’s coefficient (Ψ), and (iii) conditional independent test (MI). All scores, except MI,
are within [−1, 1] and the score of MI is normalized to [0, 1]. We also report the correlations when a single
hyper-parameter (e.g., learning rate (lr)) is varying.

hyper-parameters and assess the correlations between the generalization bound and the generalization
gap.

We compare our generalization bound with the gradient-prediction-residual bound in Theorem 3.1 of
Negrea et al. (2019) under the above three evaluation criteria. As shown in Table 1, our generalization
bound is highly correlated with the true generalization gap and outperforms the benchmark under all
the criteria suggested in Jiang et al. (2019).

6 Summary

We provide new generalization bounds for the SGLD algorithm. Our hope is that these bounds can
help explain some empirical observations (e.g., why over-parameterized DNNs often generalize
well in practice) and inspire new regularization methods. The proof techniques in this paper rely
on information-theoretic tools (e.g., strong data processing inequalities and properties of Gaussian
channels). We believe that these tools can find a wider applicability within the community studying
generalization theory. Our approach can be extended in several directions. For example, one could
tighten our time-decaying factor in Theorem 2 by letting it be distribution-dependent. Moreover, the
proof blueprint outlined here can be applied to analyze a broader family of noisy iterative algorithms
that rely on additive noise. There are several open questions that deserve further investigation. For
example, we prove that our generalization bound can be tightened if the output of the algorithm is the
last iterate. Our analysis is inspired by a line of works on privacy amplification by iteration (Feldman
et al., 2018; Balle et al., 2019; Asoodeh et al., 2020). On the other hand, there are other ways to
amplify privacy, such as subsampling (Chaudhuri and Mishra, 2006) and shuffling (Erlingsson et al.,
2019). It would be interesting to understand if the algorithmic generalization capability can be
improved by these methods.
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A Omitted Proofs

A.1 Proof of Theorem 1

We first present an extension of Lemma 3 which can be proved by using the technique in Section II. E
of Guo et al. (2005).
Lemma 6. Let X be a random variable which is independent of N ∼ N(0, Id). Then for any m > 0
and function f

I(f(X) +mN; X) ≤ 1

2m2
Var (f(X)) . (18)

More generally, if Z is another random variable which is independent of N, then for any fixed z

I(f(X) +mN; X | Z = z) ≤ 1

2m2
Var (f(X) | Z = z) . (19)

Proof. By the property of mutual information (see Theorem 2.3 in Polyanskiy and Wu, 2019),

I(f(X) +mN; X) = I

(
f(X)− e

m
+ N; X

)
(20)

where e , E [f(X)]. We denote

g(x) ,
f(x)− e

m
. (21)

The golden formula (see Theorem 3.3 in Polyanskiy and Wu, 2019, for a proof) yields

I (g(X) + N; X) = DKL

(
Pg(X)+N|X‖PN|PX

)
− DKL

(
Pg(X)+N‖PN

)
≤ DKL

(
Pg(X)+N|X‖PN|PX

)
. (22)

Furthermore, since X and N are independent, we have

DKL

(
Pg(X)+N|X=x‖PN

)
= DKL

(
Pg(x)+N‖PN

)
=
‖g(x)‖22

2
,

where the last step is due to the closed-form expression of the KL-divergence between two Gaussian
distributions. Finally, by the definition of conditional divergence, we have

DKL

(
Pg(X)+N|X‖PN|PX

)
=

1

2
E
[
‖g(X)‖22

]
=

1

2m2
Var (f(X)) , (23)

where the last step is due to the definition of g in (21). Combining (20–23) leads to the desired
conclusion. Finally, it is straightforward to obtain (19) by conditioning on Z = z and repeating our
above derivations.

Next, we present the second lemma which will be used for proving Theorem 1.
Lemma 7. Under Assumption 1, the expected generalization gap (3) of the SGLD algorithm can be
upper bounded by

√
2σ

2n

m∑
j=1

√∑
t∈Tj

βtηt · Var
(
∇w

ˆ̀(Wt−1, Z̄j)
)
,

where the set Tj contains the indices of iterations in which the mini-batch Sj is used and the variance
is over the randomness of (Wt−1, Z̄j) ∼ PWt−1,Z̄j

with Z̄j being any data point in the mini-batch Sj .

Proof. We denote Z(k) , (Z1, · · · ,Zk) for k ∈ [n] and W(t) , (W1, · · · ,Wt) for t ∈ [T ]. For
simplicity, in what follows we only provide an upper bound for I(W; Zn). Since W is a function of
W(T ) = (W1, · · · ,WT ), the data processing inequality yields

I(W; Zn) ≤ I(W(T ); Zn) ≤ I(W(T ),Z(n−1); Zn). (24)
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By the chain rule,

I(W(T ),Z(n−1); Zn) = I(WT ; Zn |W(T−1),Z(n−1)) + I(W(T−1),Z(n−1); Zn). (25)

Let w = (w1, · · · ,wT−1) and z = (z1, · · · , zn−1) be any two vectors. If Zn is not used at the
T -th iteration, without loss of generality we assume that the data points Z1, · · · ,Zb are used in this
iteration. Then

I(WT ; Zn |W(T−1) = w,Z(n−1) = z)

= I

(
wt−1 −

ηT
b

b∑
i=1

∇w
ˆ̀(wT−1, zi) +

√
2ηT
βT

N; Zn |W(T−1) = w,Z(n−1) = z

)
= I

(
N; Zn |W(T−1) = w,Z(n−1) = z

)
= 0. (26)

On the other hand, if Zn is used at the T -th iteration, without loss of generality we assume that the
other b− 1 data points which are also used in this iteration are Z1, · · · ,Zb−1. Then

I(WT ; Zn |W(T−1) = w,Z(n−1) = z)

= I

(
wt−1 −

ηT
b

(
b−1∑
i=1

∇w
ˆ̀(wT−1, zi) +∇w

ˆ̀(wT−1,Zn)

)
+

√
2ηT
βT

N; Zn |W(T−1) = w,Z(n−1) = z

)

= I

(
−ηT
b
∇w

ˆ̀(wT−1,Zn) +

√
2ηT
βT

N; Zn |W(T−1) = w,Z(n−1) = z

)
. (27)

By Lemma 6, we have

I

(
−ηT
b
∇w

ˆ̀(wT−1,Zn) +

√
2ηT
βT

N; Zn |W(T−1) = w,Z(n−1) = z

)
≤ βT ηT

4b2
Var

(
∇w

ˆ̀(wT−1,Zn) |W(T−1) = w,Z(n−1) = z
)
. (28)

Substituting (28) into (27) gives

I(WT ; Zn |W(T−1) = w,Z(n−1) = z) ≤ βT ηT
4b2

Var
(
∇w

ˆ̀(wT−1,Zn) |W(T−1) = w,Z(n−1) = z
)
.

Taking expectation w.r.t. (W(T−1),Z(n−1)) on both sides of the above inequality and using the law
of total variance lead to

I(WT ; Zn |W(T−1),Z(n−1)) ≤ βT ηT
4b2

Var
(
∇w

ˆ̀(WT−1,Zn)
)
. (29)

To summarize, (26) and (29) can be rewritten as

I(WT ; Zn |W(T−1),Z(n−1))

≤

{
βT ηT
4b2 Var

(
∇w

ˆ̀(WT−1,Zn)
)

if Zn is used at the T -th iteration,

0 otherwise.

(30)

Assume that the data point Zn belongs to the j-th mini-batch Sj . Now substituting (30) into (25) and
doing this procedure recursively lead to

I(W(T ),Z(n−1); Zn) ≤
∑
t∈Tj

βtηt
4b2

Var
(
∇w

ˆ̀(Wt−1,Zn)
)
,

where the set Tj contains the indices of iterations in which the mini-batch Sj is used. Hence, this
upper bound along with (24) naturally gives

I(W; Zn) ≤
∑
t∈Tj

βtηt
4b2

Var
(
∇w

ˆ̀(Wt−1,Zn)
)
. (31)
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By symmetry, for any data point in Sj besides Zn, the mutual information between W and this data
point can be upper bound by the right-hand side of (31) as well. Finally, recall that Lemma 1 provides
an upper bound for the expected generalization gap:

√
2σ

n

n∑
i=1

√
I(WT ; Zi) =

√
2σ

n

m∑
j=1

∑
Z∈Sj

√
I(WT ; Z). (32)

By substituting (31) into the above expression, we know the expected generalization gap can be
further upper bounded by

√
2σ

2n

m∑
j=1

√∑
t∈Tj

βtηt · Var
(
∇w

ˆ̀(Wt−1, Z̄j)
)
,

where Z̄j is any data point in the mini-batch Sj .

Now we are in a position to prove Theorem 1.

Proof. Consider a new loss function and the gradient of a new surrogate loss:

`(w,Sj) ,
1

b

∑
Z∈Sj

`(w,Z), ∇w
ˆ̀(w,Sj) ,

1

b

∑
Z∈Sj

∇w
ˆ̀(w,Z).

When Assumption 1 holds, `(w,Sj) is σ/
√
b-sub-Gaussian under Sj ∼ µ⊗b for all w ∈ W . We

view each mini-batch Sj as a data point and view `(w,Sj) as a new loss function. By using Lemma 7,
we obtain:

|E [Lµ(W)− LS(W)]| ≤
√

2σ

2m
√
b

m∑
j=1

√∑
t∈Tj

βtηt · Var
(
∇w

ˆ̀(Wt−1,Sj)
)
. (33)

Since the dataset contains n data points and is divided into m disjoint mini-batches with size b, we
have n = mb. Substituting this into (33) leads to the desired conclusion.

A.2 Proof of Corollary 1

Proof. The Minkowski inequality implies that for any non-negative xi, the inequality
√∑

i xi ≤∑
i

√
xi holds. Therefore, we can further upper bound the generalization bound in Lemma 7 by
√

2σ

2n

m∑
j=1

∑
t∈Tj

√
βtηt · Var

(
∇w

ˆ̀(Wt−1, Z̄j)
)

=

√
2σ

2n

T∑
t=1

√
βtηt · Var

(
∇w

ˆ̀(Wt−1,Z
†
t)
)
.

Alternatively, by Jensen’s inequality and the equality n = mb, we can further upper bound the
generalization bound in Lemma 7 by

√
2σ

2

√√√√ 1

bn

T∑
t=1

βtηt · Var
(
∇w

ˆ̀(Wt−1,Z
†
t)
)
.

A.3 Proof of Lemma 4

Proof. For the t-th iteration, we can rewrite the recursion in (11) as

Ut = Wt−1 − η · g(Wt−1,Zt) (34a)
Vt = Ut + η · N (34b)
Wt = ProjW (Vt) . (34c)

Since data are drawn without replacement, the following Markov chain holds:

Zt → Ut → Vt →Wt → · · · →WT−1 → UT → VT →WT .
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Let UT be the range of UT . By the triangle inequality,

diam(UT ) ≤ diam(W) + 2ηK = D + 2ηK.

Now we leverage strong data processing inequalities and obtain

I(WT ; Zt) ≤ I(VT ; Zt)

≤
(

1− 2Φ̄

(
D + 2ηK

2η

))
· I(UT ; Zt)

≤
(

1− 2Φ̄

(
D + 2ηK

2η

))
· I(WT−1; Zt),

where the first and last steps are due to the data processing inequality. Applying this procedure
recursively leads to the desired conclusion.

A.4 Proof of Lemma 5

Proof. Recall the definition of Ut, Vt in (34). The data processing inequality yields

I(Wt; Zt) ≤ I(Vt; Zt). (35)

By the definition of mutual information, we can write

I(Vt; Zt) = E
[
DKL(PVt|Zt

‖PVt
)
]

=

∫
Z

DKL(PVt|Zt=z‖PVt
)dµ(z).

(36)

Since Vt = Ut + η · N, Lemma 2 implies

DKL

(
PVt|Zt=z‖PVt

)
≤ 1

2η2
W2

2

(
PUt|Zt=z, PUt

)
. (37)

To further upper bound the above Wasserstein distance, we construct a special coupling. Let Wt−1 be
the parameter at the (t− 1)-st iteration. Then we introduce two random variables:

U∗z , Wt−1 − η · g(Wt−1, z),

U∗ , Wt−1 − η · g(Wt−1,Zt).

Here U∗z and U∗ have marginals, PUt|Zt=z and PUt
, respectively. By the definition of Wasserstein

distance, we have

W2
2

(
PUt|Zt=z, PUt

)
≤ E

[
‖U∗z − U∗‖22

]
= η2 · E

[
‖(g(Wt−1, z)− g(Wt−1,Zt))‖22

]
. (38)

Since Zt is only used at the t-th iteration, it is independent of Wt−1. We introduce two independent
copies Z, Z̄ of Zt such that (Wt−1,Z, Z̄) ∼ PWt−1

⊗ µ⊗ µ. Combining (36–38) and using Tonelli’s
theorem lead to

I(Vt; Zt) ≤
1

2
· E
[
‖(g(Wt−1,Z)− g(Wt−1, Z̄))‖22

]
. (39)

Now we introduce a constant vector e ∈ Rd whose value will be specified later. Since Z, Z̄ follow the
same distribution and ‖a− b‖22 ≤ 2(‖a‖22 + ‖b‖22), the right-hand side of (39) can be upper bounded
by

2 · E
[
‖g(Wt−1,Z)− e‖22

]
. (40)

By choosing e = E [g(Wt−1,Z)], the above quantity becomes

2 · Var (g(Wt−1,Z)) . (41)

Finally, combining (35) with (39–41) leads to the desired conclusion.
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A.5 Proof of Theorem 2

Proof. Lemma 1 implies that the expected generalization gap can be upper bounded by

1

n

n∑
i=1

√
2σ2I(WT ; Zi) =

1

n

T∑
t=1

√
2σ2I(WT ; Zt). (42)

Lemma 4 and 5 altogether yield

I(WT ; Zt) ≤ I(Wt; Zt) · qT−t ≤ 2 · Var (g(Wt−1,Z)) · qT−t.

Consequently, the expected generalization gap can be upper bounded by

2σ

n

T∑
t=1

√
Var (g(Wt−1,Z)) · qT−t.

A.6 Proof of Proposition 1

The proof of Proposition 1 relies on the following lemma which can be established by a slight tweak
of the proof of Theorem 3 in Xu and Raginsky (2017). We reproduce it for the sake of completeness.

Lemma 8. Under Assumption 1, with probability at least 1− δ, we have

|Lµ(W)− LS(W)| ≤ 2
√

2σ

n

n∑
i=1

√
I(W; Zi)

δ
+ log

2

δ
, (43)

where the probability is over (S,W).

Proof. Let S1, · · · ,Sk be k independent copies of the dataset S such that each copy Sj contains n
i.i.d. points Sj = (Z1,j , · · · ,Zn,j). The learning algorithm is applied parallelly to each dataset Sj
and outputs Wj . In other words, the pairs (Sj ,Wj) with j ∈ [k] are independent copies of (S,W).
Imagine that there is a monitor which has access to the underlying distribution, the k independent
copies of the dataset, and the outputs from k parallel algorithms. The monitor evaluates these output
parameters and finds the one which overfits the most. Specifically, the monitor returns a tuple
(W∗, J,R) defined by

(J,R) , argmax
j∈[k], r∈{±1}

r
(
Lµ(Wj)− LSj

(Wj)
)

and W∗ , WJ.

We view the combination of the k parallel algorithms and the monitor as a new learning algorithm.
This learning algorithm receives a dataset Sk , (Zk1 , · · · ,Zkn) which contains n i.i.d. data points
Zki , (Zi,1, · · · ,Zi,k) and outputs (W∗, J,R). The loss function of this new learning algorithm is
` :W × [k]× {±1} × Zk defined as

`(w, j, r; zk) , r`(w, zj),

where zj is the j-th coordinate of zk. When Assumption 1 holds, `(w, j, r; Zk) is also σ-sub-
Gaussian under Zk ∼ µ⊗k for all (w, j, r) ∈ W × [k] × {±1}. Hence, applying Lemma 1 to this
new learning algorithm gives

E [R (Lµ(W∗)− LSJ(W∗))] ≤ 1

n

n∑
i=1

√
2σ2I(W∗, J,R; Zki ). (44)

By the definition of (W∗, J,R), we have

E [R (Lµ(W∗)− LSJ(W∗))] = E
[
max
j∈[k]

∣∣Lµ(Wj)− LSj
(Wj)

∣∣] . (45)
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Let Wk , (W1, · · · ,Wk) be the collection of outputs from k parallel algorithms. Using the chain
rule for mutual information gives

I(W∗, J,R; Zki ) ≤ I(Wk,W∗, J,R; Zki )

= I(Wk; Zki ) + I(W∗, J,R; Zki |Wk)

=

k∑
j=1

I(Wj ; Zi,j) + I(W∗, J,R; Zki |Wk),

where the last step is because of the independence among (Wj ,Zi,j) for j ∈ [k]. Since (W∗, J,R)

can take at most 2k different values given Wk, then

I(W∗, J,R; Zki |Wk) ≤ log(2k).

By symmetry, I(Wj ; Zi,j) is the same for all j ∈ [k] which is equal to I(W; Zi). Therefore,

I(W∗, J,R; Zki ) ≤ kI(W; Zi) + log(2k). (46)

Combining (44–46) gives

E
[
max
j∈[k]

∣∣Lµ(Wj)− LSj
(Wj)

∣∣] ≤ 1

n

n∑
i=1

√
2σ2 (kI(W; Zi) + log(2k)). (47)

Since (Sj ,Wj) with j ∈ [k] are independent copies of (S,W), then for any α > 0,

Pr

(
max
j∈[k]

∣∣Lµ(Wj)− LSj
(Wj)

∣∣ < α

)
= Pr (|Lµ(W)− LS(W)| < α)

k
. (48)

By Markov’s inequality,

Pr

(
max
j∈[k]

∣∣Lµ(Wj)− LSj
(Wj)

∣∣ ≥ α) ≤ 1

α
E
[
max
j∈[k]

∣∣Lµ(Wj)− LSj
(Wj)

∣∣] . (49)

Substituting (47), (48) into (49) leads to

1− Pr (|Lµ(W)− LS(W)| < α)
k ≤ 1

αn

n∑
i=1

√
2σ2 (kI(W; Zi) + log(2k)),

which is equivalent to

Pr (|Lµ(W)− LS(W)| < α) ≥

(
1− 1

αn

n∑
i=1

√
2σ2 (kI(W; Zi) + log(2k))

)1/k

. (50)

For any given δ ∈ (0, 1), we take k = b1/δc and

α∗ =
2

n

n∑
i=1

√
2σ2

(
I(W; Zi)

δ
+ log

2

δ

)
.

Hence, (50) indicates that

Pr (|Lµ(W)− LS(W)| < α∗) ≥

(
1− 1

α∗n

n∑
i=1

√
2σ2

(
I(W; Zi)

δ
+ log

2

δ

))1/b1/δc

=
1

2

1/b1/δc
≥ 1− δ.

B Additional Experiments

We conduct additional numerical experiments on CIFAR-10 (Krizhevsky et al., 2009) to further
validate our generalization bound in Theorem 1 (see Figure 3, 4 and Table 2).
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Figure 3: Illustration of our generalization bound in Theorem 1. We use the SGLD algorithm to
train convolutional neural networks (CNNs) on CIFAR-10 when the training data have different
label corruption level α ∈ {0%, 25%, 50%, 75%}. Left: training accuracy. Middle: (empirical)
generalization gap. Right: (empirical) generalization bound.

Figure 4: Comparison between the generalization gap and our generalization bound in Theorem 1.
We use the SGLD algorithm to train CNNs with varying widths (i.e., number of filters in CNN) on
CIFAR-10. As shown, both the generalization gap and our bound are decreasing w.r.t. the network
width.

dataset method lr width depth τ Ψ MI

CIFAR-10
OURS (THEOREM 1) 0.41 0.93 1.00 0.45 0.78 0.25

NEGREA ET AL. (2019) 0.33 0.41 0.85 0.38 0.53 0.16

Table 2: We adopt the three evaluation criteria proposed in Jiang et al. (2019) for comparing our
generalization bound with the benchmark method (Negrea et al., 2019): (i) Kendall’s rank-correlation
coefficient (τ ), (ii) Granulated Kendall’s coefficient (Ψ), and (iii) conditional independent test (MI).
All scores, except MI, are within [−1, 1] and the score of MI is normalized to [0, 1]. We also report
the correlations when a single hyper-parameter (e.g., learning rate (lr)) is varying.
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Parameter Details

Dataset MNIST

Number of training data 5000

Batch size 500

Learning rate Initialization = 0.03, decay rate = 0.96, decay steps=2000

Inverse temperature βt = 106/(2ηt)

Architecture MLP with ReLU activation

Depth 3 layers

Width 64 hidden units

Objective function Cross-entropy loss

Loss function 0-1 loss

Table 3: Experiment details of Figure 1, 2 and Table 1. For Figure 2, the network width is varying
among {16, 32, 64, 128, 256} hidden units. For Table 1, we run the SGLD algorithm 600 epochs and
vary three hyper-parameters: learning rate initialization ∈ {0.03, 0.06, 0.09}, depth ∈ {2, 3, 4}, and
width ∈ {16, 32, 64}.

C Supporting Experimental Results

Recall that our generalization bound in Theorem 1 involves the variance of gradients. To estimate
this quantity from data, we repeat our experiments 4 times and record the batch gradient at each
iteration. This batch gradient is the one used for updating the parameters in the SGLD algorithm so it
does not require any additional computations. Then we estimate the variance of gradients by using
the population variance of the recorded batch gradients. Finally, we repeat the above procedure 4
times for computing the standard deviation, leading to e.g., the shaded areas in Figure 1. We provide
experimental details in Table 3 and 4 for reproducing our experiments.
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Parameter Details

Dataset CIFAR-10

Number of training data 5000

Batch size 500

Number of epochs 400

Learning rate Initialization = 0.03, decay rate = 0.96, decay steps = 2000

Inverse temperature βt = 106/(2ηt)

Architecture conv(5, 32) pool(2) conv(5, 32) pool(2) fc(120) fc(84) fc(10)

Objective function Cross-entropy loss

Loss function 0-1 loss

Table 4: Experiment details of Figure 3, 4 and Table 2. Here conv(k,w) is a k × k convolutional
layer with w filters; pool(k) is a k × k max pooling layer; and fc(k) is a fully connected layer with k
units. The convolutional layers and the fully connected layers all use ReLU activation function. For
Figure 4, the network width (i.e., number of filters in CNN) is varying among {8, 16, 32, 64, 128}.
For Table 2, we are varying three hyper-parameters: learning rate initialization ∈ {0.03, 0.06, 0.09},
number of convolutional layers ∈ {2, 3, 4}, and width ∈ {32, 64, 128}.
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