
Under review as a conference paper at ICLR 2023

SEMI-SUPERVISED COUNTING VIA PIXEL-BY-PIXEL
DENSITY DISTRIBUTION MODELLING

Anonymous authors
Paper under double-blind review

1 APPENDIX 1

In the appendix, we first study the influence of semi parameter (Sec. 1.1). Then we provide detailed 2

alternative structures of dual-branch with tokens (Sec. 1.2). These alternatives and corresponding 3

experimental results demonstrate the independence and effectiveness of P3Net structure. In Sec. 1.3 4

and Sec. 1.4, we study the counting accuracy of our method on the NWPU dataset and under the 5

fully-supervised setting on five popular datasets respectively. Furthermore, we give a running cost 6

evaluation (Sec. 1.5) and the pseudo code of P3Net learning process (Sec. 1.6). The visualizations 7

of attention maps for each density token and a visual comparison with previous methods are shown 8

in Sec 1.7. Finally, we introduce the setting of density interval partitions and label generation in 9

Sec 1.8. 10

1.1 THE INFLUENCE OF PARAMETER λ 11

λ controls the proportion of gradient contribution of the unlabeled loss. As it gets larger, the self- 12

supervised signals generated by unlabeled images will have greater effects on the model update. We 13

hold experiments to study the influence of λ, which result is shown in Table 1. 14

The experiments are conducted on UCF-QNRF with a labeled ratio of 5%. As the result is shown, 15

when λ is in the appropriate range, i.e. from 0.005 to 0.05, the gap of final counting performance 16

is small. However, when the value is not suitable, the unlabeled images will impose too much or 17

conversely, too little supervision on the gradient update of the model. Then the accuracy drops 18

sharply, which is similar to excluding unlabeled data. Therefore, we set the unlabeled parameter 19

λ = 0.01. 20

λ 0 0.0005 0.001 0.005 0.01 0.05 0.1

MAE 129.5 127.8 123.4 118.6 115.3 116.8 122.5
MSE 212.8 209.7 207.9 199.2 195.2 195.8 206.0

Table 1: The influence of parameter λ on UCF-QNRF (labeled ratio 5%).

1.2 DETAILED ALTERNATIVE STRUCTURE OF DUAL-BRANCH WITH TOKENS 21

To demonstrate the importance of the independence of model structures, we introduce four alterna- 22

tive structures. Specifically, they have the same CNN backbone, Pixel-wise Distribution Matching 23

loss and inter-branch Expectation Consistency Regularization as P3Net. A general comparison of 24

these structures is shown in Table 2. And the experimental results are shown in Table 3. 25

P3Net SDDS STDS STSS DTSS

Two Independent Decoders ✓ ✓ ✓ ✓
Two Series of Tokens ✓ ✓ ✓

Interleaving Density Semantics ✓ ✓ ✓

Table 2: A comparison of structures for different alternatives.
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Figure 1: SDDS uses a shared decoder with two independent sets of tokens for interleaving intervals.

• ‘Shared Decoder with Different Semantics (SDDS)’ uses a common decoder to refine two26

interleaving and independent density tokens. Compared to P3Net, this alternative misses27

the independence of dual decoders for separate interaction between the feature map and the28

respective density tokens. The structure is shown in Figure 1. Since each token maintains29

exclusive semantic information, this structure still retains a certain degree of independence.30

• ‘Shared Tokens with Different Semantics (STDS)’ uses independent dual decoders and31

a common series of density tokens with different semantics. The structure is shown in32

Figure 2. The alternative lacks the independence of different series of token features to33

represent interleaving density information. Instead, different semantics are endowed to the34

different decoders. Through the modulation and interaction of dual decoders, the refined35

tokens will fine-tune to be with interleaving density information. The drop in accuracy36

is attributed to the lack of semantic difference of initial density token prototypes in two37

interleaving branches.38

• ‘Shared Tokens with Same Semantics (STSS)’ uses independent dual decoders but a com-39

mon series of density tokens with same semantics. This structure, which is shown in Fig-40

ure 3, lacks the independence of different series of representative token features and the41

interleaving density support. However, since the initialization of parameters in dual de-42

coders is different, the confirmation bias will be partially eliminated, so the consistency43

regularization can still play a slight role.44

• ‘Different Tokens with Same Semantics (DTSS)’ adopts the same independent model with45

P3Net but the dual density tokens represent the same density intervals. This alternative46

lacks the assumption that the semantics are exclusive and build on different supports, thus47

the consistency regularization is easier to satisfy. The structure is shown in Figure 4 and its48

semi-supervised performance deteriorates compared to that of P3Net.49

SDDS STDS STSS DTSS P3Net

MAE 123.3 121.4 123.7 123.1 115.3
MSE 215.7 197.8 213.4 206.0 195.2

Table 3: The impact of the settings of the consistency regularization with different structures. Ex-
periments are conducted on UCF-QNRF with a labeled ratio 5%.

1.3 SEMI-SUPERVISED COUNTING PERFORMANCE ON NWPU50

NWPU-CROWD Wang et al. (2020b) contains 5,109 images with 2.13 million annotated points.51

There are 3,109 images in training set, 500 images in validation set, and the remaining 1,500 im-52

ages in testing set. The dataset has a large density range from 0 to 20,033 and contains various53

illumination scenes.54
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Figure 2: STDS uses two independent decoders with a shared set of tokens for interleaving intervals.

Figure 3: STSS uses two independent decoders with a shared set of tokens for the same intervals.

The semi-supervised setting on NWPU is referred to the work Meng et al. (2021). We keep the 55

validation images to evaluate our model’s performance. In the training set, 10% images are randomly 56

selected as the validation set. For the setting of labeled ratio of 5%, 10% and 40%, the corresponding 57

proportion of images in the training set will be selected as labeled data and the rest images will be 58

regarded as unlabeled data. 59

We compare our method with recent state-of-the-art semi-supervised methods, including mean 60

teacher (MT) Tarvainen & Valpola (2017), Learning to Rank (L2R) Liu et al. (2018) and SUA Meng 61

et al. (2021). The qualitative result is shown in Table 4. It can be observed that P3Net outperforms 62

other methods by an obvious counting accuracy improvement on all three settings of ratios of labeled 63

data. 64

Labeled Ratio 5% 10% 40%
MAE MSE MAE MSE MAE MSE

MT Tarvainen & Valpola (2017) 184.0 648.0 144.1 508.6 129.8 515.0
L2R Liu et al. (2018) 159.2 650.3 138.3 550.2 125.0 501.9

SUA Meng et al. (2021) - - - - 111.7 443.2
P3Net (Ours) 116.7 598.8 88.2 515.9 76.3 422.8

Table 4: Comparisons with the state of the arts semi-supervised counting methods on NWPU. The
experimental settings are referred to the work Meng et al. (2021).

1.4 PERFORMANCE UNDER FULLY-SUPERVISED SETTING 65

We hold experiments under the fully-supervised setting to study the effectiveness of proposed den- 66

sity tokens and Pixel-wise probabilistic Distribution (PDM) loss. It is worth mentioning that in 67
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Figure 4: DTSS uses two independent decoders with two independent sets of tokens for the same
intervals.

the fully-supervised setting, our model does not need the self-supervised inter-branch Expectation68

Consistency Regularization (ECR), which are design for learning from unlabeled data.69

We compare our method with state-of-the-art fully-supervised methods on five datasets named UCF-70

QNRF, JHU-Crowd++, ShanghaiTech A, ShanghaiTech B and NWPU. The results are summarized71

in Table 5. Though it is not particularly designed for fully-supervised crowd counting, our method72

performs fairly well. For instance, on the UCF-QNRF dataset, it performs the best in terms of MAE73

and the second in terms of MSE, when compared with the most commonly used and best accepted74

methods like P2PNetSong et al. (2021), UEPNet Wang et al. (2021), DM-Count Wang et al. (2020a),75

BL Ma et al. (2019), etc. This consistent performance boost shows the effectiveness of the proposed76

architecture and the PDM loss.When considering the superior performance achieved by our method77

in semi-supervised crowd counting reported in the main test, it further implies that optimal semi-78

supervised counting is built on both the ability to learn from labeled data and unlabeled data.79

Dataset UCF-QNRF JHU++ ShanghaiTech A ShanghaiTech B NWPU
Method MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN Zhang et al. (2016) 277 426 188.9 483.4 110.2 173.2 26.4 41.3 232.5 714.6
CSRNet Li et al. (2018) - - 85.9 309.2 68.2 115.0 10.6 16.0 121.3 387.8
SANet Cao et al. (2018) - - 91.1 320.4 67.0 104.5 8.4 13.6 190.6 491.4

S-DCNet Xiong et al. (2019) 104.4 176.1 - - 58.3 95.0 6.7 10.7 - -
BL Ma et al. (2019) 88.7 154.8 75.0 299.9 62.8 101.8 7.7 12.7 105.4 454.2

DM-Count Wang et al. (2020a) 85.6 148.3 - - 59.7 95.7 7.4 11.8 88.4 388.6
UOT Ma et al. (2021) 83.3 142.3 60.5 252.7 58.1 95.9 6.5 10.2 87.8 387.5
S3 Lin et al. (2021) 80.6 139.8 59.4 244.0 57.0 96.0 6.3 10.6 83.5 346.9

P2PNet Song et al. (2021) 85.3 154.5 - - 52.7 85.1 6.3 9.9 77.4 362.0
UEPNet Wang et al. (2021) 81.1 131.7 - - 54.6 91.2 6.4 10.9 - -

Our method 78.5 134.2 55.8 237.6 56.6 89.9 6.2 10.2 74.3 327.3

Table 5: Comparisons with the state of the arts on UCF-QNRF, JHU-Crowd++, ShanghaiTech A,
ShanghaiTech B and NWPU under fully-supervised setting. The best performance is shown in bold
and the second best is shown in underlined. Our model is very competitive with SOTA supervised
methods.

1.5 RUNNING COST EVALUATION80

We evaluate the running cost of our method, which comparison result is reported in Table 6. The81

result of floating-point operations (FLOPs) is computed on one 384×384 input image and the result82

of inference time is tested on 1024 × 1024 images. We compare P3Net with BL Ma et al. (2019)83

model which serves as a basic counting network, and VGG19+Trans where Trans stands for the84

vanilla transformer encoder with self-attention.85
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The growth of model parameters comes from the dual-branch decoder structure. However, without 86

the need of regression head which is always composed of a convolutional network used in BL and 87

VGG19+Trans, the FLOPs of P3Net achieve minimum. Meanwhile, with respect to feature length 88

N and the token number C << N , the self attention in encoder takes O(N2) time and space while 89

the cross attention in decoder takes O(C2 + CN) ≈ O(CN). From the results compared with 90

VGG19+Trans, P3Net uses less FLOPs and inference time, justifying the low computational cost of 91

decoder. 92

BL Ma et al. (2019) VGG19+Trans P3Net

Model Size (M) 21.5 29.9 36.8
FLOPs (G) 60.8 65.6 57.8

Inference Time (s / 100 images) 9.8 11.4 10.2

Table 6: Comparison of the Model Size, FLOPs and Inference Time. Trans stands for the vanilla
encoder. The growth of model parameters comes from the dual-branch decoder structure. But
without the need for a regression head which is always composed of a convolutional network, the
number of floating-point operations executed (FLOPs) of P3Net is the minimum, and even lower
than the the non-transformer-based BL Ma et al. (2019).

1.6 PSEUDO CODE 93

We provide a pseudo code for P3Net learning in Algorithm 1. 94

Algorithm 1: P3Net Learning
Input: Labeled dataset X and unlabeled dataset U .
Output: The counting model θ with dual density tokens T = T1, T2.

1 Initialize L ← 0;
2 for epoch in [1,maxepoch] do
3 for each sample s ∈ X ∪ U do
4 Get the predicted distribution matrices O1, O2 by corresponding T1, T2;
5 if s ∈ X then
6 Generate the training labels Y1, Y2 by ground-truth;
7 L ← LP by calculating the PDM loss based on Eq. 7;
8 else
9 Generate the pixel-wise mask E based on Eq. 9;

10 L ← λLE by calculating the ECR loss based on Eq. 8;
11 end
12 Update the counting model R and density tokens T minimizing L;
13 end
14 end
15 Return the trained counting model θ′ with T ′.

1.7 VISUALIZATIONS 95

We visualize the attention maps for each density token in dual branch to study their effects. Visual- 96

izations are shown in Figure 5 for a labeled image and Figure 6 for an unlabeled image. 97

The attention maps are generated by the same model, which is trained on UCF-QNRF with a labeled 98

ratio of 5%. A and B stand for different branch and the numbers represent the different tokens. 99

Tokens with higher numbers specify the density interval with higher density. The quantitative results 100

show that the density tokens work well whether the predicted density was supervised by a clear 101

groud-truth label or not. 102

We also provide visual comparisons between our model and the previous state-of-the-art semi- 103

supervised counting model SUA (Meng et al., 2021) in Figure 7. We visualize the predicted densities 104
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Labeled Image A1 A2 A3 A4 A5

A6 A7 A8 A9 A10 A11

A12 A13 A14 A15 A16 A17

A18 A19 A20 A21 A22 A23

A24 A25 B1 B2 B3 B4

B5 B6 B7 B8 B9 B10

B11 B12 B13 B14 B15 B16

B17 B18 B19 B20 B21 B22

B23 B24 B25

Figure 5: Attention maps of each density token in dual branch for a labeled training image when
training with a labeled ratio of 5% on UCF-QNRF. A and B stand for different branch and the
numbers represent the different tokens. Tokens with higher numbers specify the density interval
with higher density.

on unlabeled training images of ShanghaiTech A of both models. The first row presents input im-105

ages. The second row presents predicted density maps by SUA model while the third row presents106

predicted density maps by our P3Net. For SUA model in unlabeled data, there will be serious false107

alarms in the background. In contrast, our density token guided model can perform more stable and108

thus produce density maps with better accuracy.109
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Labeled Image A1 A2 A3 A4 A5

A6 A7 A8 A9 A10 A11

A12 A13 A14 A15 A16 A17

A18 A19 A20 A21 A22 A23

A24 A25 B1 B2 B3 B4

B5 B6 B7 B8 B9 B10

B11 B12 B13 B14 B15 B16

B17 B18 B19 B20 B21 B22

B23 B24 B25

Figure 6: Attention maps of each density token in dual branch for an unlabeled training image when
training with a labeled ratio of 5% on UCF-QNRF. A and B stand for different branch and the
numbers represent the different tokens. A token with a higher number specifies the density interval
with higher density.

1.8 THE SETTING OF DENSITY INTERVAL PARTITIONS AND LABEL GENERATION 110

The interval partitions are preset and remain constant during training and inference stages. We 111

follow the paper (Wang et al., 2021) to obtain the appropriate intervals. 112

The partitions for the first branch are 113

[0, 0.0019, 0.0081, 0.0165, 0.0272, 0.0404, 0.056, 0.076, 0.099, 0.126, 0.159, 0.199, 0.246, 0.303, 114

0.371, 0.454, 0.556, 0.684, 0.848, 1.06, 1.36, 1.8, 2.5, 3.9, 8.2]. 115

7



Under review as a conference paper at ICLR 2023

GT: 371 GT: 184 GT: 357 GT: 102

SUA: 650 SUA: 548 SUA: 574 SUA: 392

P3Net: 379 P3Net: 175 P3Net: 331 P3Net: 121

Figure 7: Visualizations of predicted densities on unlabeled training images of ShanghaiTech A.
The first row: input images. The second row: predicted density maps by SUA model. The third row:
predicted density maps by our P3Net. For SUA model in unlabeled data, serious false alarms in the
background are observed, as shown in the second row. In contrast, our density token guided model
can perform more stable and thus produce density maps with better accuracy in the third row.

The partitions for the second branch are116

[0, 0.00087, 0.0046, 0.0119, 0.0214, 0.0333, 0.048, 0.065, 0.086, 0.112, 0.142, 0.178, 0.221, 0.272,117

0.334, 0.409, 0.501, 0.615, 0.759, 0.945, 1.197, 1.55, 2.1, 3.0, 4.5, 8.5].118

As the original ground-truth for the counting task is in the form of discrete points. To generate labels119

for PDM loss, we first take the most popular density map generation solutions as the paper (Zhang120

et al., 2016), smoothes each ground-truth point by a 2D Gaussian kernel. Then we calculate the121

total density in each patch and assign them into corresponding intervals, which are pre-defined by122

discretizing the whole density space.123
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